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Abstract—In spite of their rapid growth, cloud applications still
heavily rely on the network communication infrastructure, whose
stability and latency directly affect the quality of experience. In
fact, as mobile devices need to rapidly get real-time information
and files from the cloud, it becomes an extremely important factor
for cloud providers to deliver a better user experience. In this
paper, we specify a cloud access overlay protocol architecture,
based on traffic engineering extensions of the Locator/Identifier
Separation Protocol (LISP), to improve the access performance
for Cloud services delivered by a distributed data center fabric.
The distributed fabric offers the possibility to access the services
through multiple routing locators and to migrate server virtual
machines (VMs) to different locations improving access perfor-
mance. We address the problem of jointly switching VM routing
locators and migrating VMs across data-center sites. We propose
an adaptive control framework that allows satisfying agreed-
upon levels of quality of service. We evaluate the architecture
on a real distributed data-center network, involving four distant
LISP-enabled data-center sites in France, as compared to legacy
situations with no Cloud access optimization. By emulating
realistic situations we show that, by only switching the data-
center routing locator, we can guarantee a better user experience
with a transfer time decreased by 80%. Moreover, we show that,
to react to situations when the Cloud access link between sites is
disrupted or suffers excessively from packet loss, the adaptive VM
migration policy can further decrease the transfer time by 40%.

I. INTRODUCTION

Cloud computing has witnessed a rapid growth over the last
decade, with companies of all sizes increasingly migrating
to Cloud-based Infrastructure as a Service (IaaS) solutions.
Experts believe that this trend will continue to develop fur-
ther in the next few years [1]. While cloud operators offer
a plethora of applications and services (e.g., web hosting,
storage services), end-users still have limited control over
hardware and software resources. Currently, there is a clear
demand to overcome this limitation and extend users’ control
beyond the cloud operator boundaries.

Cloud providers are increasingly relying on virtualization
to ease network and service management and to decrease
expenses by disentangling the software from the hardware.
Server virtualization also allows taking control over the guest
operating system use of CPU, memory, storage and network
resources, and to deploy advanced applications that can bal-
ance processing between the cloud and the client device.
The common denominator goal in mobile cloud computing
research is to build a cloud access infrastructure that is tailored
to the mobility and the actual computing capabilities of client

device. Very low latency and high reliability requirements are
leading to a reduced wide area networks (WAN) segment
between the cloud and the user, with a higher geographical
distribution of DC facilities. On the one hand, a recent study
in [2] shows that about 25% of collocation data-centers (DCs)
have three or more sites, and that about 5% have more than 10
sites. On the other hand, the so-called cloudlet solution ( [3],
[4]) is gaining momentum: the idea is to bring cloud servers
even closer to users, with small DCs directly in the access
network. These concerns by cloud and network providers
recently led to the creation of a new Industry Specification
Group on Mobile Edge Computing at ETSI [5].

Cloud applications are increasingly accessed on the move:
when the distance between the user and the application gets
larger, especially for interactive computing-intensive services,
the quality of experience starts declining. To overcome this
limitation one key approach is to migrate services (server
virtual machines) to the closest data-center according to user’s
movement [6]. Mobile devices using applications such as
remote desktop, real-time voice/video recognition and aug-
mented reality heavily rely on the cloud back-end and require
a very low cloud access latency, between the user and the
computation servers, to guarantee a pleasant user experience.
Voice recognition and augmented reality constitute the rising
star of this industry; for instance, the introduction of Google
Voice Search [7] and Apple Siri [8] on mobile phones and
wearable devices such as the Google Glasses [9], is revolu-
tionizing the way mobile devices interact with the cloud. This
type of services requires a cloud network infrastructure that
can handle large amount of data on the go, with minimum
disruption or loss in the quality offered to the user.

In this paper, we focus on giving mobile users a more
efficient access to their cloud applications in a distributed data-
center environment making use of our Protocol Architecture
for Cloud Access Optimization (PACAO) solution based on
the Locator/Identifier Separation Protocol (LISP). PACAO’s
goal is to satisfy user’s needs by improving the Cloud access
network latency as a function of user mobility and user-cloud
link quality through two actions: switching the entry data-
center in the distributed cloud fabric, and migrating virtual
machines at a cloud facility closer to its user.

The paper is organized as follows. Section II gives an
overview of related work. Section III describes the PACAO
architecture. Section IV presents experimental results. Finally,
section V concludes the paper.



II. BACKGROUND

In this section we overview the state of the art on distributed
DC architectures, cloud performance metrics and LISP.

A. Geographically distributed cloud architectures

The current trend in the design of cloud fabrics is to geo-
graphically distribute multiple DC facilities [2]. Distributing
DC facilities allows, from one hand, to increase the reliability
of hosted services and, from the other hand, to offer better
cloud access performance to customers. Many modular DC
architectures have been designed and evaluated to support
this evolution. The common design goal is to allow building
DCs incrementally starting by regular small basic building
blocks, grouping a few switches to interconnect a number of
virtualization servers, using regular wiring schemes [10] [11].
As opposed to legacy hierarchical architectures, modular DCs
better accommodate horizontal traffic between virtualization
servers in support of various IaaS operations such as VM
migrations and storage synchronization.

The conception of small local cloud facilities is at a
good experimental and design stage today. Commonly called
‘cloudlets’ [4], [12], they can support computational offload-
ing [13]: running whole applications or part of applications out
of the device, granting energy gains for the mobile device,
and the execution of otherwise too computational intensive
applications for a mobile device, such as for instance remote
desktop or gaming applications. The decision to offload ap-
plication and computing tasks can be a mere remote decision
or local decision taken by the device. As explained in [14],
the decision making can take into account a variate number of
metrics, including the device energy gain, the VM migration
time when VM migration is needed, and other system level
metrics. Less attention is devoted in [14] to network-level
metrics, which can be largely important in geo-distributed
cloud deployments.

B. Cloud access performance

User’s quality of experience (QoE) typically refers to the
tangible, visible performance the user experiences when con-
suming a digital service [15]. It is commonly presented as a
desirable goal measurable with an orthogonal set of metrics
(e.g., glitches, waiting times) with respect to legacy Quality of
Service (QoS) metrics (e.g., jitter, delay, throughput) used by
network operators. Obviously, providing good QoS-enabling
mechanisms in the network can ensure smooth transmission
of services (i.e., audio and video), which denotes that generic
QoS techniques directly induce QoE metric levels [16]. The
analytical relationship between QoE control mechanisms and
QoS parameters is derived in [17]. In our work we refer to
the following limited set of measurable QoS goals that directly
affect user’s QoE:
• Availability: it is a measurable metric that indicates the

expected availability rate of a service accessible via a
network, i.e., the probability that a service is available
when a user tries to access it. It often appears as a binding

metric in service-level-agreements (SLA) related to net-
work services, especially when the customer is a business
entity that requires a very high level of reliability. For
a data-center fabric, the reference availability rates are
typically 99.671% for Tier-1 DCs, 99.741% for Tier-2
DCs, and 99.982% for Tier-3 DCs [18]. For long-haul
network providers, the carrier-grade network availability
rate offered to business services is often higher than
99,99%, especially for critical services. Surrounding a
failure affecting the access to one DC of a distributed DC
architecture by automatically switching the server routing
locator is therefore a desirable property of a Cloud access
solution.

• Network Latency: it is the delay incurred in the delivery
and processing of service data delivered through the
network. From the area of usability engineering for legacy
Internet services, the time threshold that could affect the
user’s perception are the following: 100 ms is the bound-
ary under which the user feels that the service is reacting
instantaneously; between 100 ms and 1 s the user starts
perceiving a non-negligible delay; above 1 s there is a risk
that the user abandons the service [19]. For more recent
and forthcoming mobile services, related to augmented
reality, video/voice recognition, remote desktop, network
gaming, more stringent delay requirements are expected
- for instance, research on 5G systems actually targets
solutions for 1 ms access latency.

• Network Jitter: it is the variation in the delay experienced
by received packets. Due to congestion, the steady stream
could become lumpy and cause packets to arrive out of
order. Although the tolerance to network jitter is high,
beyond a certain threshold the effects could resemble that
of network loss: packets out of order could be discarded
at the receiver, which directly affects QoE especially for
real-time services.

Our protocol architecture is such that the DC entry and
VM migration decisions are made accordingly to metrics such
as the availability, the latency and the jitter that are made
measurable and observable by a dynamic protocol overlay.

C. Locator/Identifier Separation Protocol (LISP)

The basic idea of the Locator/ID Separation Protocol
(LISP) [20] is to split the localization and identification
functions of legacy IP into two IP addresses: Endpoint IDen-
tifiers (EIDs) assigned to end-points, and Routing LOCators
(RLOCs) assigned to edge routers connected to the global
routing system. To separate the two namespaces, LISP uses
a map-and-encap scheme: at the data-plane level, edge routers
map the identifier to the locator and encapsulate the packet
in another IP packet before sending it to the Internet transit
network. At the control-plane level, a set of locators with
different priorities and weights are affected to an EID-prefix.

A LISP site is managed by at least one tunneling router
(xTR), which has typically a double functionality: ingress
tunnel router (ITR) and egress tunnel router (ETR), the ITR
encapsulating packets and the ETR decapsulating them. LISP



has a distributed mapping system that handles EID-to-RLOC
lookups. It includes two elements for that: Map Server (MS)
and Map Resolver (MR). The mapping resolution protocol
currently adopted in public test beds and commercial services
is based on the Delegated Database Tree (DDT) [21], which
works similarly to the Domain Name System (DNS).

LISP is undergoing an increasing industrial deployment,
essentially guided by Cisco Systems integration of LISP in
high-end routers, and also in DC switches toward an improved
management of VM mobility [22]. Its optimization in support
of fast IP mobility have been proposed, to manage both
VM mobility [23] and user mobility [24]; LISP offers a
more efficient and expressive framework for this with respect
to alternative solutions such as mobile IP or DNS-based
solutions. A basic proposal to use LISP for localizing VMs
as a function of user mobility is also investigated in [25].
Our protocol architecture builds over this overall research
interest in using the versatile LISP architecture for mobile
Cloud network environments.

III. MOBILE CLOUD PROTOCOL ARCHITECTURE

A basic reference scenario is the one represented in Fig. 1:
the user is connected to a VM located on DC 1, managed
by a Cloud provider that also operates other DCs (in the
figure, DCs 2, 3, 4) such that all the DCs of the Cloud fabric
have a dedicated private interconnection network. The user
experience is affected by various QoS factors such as the
Round Trip Time (RTT) and the jitter. Depending on whether
SLA levels are respected or not, the traffic between the user
and DC 1 is susceptible to be switched to the entry of other
DCs. If the access DC is switched and if the VM is not located
at the new access DC, the traffic is rerouted from within the
cross-DC fabric to reach the VM. Eventually if the SLAs are
not met or can be further improved the VM is migrated to or
close to the new access DC. Our proposal consists in defining
a Cloud access protocol architecture to orchestrate and manage
these Cloud access operations. The Protocol Architecture for
Cloud Access Optimization (PACAO), relies on an adaptation
of the LISP architecture as a Cloud access overlay protocol,
and on an optimization framework to adaptively determine the
best entry DC (VM RLOC) and the best VM location on a
per-user basis.

A. Overlay Network Requirements and Features

We express in the following the requirements in the def-
inition of a Cloud access overlay architecture, and then we
justify our design choices accordingly.
• IP Addressing continuity: it is important to maintain

user’s session when user changes its access point. Keep-
ing a session alive when changing user’s IP address is
not obvious. The same applies to a VM migrating from
DC 1 to DC 2. In fact, in absence of layer 2 continuity
across IP endpoint attachment points (access point for
users, hosting virtualization server for VMs), layer 3
continuity needs to be guaranteed by forms of data-plane
encapsulation able to pass through middle-boxes.

DC 1

DC2

DC3

DC4

RLOC A

RLOC C

RLOC B

RLOC D

DISTRIBUTED DATA 
CENTERS

Fig. 1: Mobile cloud access reference scenario.

• Access DC switching: the user endpoint should be able
to be configured remotely by the cloud operator so that
it changes the access DC toward the service VM.

• VM mobility: in order to bring a VM closer to its user in
terms of QoS distance, the cloud operator must be able
to trigger a VM migration across multiple DC sites.

• Cloud access link monitoring: in order to support the
decision-making related to access DC switching and
adaptive VM mobility, the link between the user and its
VM DC location and other possible DC locations needs
to be monitored in order to collect network state metrics.

• VM Orchestration: based on the collected cloud access
overlay link measurements, the DC access switching and
VM migration decisions need to be taken at a logically
centralized controller.

Among the different overlay protocol alternatives, a few
can satisfy the above requirements. Waiting for a mature
specification and implementation of a network virtualiza-
tion overlay protocol (NVO) by the NVO3 IETF working
group [26], among the most promising implemented virtual
network overlay protocols quickly reviewed in [2], the single
ones supporting addressing continuity, capability to change
the location of users and VMs, and capability to monitor
the routing link between users’ and VMs’ locators with a
distributed yet logically centralized control-plane, are the LISP
and the Virtual eXtensible LAN (VXLAN) [27] protocols, the
latter performing Ethernet over UDP-IP encapsulation. The
PACAO architecture makes use of both VXLAN and LISP,
proposing LISP as Cloud access overlay protocol and VXLAN
as inter-DC overlay protocol1.

1Using VXLAN as Cloud access protocol would generate a much higher
signaling due to the multicast operations of VXLAN, while using LISP as
inter-DC overlay protocol would be less effective given the need of managing
VM location states via multicast signaling to all possible VM locations, as
far as multicast extensions to LISP are not defined and implemented.



In the reference distributed DC fabric, each DC is a LISP
site and has at least one LISP tunnel router (xTR). Each xTR
can have one or multiple locators (RLOCs) delivered from
different Internet service providers (ISPs). The VMs on each
data center typically have unique and static identifiers (EIDs).
Indeed, it is possible to maintain the same EID while migrating
a VM from one DC to another as it has been shown in our
previous work [23]. It is assumed that a VM is also reachable
through the RLOCs of the other data-centers. For example, in
Fig. 1 a VM on DC 1 is reachable through RLOC A as well as
RLOC B without the necessity of migrating it to DC 3. Thus,
an EID-prefix bound to a VM can have one or multiple RLOCs
from different sites with different priorities and weights.

Cloud users are LISP-capable mobile nodes that also have
unique and static EIDs. By decoupling the locator from
the identifier, mobile users are not tied to any geographical
location from an addressing and routing perspective. In fact, as
illustrated in Fig. 1, when a mobile user with RLOC C roams
onto a new location, he receives a new locator: RLOC D.

In the proposed architecture, a logically centralized con-
troller (possibly composed of distributed agents2) monitors and
measures periodically the states of the user-VM link (in terms
of round-trip-time, jitter, availability, etc) and decides:
• between the different RLOCs that are sent to the user

through the EID-to-RLOC mapping, which one should
have the highest priority.

• if after switching to a new RLOC, it is worth migrating
the VM to another DC.

Before formulating the optimization algorithm to be solved
by the PACAO controller in order to take the above decisions,
we describe its main modules.

B. PACAO controller

Accordingly to the above mentioned requirements and fea-
tures, the PACAO controller is composed of three correlated
modules:
• Monitoring Module: it monitors the connection between

the user and the VM, dividing the user-VM link into
two links: user-xTR link and xTR-VM link. To moni-
tor the user-xTR link, active online probes periodically
collect QoS metrics between VM and users’ RLOCs. In
order to support all possible RLOC switching and VM
migration decisions, all VM RLOCs, i.e., DC sites, are
monitored and not only the one that belongs to the site
where the VM runs. The probing operation is performed
enhancing LISP probing; as of [20], RLOC probes are
used to determine whether a RLOC is available or not;
moreover, it is suggested that these probes can also be
used for monitoring QoS parameters: accordingly, we
implemented RLOC probing in OpenLISP [29], [30] to

2It is worth noting that mobile nodes can also feature a lightweight version
of an agent that gathers statistics based on user satisfaction. This could help
the cloud operator to tweak up its collected QoS data by building a database
that maps user satisfaction with the location of the network as it has been
proposed in [28].

allow transporting RTT and jitter metrics. To monitor the
xTR-VM link, common DC monitoring tools can be used.

• Optimization Module: it implements an algorithm that
solves the RLOC switching and VM migration optimiza-
tion problem formulated in section III-C. When used for
RLOC optimization, the agent basically takes the metrics
collected from the monitoring module, and feed them to
the algorithm that calculates the RLOC that minimizes
a fitness cost. The optimization module also maps each
user’s RLOC to a locators set. The latter contains all the
locators of the DCs from where the VM is reachable,
sorted by a QoS score: the highest score is attributed
to the RLOC that respects and minimizes the SLA and
the cost. The lowest LISP priority (best RLOC) is then
attributed to the locator with the highest QoS score, and
so on. When this module is used to decide the location
of the VM, the agent takes the residual capacity of the
destination hosts, as well as the network information
collected by the monitoring module, and then it lets the
algorithm compute the best destination that could host
the VM.

• Decision Module: based on the optimization solution
computed by the optimization module, the decision mod-
ule absolves the important role in taking decisions on
whether it is worthwhile for one or a set of target users
to keep routing through the same RLOC to reach the VM.
It can also decide if it is worth migrating user’s VM to
another DC.

Each of these modules can logically be implemented on
separate nodes or on the same node; in the former case, the
PACAO controller can be orchestrated by one or multiple
agents. For instance, by implementing the monitoring module
in xTRs we can easily interact with the EID-to-RLOC map-
cache through an application programming interface (API) to
probe the cached entries (RLOCs of each user). It should also
be noted that separating the role of the agents into modules
could allow an easier interoperability with other routing and
software-defined network protocols.

C. Cloud Access Optimization Formulation

Fig. 2 depicts an example for the network model assumed
in this paper. We consider three DCs, DC1, DC2 and DC3,
hosting service VMs, interconnected to each other by a meshed
topology. Each DC has at least one xTR (xTR1, xTR2, xTR3)
with at least one RLOC. For the sake of simplicity, we consider
that a VM can have one client at the same time (i.e., services
such as virtual workspace or virtual desktop solutions - the
extension of the following to the model with multiple users
per VM is straightforward).

As a matter of fact, cloud providers wish to operate their
virtual services at a desired level of QoS. The user often pays
the service to the providers for an agreed-upon level of QoS
that, if not respected, can lead to monetary compensations to
the customer. In this context, in order to provide the agreed-
upon level of QoS thus minimizing the penalty, the cloud
provider is reasonably interested in trying to switch at first the
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Fig. 2: Distributed DC reference use-case.

traffic of the user to another DC (by changing the priorities
of the RLOCs in the EID-to-RLOC mapping), before possibly
issuing a VM migration.

The Cloud access optimization problem therefore consists
in minimizing the penalties that may arise from not respecting
the agreed-upon level of QoS, taking decisions upon switching
RLOC and/or migrating a VM, while respecting network
constraints.

We give in the following an optimization formulation that
is versatile enough to be applied for (i) the RLOC switching
problem and (ii) the VM migration problem, executed sequen-
tially, by changing the meaning of variables and parameters.
The objective is formulated as:∑

k∈K

αkT
k (1)

where K indicates the network QoS or system performance
criterion: k = 1 for round-trip-time (RTT), k = 2 for jitter,
k = 3 for RAM, k=4 for CPU, etc. αk is the weight that
measures the importance of each criterion, such that 0 ≤ αk ≤
1 and

∑
k∈K αk = 1. T k is an integer variable representing the

penalty that needs to be minimized for each of the described
criterion k.

Two important constraints apply to the problem. The first
is a mapping integrity constraint: (i) the VM is only hosted at
one DC at a given time, or (ii) the user uses a single RLOC.
Therefore: ∑

d∈D

rd = 1 (2)

where D is for (i) the set of the future DCs that can host the
VM, and for (ii) the set of RLOCs to where a user can redirect
its traffic to. rd ∈ [0; 1] is a binary variable that can indicate
for (i) if a data-center d can host a VM or for (ii) if a the
user’s traffic can be switched to RLOC d.

The second constraint is a QoS level verification constraint,
used in order not to exceed a fixed threshold or a residual
capacity:

mk
drd ≤MkT k (3)
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Fig. 3: PACAO policy chart.

where mk
d is the measured capacity of criterion k and Mk is

a residual capacity or a maximum threshold. If the problem
is used to represent the RLOC switching (i), then: k can be
either the RTT or jitter (or potentially any other QoS metric;
please note that availability goal is implicitly enforced by the
optimization operations); mk

d represents the measured RTT or
jitter between RLOC d and the user; Mk is the maximum
tolerated threshold. If the problem represents the decision that
must be taken to migrate a VM to another DC (ii), then: mk

d

represents the actual capacity of the VM such as the RAM,
CPU; Mk is the residual capacity on destination the host of a
DC d – note that when migrating a VM, besides the residual
capacity, we could easily also include parameters such as RTT
and jitter.

Given the full-mesh and single-hop nature of the cloud
access overlay graph, the problem defined by (1)-(3) does
not contains any complex flow conservation constraint, has
a polynomial complexity and can be easily solved online.

D. Algorithmic Online Scheduling Procedure

The above presented optimization can be triggered by
the monitoring module that at each time-slot of a preset
arbitrary duration S′ (Fig. 3) verifies the user-cloud link for
each monitored link. At the end of a time-slot, the PACAO
controller calculates the mean over the collected statistics for
the different reference QoS metrics and then run the following
algorithm:
• Step 1: if the user-VM link measured metric means

respect all the QoS levels, then go to 1.1, else go to 1.2.
– 1.1: save the measured data to a database and wait

until next scheduling slot t+ 1.
– 1.2: run (1)-(3) as a RLOC switching problem and

apply the solution via LISP.
• Step 2: monitor the network status between the (possible

newly switched) xTR and the VM for an arbitrary dura-
tion S′′ << S′, with a probing frequency S′′′ such that
a sufficient number of probes can be collected over S′′3.
If the agreed-upon QoS levels are respected then go to
1.1, else run Eq. (1)-(3) as a VM migration optimization
problem.

It should be clear that the PACAO architecture addresses
both the case when a mobile user roams onto a new location

3S′, S′′, S′′′ can be determined experimentally.
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with the consequent change of the user-VM link performance,
and the case of a sedentary user who could suffer from user-
DC network level degradation independent of user mobility. In
order to minimize signaling and facilitate accessing data, we
consider that the monitoring and decision modules described
previously are implemented in the xTR.

Example: Fig. 4 illustrates seven steps that resume the
interaction and procedures between the different elements of
the PACAO architecture.

1) The user wants to establish a connection with a VM
on DC 1. As of LISP architecture, as soon as a data-
plane packet needs to be sent to the VM, a LISP MAP-
REQUEST control-plane message to the mapping system
is triggered to get the EID-to-RLOC mapping of the VM
as described in section II-C.

2) xTR 1 replies back with an EID-to-RLOC mapping in
a MAP-REPLY message. It is worth stressing that the
EID-to-RLOC mapping sent to the user contains all the
RLOCs of all DCs with different priorities and weights
from where the service can be reached. The RLOC
priorities are set by the administrator.

3) In order for the VM to communicate with the user,
xTR 1 undergoes the dual signaling procedure as in
Step 1. It then stores the obtained user EID-to-RLOC
mapping in its map-cache, and then actively probes the
user collecting QoS metrics using RLOC probing. As
discussed in the previous section, the other xTRs should
also gather some metrics. However, only xTR 1 knows
about the user’s location. To overcome this problem, all
the xTRs should securely share and synchronize their
map-cache either by sending specific LISP control-plane
messages or using an API to trigger and synchronize
between the different xTRs. Alternatively, the xTR may
be data-plane only elements (e.g., OpenVSwitch nodes,
which natively support LISP data-plane) controlled by
an external SDN controller centralizing the map-cache
configuration.

4) At the end of a time slot (S′), xTRs send the collected

Site 2

Site 1

Site 3

Client

LISP-LabNu@ge

VXLAN

Fig. 5: Test bed network.

QoS metrics to the optimization module where the
algorithm described above is implemented. Based on the
algorithm first output the agent changes the priority of
the RLOCs-set in the EID-to-RLOC mapping, and then
notifies the user’s endpoint and updates the Map-Server.

5) When the agent gets the second output, it starts migrat-
ing the VM to the new hosting DC.

IV. EXPERIMENTATION AND RESULTS

The PACAO architecture has been implemented using the
following nodes.

xTR: we used OpenLISP [29], [30] as xTR software routers,
to which we added the RLOC probing feature using not only
the basic RLOC availability mechanism but also the RTT and
jitter probing logic; the development version [31] has been
extended accordingly. The xTR sends probes and collects QoS
metrics between the xTR’s locator and all the other locators in
the mapping cache for each EID entry. The statistics are then
saved in a JSON type file that is exploited by the controller.
Note that the frequency of the probes can be changed in the
OpenLISP XML configuration files.

Controller: we implemented the PACAO controller, its
monitoring, optimization and decision modules, using Python.
For the monitoring module, the controller uses the JSON file
above to get the user-to-xTR and xTR-to-VM QoS metrics.
For the optimization problem we have used the GNU Linear
Programming Kit [32] (GLPK) to solve the optimization
problem described in section III-C. For the decision module,
the controller must decide when to switch the RLOC and
when to migrate the VM: to switch locators we have used
an API provided by OpenLISP in order to get the EID-to-
RLOC map cache, then send the CHANGE-PRIORITY message
we developed for [23], and update the user’s mapping cache; to
migrate a VM we use the VIRSH command interface provided
by the Libvirt API [33] in KVM. It is worth noting that we
chose to put the controller at the hypervisor level to overcome
some root restrictions; in general, the controller could be
placed in xTRs or even integrated with OpenStack or other
more comprehensive SDN controllers.



Our test bed is represented in Fig. 5. We have joined
two existing LISP networks: the Nu@ge [34] and the LISP-
LAB [35] experimental networks, with three sites in the Paris
metropolitan area network (Telcocenter DC in Courbevoie,
Marilyn DC in Champs-sur-Marne, and LIP6 DC) and one in
Lyon (Rezopole in Lyon-IX), in order to allow for wide VM
migrations and emulate a distributed DC fabric using KVM
virtualization servers at each site. We have connected the 3
KVM servers acting as service VM containers together: one re-
sides in TelcoCenter DC, one in Marilyn DC and the last one in
the LIP6 DC; in order to perform seamless VM migrations, we
have connected them to the same network using an OpenVPN
server (disabling the authentication and the encryption module
to reduce the overhead of VPN and accelerate the migration
and the communication between hosts); the three servers are
then interconnected using VXLAN over the VPN to enable
traffic redirection when switching RLOCs and migrating VMs.
The service VM is an Ubuntu 14.04 server that shares a file
image mounted on a Network File Systems (NFS). The DC
xTRs also run a FreeBSD 10 OpenLISP VMs.

All the inter-DC links use the plain Internet, except the
Marilyn-TelcoCenter one that is a 10 Gbps fiber channel link,
yielding to a heterogeneous test bed setting. In order to ensure
the isolation with other existing services already running on
the DCs, we run our experiments in a IaaS using OpenStack,
connecting service VMs to the xTR via VXLAN. VXLAN
ensures that the IaaS is reachable by both data-centers. We
have also created an FTP server on the IaaS in order to
measure the throughput with the user.

A. RLOC switching

We first run experiments to evaluate the RLOC switching
feature alone, using the TelcoCenter and Marilyn DCs only in
the distributed DC fabric. The user is an OpenLISP FreeBSD
10 xTR, located in Non Stop Systems’ premises behind an
8 Mbps ADSL connection with an average RTT of 35 ms with
the Marilyn DC and a 37 ms with TelcoCenter DC. We used
the RTT as user-VM QoS metric. We have turned our tests
over a period of one month between 8:00 PM and 8:00 AM.
We compare two different cases:
• Legacy: the legacy solution, with fixed routing locator.
• PACAO-1: our solution limited to RLOC switching opti-

mization feature (VM migration disabled).

Time (s) Perturbation actions and PACAO actions

125 Stress link between user and TelcoCenter xTR.

135 PACAO switches traffic to Marilyn RLOC.

385 Stop stressing the link.

TABLE I: First experimentation scenario time line.

The scenario is summarized in Table I:
1) the user downloads a 300 MB file from the FTP server.

It connects to TelcoCenter’s xTR (the RLOC priority of
TelcoCenter is set to 1 and Marylin is set to 2);

(a) 100 ms (b) 200 ms

(c) 400 ms (d) 1000 ms

Fig. 6: Average download speed given the scenario of Table I.

Fig. 7: Total amount of data downloaded in 450 s

2) we divide the time into time slots of 10 seconds. Each
10 seconds the agent calculates the average RTT on the
user-xTR link collected by the RLOC probes;

3) after 125 seconds we increase the RTT between Tel-
coCenter xTR and the user. The injected RTT varies
between 100 ms and 1000 ms;

4) the agent decides to switch the RLOC to Marilyn xTR;
5) we stop stressing the link at 385 seconds.

Each scenario is repeated about 50 times and the fol-
lowing results are averages (95% confidence error bars not
plotted because they are not visible). In Fig. 6, we report
the average measured bandwidth for four different emulated
network impairment cases (e.g., caused by congestion or link
failure cause rerouting on a worse path): we inject delays
on the user-RLOC link of 100 ms, 200 ms, 400 ms, 1 s.
We notice that for the legacy case the bandwidth decreases
drastically at 125 s. However, in PACAO-1, thanks to the
adaptive RLOC switching the bandwidth is quickly restored.
It is worth stressing that it takes one time slot (S′ = 10 s),
plus one half of RTT in order to update the map cache of the
user with the CHANGE-PRIORITY message [23].



For the sake of completeness, we report the downloaded
volume for the two scenario under the four different network
impairment cases, during 450 s, in Fig. 7 for both solutions.
We clearly see that with PACAO-1 we maintain roughly the
same downloaded volume whatever the importance of the
network impairment is, improving the download rate by 80%.

B. RLOC switching and VM migration
We then run the complete PACAO solution, this time using

all DCs with the user host running as a FreeBSD 10 OpenLISP
xTR VM on the KVM server of the Rezopole DC site (this
allowed us to run the simulations more frequently during the
day and night over a more reliable connection).

With respect to the previous experiment, for which we only
monitored the user-xTR latency, we did also monitor this time
the RTT on the xTR-VM link too: the sum yields to the global
user-VM latency. Note that in order to trigger a VM migration
after switching the RLOC we have overloaded the inter-DC
links. As a result we generate high load of traffic that is able
to jam the bandwidth and the delay.

For a complete statistical measure we have used iperf for
generating traffic, simulating both TCP and VoIP connections
and opposing three different cases:
• Legacy situation.
• PACAO-1: PACAO with only RLOC switching.
• PACAO-2: PACAO including VM migration.

These scenarios are conducted at night between 8:00 P.M.
and 8:00 AM, and are repeated 100 times in order to get
statistically robust results.

Time (s) Perturbation actions and PACAO actions

50 Stress link between user and TelcoCenter xTR.

60 PACAO switches traffic to LIP6 RLOC.

67 PACAO migrates VM to LIP6 site (16 s).

187 Stress link between user and LIP6 xTR.

198 PACAO switches traffic to Marilyn RLOC.

204 PACAO migrates VM to Marilyn site (27 s).

TABLE II: Second experimentation scenario time line.

We then apply to each case the steps in Table II:
1) we start iperf from both the user and the service VM;
2) after 50 s we stress the link between the user and

TelcoCenter xTR; while for the legacy case nothing
changes, for the PACAO cases the controller monitors
the link for one time slot (S′ = 10 s in our case) and
takes the decision to switch the traffic to LIP6 RLOC at
60 s.

3) after S′′ = 5 s, the controller runs only for PACAO-2
case the VM migration optimization (based on statistics
collected between each xTR and the actual position
of the VM, TelcoCenter DC), and then issue a VM
migration to the LIP6 DC;

4) we repeat the same operation after 120 s, so that PACAO
first switches the traffic and then migrates the VM to the
Marilyn DC.

Fig. 8: Average bandwidth given the scenario of Table II.

Fig. 9: Total amount of data downloaded in 300 s.

As depicted in Fig. 8 we run the experimentation for the
three cases. One should notice that, even after switching the
RLOC, the user connection is heavily affected due to inter-
DC overloaded links. To overcome the problem the PACAO
controller migrates the VM as well in order to prevent traffic
redirection. The measured data in the boxplots (minimum, 1st

quartile, median, 3rd quartile, maximum) of Fig. 9, shows we
can gain up to 40% by switching the RLOC then migrating
the VM in the use case described above.

One concern is whether the proposed PACAO adaptive VM
migration is suitable for real-time services, sensible to packet
loss and jitter. Fig. 10 shows the experienced packet-loss
ratio during real-time UDP-based streaming traffic. As shown,
we get with the provided long-distance setting a median of
4% packet loss, which can be considered as marginal, also
considered that other advanced techniques are available in
commercial products to practically nullify the loss by means
of triangulation. The jitter results of these simulations are
represented in Fig. 11, which shows no noticeable difference
between the two PACAO cases that offer more stable perfor-
mance (lower dispersion around the median) than the legacy
solution.

V. CONCLUSION

We have proposed a Protocol Architecture for Cloud Access
Optimization, named PACAO, to optimize the quality of the



Fig. 10: Percentage of lost packets.

Fig. 11: CDF of the average jitter.

link between users and their virtual machines in distributed
cloud fabric environment where user’s virtual machines can be
displaced across multiple data-center sites of a cloud provider
to improve the user’s quality of experience.

The PACAO architecture includes a Cloud access overlay
network, managed and monitored by the LISP protocol, and
a controller regularly optimizing the overlay allowing user’s
traffic to be possibly switched via another DC entry site and
user’s virtual machines to be possibly migrated to DC sites
closer to users.

The proposed solution was implemented by making use of
OpenLISP software routers and an ad-hoc PACAO controller.
Extensive experiments on a real distributed data-center test bed
allowed us to validate our proposal on realistic scenarios.
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