
Achieving Sub-Second Downtimes in Internet-wide
Virtual Machine Live Migrations in LISP Networks

Patrick Raad ∗‡, Giulio Colombo †, Dung Phung Chi #∗,
Stefano Secci ∗, Antonio Cianfrani †, Pascal Gallard ‡, Guy Pujolle ∗
∗ LIP6, UPMC, 4 place Jussieu 75005, Paris, France. Email: firstname.lastname@lip6.fr

† U. Roma I - La Sapienza, P.za Aldo Moro 5, 00185 Rome, Italy. Email: lastname@diet.uniroma1.it
Vietnam National University (VNU), Computer Science dept., Hanoi, Vietnam. Email: dungpc@vnu.edu.vn

‡ Non Stop Systems (NSS), 27 rue de la Maison Rouge, 77185 Lognes, France. Email: {praad, pgallard}@nss.fr

Abstract—Nowadays, the rapid growth of Cloud computing
services is stressing the network communication infrastructure in
terms of resiliency and programmability. This evolution reveals
missing blocks of the current Internet Protocol architecture, in
particular in terms of virtual machine mobility management
for addressing and locator-identifier mapping. In this paper,
we propose some changes to the Locator/Identifier Separation
Protocol (LISP) to cope this gap. We define novel control-plane
functions and evaluate them exhaustively in the worldwide public
LISP testbed, involving four LISP sites distant from a few
hundred kilometers to many thousands kilometers. Our results
show that we can guarantee service downtime upon virtual
machine migration lower than the second across Asian and
European LISP sites, and down to 300 ms within Europe. We
discuss how much our approach outperforms standard LISP and
triangular routing approaches in terms of service downtime as a
function of datacenter-datacenter and client-datacenter distances.

I. INTRODUCTION

Virtualization has been revolutionizing datacenter network-
ing since a few years. Once solely based on physical server and
mainframe interconnections, Cloud datacenters evolve with
an increasing deployment of virtualization servers hosting,
sending and receiving virtual machines (VMs), to and from
local and distant locations. This evolution is arising many
networking issues in terms of address continuity and traffic
routing. Should VMs maintain (or use) the same (or multiple)
Ethernet and/or IP addresses upon migration, if, when, and
how, have been and are still open research questions in Cloud
Networking. Similar challenges appear with the emergence of
advanced services such as Infrastructure as a Service (IaaS),
often requiring multiple VMs physically located at different
sites to communicate to each other and keep communicating
with each other, as well as with Internet users, while moving
across datacenters.

In virtualization servers, the hypervisor is a software-
level abstraction module essential to manage several VMs
at the same time on a physical machine. VM migration is
a service included in most hypervisors to move VMs from
one physical machine to another, commonly within a data
center. Migrations are executed for several reasons, ranging
from fault management, energy consumption minimization,
and quality-of-service improvement. In legacy Cloud networks,
VM location was bound to a single facility, due to storage
area network and addressing constraints. Eventually, thanks to
high-speed low-latency networks, storage networks can span

Fig. 1. LISP communications example

metropolitan and wide area networks, and VM locations can
consequently span the whole Internet for public Clouds.

Multiple solutions are being experimented to make VMs
location independent. The objective is to allow transparent
VM migrations by developing advanced functionalities at the
hypervisor level [1]. This leads to the definition of addressing,
bridging and routing functions at the hypervisor software
level, creating a new area in networking called Software
Defined Networking (SDN). Despite no formal definition of
SDN exists, it basically predicates the separation of data-plane
and control-plane functions to simplify network management
and configuration, letting some of these functionalities being
personalized by ad-hoc software elements.

In terms of addressing, the main problem resides in the
possibility of scaling from private Clouds to public Clouds, i.e.,
seamlessly migrating a virtual server with a public IP across
the Internet. Multiple solutions exist to handle addressing is-
sues, ranging from simple ones with centralized or manual ad-
dress mapping using MAC-in-MAC or IP-in-IP encapsulation,
or both, to more advanced ones with a distributed control-plane
supporting VM mobility and location management. Several
commercial (non-standard) solutions extend (virtual) local area
networks across wide area networks, such as [2], [3], and [4]
differently handling layer-2 and layer-3 inter-working.

Among the standards to handle VM mobility and address-
ing issues, we can mention recent efforts to define a distributed
control-plane in TRILL (Transparent Interconnection of a Lot
of Links) architecture [5] to manage a directory that pilots
layer-2 encapsulation. However, maintaining layer-2 long-
distance connectivity is often economically prohibitive, a too

high barrier for small emerging Cloud service providers, and
not scalable enough when the customers are mostly Internet
users (i.e., not privately interconnected customers). At the IP
layer, the addressing continuity can be guaranteed using ad-hoc
VM turntables as suggested in [6], or Mobile IP as proposed
in [7]. However, at an Internet scale, these approaches may not
offer acceptable end-to-end delay and downtime performance,
because of triangular routing and many-way signaling. Even
if optimizations exist in mobile IP to avoid triangular routing,
the concept of home and foreign agents is not necessary, and
moreover solutions not modifying the end-host would be more
scalable.

More recently, the Location/Identifier Separation Protocol
(LISP) [8], mainly proposed to solve Internet routing scala-
bility and traffic engineering issues, is now considered as a
VM mobility control-plane solution and has already attracted
the attention for some commercial solutions [9]. In order to
efficiently handle locator-identifier mappings, LISP offers a
distributed control-plane, decoupled from the data-plane. An
advantage of LISP is that it can avoid triangular routing, with
encapsulations performed at the first IP-LISP node, and not at
the hypervisor level. Nevertheless, based on current standards
and literature, there are missing functionalities to guarantee
low VM migration downtimes with LISP. Moreover, there is
no reproductable experimental study describing the achievable
performance of Internet-scale VM mobility under LISP.

The objective of this paper is to define additional LISP
functionalities and to show the achievable performance in
large-scale live VM migration, providing all the elements to
reproduce the results. Our solution is based on the definition
of LISP control-plane messages to fast update ID-locator
mappings, hence overcoming the long-latency of basic LISP
mechanisms. We validate and evaluate our solution using the
worldwide public www.lisp4.net testbed, piloting the four LISP
sites of LIP6, UNIROMA, VNU and INRIA Sophia Antipolis,
in three countries worldwide. The paper is organized as fol-
lows. Section II briefly presents the background. Section III
describes our protocol extension proposition. Section IV re-
ports experimental results. Section V concludes the paper and
discusses future works.

II. BACKGROUND

In this section we introduce the reader to networking issues
related to live VM migration, presenting existing solutions at
the state of the art, and we give a synthetic overview of the
LISP protocol.

A. VM migration and IP mobility

Live VM migration is a feature introduced in recent
hypervisors; it allows moving a running VM between two
(physical) container hosts without disconnecting application
(TCP and UDP) connections of VM’s clients. For most of the
hypervisors, live migration is limited to situations in which
source and destination hosts look like connected to the same
local area network. The main reason is that the machine being
live migrated needs to keep the same routing view of the
network (gateway, IP subnet) before and after the migration.
Alternatively, in some legacy solutions, upon migration the
VM changes its IP address, e.g., via the DHCP, to avoid

the additional complexity needed to ensure that the origin IP
address is not already used in the destination network, and to
transfer the routing table.

In order to perform Internet-wide migrations with IP conti-
nuity, authors in [7] and [10] propose an IP mobility solution.
The logic is implemented in the hypervisor, interacting with
the VM before and after its migration to update IP addresses
in the VM routing table. While [7] succeeds in bringing lower
service downtime compared to [10], the hypervisor has to alter
VM configuration to support the IP mobility feature, which
leads to scalability concerns. Moreover, as the authors state,
their solution performance is expected to worsen in large-scale
global live migrations, because of the online signaling nature
of the proposition and many-way signaling latencies.

Authors in [11] propose to adapt the Mobile IP (MIP) pro-
tocol [12] and signaling to pilot Internet-scale VM migrations,
implementing the protocol in the hypervisor. They call their
solution HyperMIP. HyperMIP is invoked whenever a VM is
created, destroyed or migrated; as in MIP, it involves Home
Agents (HA) to keep the connection alive. Whenever a VM
changes a location, a tunnel is established between the HA
and the source hypervisor to keep the client connected to the
VM. The destination hypervisor then destroys the tunnel when
the VM registers its new IP address to the HA. However,
HyperMIP still introduces an important signaling overhead due
to HA tunnel establishment.

Alternatively, to minimize signaling latencies, authors
in [6] propose to use an external agent to orchestrate the migra-
tion from the beginning to the end, by proactively establishing
circuits between the involved containers (source and destina-
tion hypervisors) offline, so as to rapidly switch the traffic
upon migration. Upon migration, the agent redirects the traffic
between the VM and the client by dynamically re-configuring
IP tunnels. They achieve a near second network downtime
while migrating machines across wide area networks, with
a maximum network downtime around 3.8 seconds. Despite
being a secure approach, with respect to [7], [10] and [11]
their solution involves lower-layer control-plane technologies,
hence can be much more costly.

B. Triangular routing solutions vs LISP rerouting

The above described propositions are complimentary with
our proposition to use LISP to redirect the traffic coming from
Internet clients, yet alone (i.e., without LISP) those techniques
can allow redirect the traffic, offering however a higher path
latency. From the IP routing perspective of an Internet client
accessing a server running in the VM, the above described
approaches can be considered as triangular routing (or indirect
forwarding) solutions. The reason is that the traffic has to
reach the VM source network and/or container before being
encapsulated and sent to the new VM location.

C. Locator/Identifier Separation Protocol (LISP) overview

LISP implements an additional routing level on the top of
the Border Gateway Protocol (BGP), separating the IP location
from the identification using Routing Locators (RLOCs) and
Endpoint Identifiers (EIDs). An EID is an IP address that
identifies a terminal, whereas an RLOC address is attributed
to a border tunnel router. LISP uses a map-and-encap scheme

at the data-plane level, mapping the EID address to an RLOC
and encapsulating the packet into another IP packet before
forwarding through the Internet transit. At the control-plane
level, multiple RLOCs with different weights and priorities
can be associated with an EID: for unipath communications,
the least-priority RLOC corresponds to the one to be selected
for encapsulation; when a subset or all of the RLOCs have
the same priority value, load-balancing is performed on the
equal-priority RLOC. RLOC priority and weight are assigned
by the destination EID space owner using its LISP routers.

A LISP site is managed by at least one tunneling LISP
router (xTR), which has a double functionality: IP packet
encapsulation (packet received by a terminal; ingress function-
ality, or ITR) and packet decapsulation (packet received by the
network; egress functionality, or ETR). The IP-in-IP encapsula-
tion includes a LISP header transporting control functionalities
and a UDP header allowing differentiation between data and
control plane messages. For a better understanding, consider
the example in Figure 1: the traffic sent to the 2.2.2.2 host
is encapsulated by the source’s ITR toward one of the two
destination’s RLOCs. The one with the best (lowest) priority
metric is selected, which at reception acts as ETR and de-
capsulates the packet, before sending it to the destination. On
the way back to 1.1.1.1, RLOC4 queries a mapping system
and gets two RLOCs with equal priorities, hence performs
load-balancing as suggested by the weight metric (RLOC1 is
selected in the example’s packet).

In order to guarantee EID reachability, LISP uses a map-
ping system that includes a Map Resolver (MR) and a Map
Server (MS). As depicted in Figure 1, a Map Resolver holds
a mapping database, accepts MAP-REQUESTs from xTRs and
handles EID-to-RLOC lookups; a particular MAP-REQUEST
message, called SOLICIT-MAP-REQUEST (SMR) can have a
flag set (S bit) to solicit a MAP-REQUEST to self by the
receiver (passing via the MR). A Map Server receives MAP-
REGISTERs from ITRs and registers EID-to-RLOC in the
mapping database [13].

For managing EID-to-RLOC mapping, two different archi-
tectures are proposed: LISP-ALT (Alternative Topology) [14]
and DDT (Delegated Database Tree) [15], the first relying on
BGP signaling primitives, the second being inspired by DNS.
Due to lack of flexibility, LISP+ALT is now replaced by DDT
on the LISP beta network (www.lisp4.net). It is worth noting
that, in a given configuration, if two xTRs, exchanging traffic,
use the same MS/MR for registering and resolving, when an
xTR sends a MAP-REQUEST for an EID that belongs to the
other xTR, the MS/MR does not need to use DDT and hence
DDT does not add an additional mapping latency to the xTR-
MS/MR path latency.

D. Existing LISP-based Mobility Management Solutions

In a LISP network context, the VM can keep the same IP,
provided that the locator change is notified to the mapping
system. Two mechanisms at the state of the art can perform
this operation.

One is a host-based LISP implementation called LISP-
mob [16]: the host is itself a tiny xTR implementing basic data-
plane control-plane functions, using the network-assigned IP
as RLOC and registering mapping updates for its EID with the

mapping servers. Essentially conceived for mobile equipment,
LISPmob could also be installed in the VM; there would be,
however, a problem with most current hypervisors that impose
the VM external address to be in the same subnet before and
upon migration, which practically limits the LISPmob usability
only to situations where source and destination networks are
either LISP sites themselves, or layer-2 over WAN solutions. In
the first case, a double encapsulation is needed, which could
increase mapping latency, overhead and MTU issues. There
may also be scalability issues with a high VM number.

Another existing method to handle VM mobility in a LISP
context is actually implemented in some Cisco products, only
partially documented in [9]. The xTR automatically changes
the mapping upon reception of outgoing data-plane traffic from
an EID that has been registered as mobile node. The solution
has an attracting light impact on LISP operations, yet it seems
to be weak against EID spoofing, and it seems not to have
authentication mechanisms. Moreover, in order to guarantee
fast mapping convergence, additional logic may need to be
implemented in the VM or in the hypervisor to allow sending
outgoing artificial data traffic even if no real outgoing traffic
exist.

III. PROPOSED LISP-BASED VM MIGRATION SOLUTION

We propose a novel solution to support Internet-scale VM
live migration exploiting the LISP protocol1. A live migration
should be able to move a VM keeping its unique EID, from
its actual DC to a new DC maintaining all VM connections
active.

As a preliminary step, the source and destination DCs
have to share the same internal subnet, i.e., the VM unique
EID should be routable beyond its RLOC, wherever it is.
LISP supports a large number of locators, and it does not
set constraints on RLOC addressing – i.e., while EIDs should
belong to the same IP subnet, the RLOCs can take an IP
address belonging not simply to different subnets, but also
to different Autonomous System networks. The current VM
location can be selected leveraging on RLOC metrics. We
introduce two main enhancements:

• a new LISP control-plane message to speed up RLOC
priority update;

• a migration process allowing hypervisor-xTR coordi-
nation for mapping system update.

A. Change Priority Message Format

We have implemented a new type of LISP control-plane
message called CHANGE PRIORITY (CP) (Figure 2). We use
a new control-plane type field value equal to 52, and use two
bits to define message sub-types to be managed by both xTR
and VM containers’ hypervisors:

• H (Hypervisor) bit: this bit is set to 1 when the
message is sent by the destination hypervisor (the

1the proposed solution has been implemented in the OpenLISP control-
plane [17].

2A preliminary version of this new control-plane message has been pre-
sented at the first LISP Network Operator Group (LNOG) - http://www.lisp4.
net/lnog.

Fig. 2. CHANGE-PRIORITY message architecture

hypervisor that receives the VM), indicating to the
xTR that it has just received a new EID. With the H
bit set, the record count should be set to 0 and the
REC field is empty;

• C (Update Cache) bit: this bit is set to 1 when an
xTR wants to update the mapping cache of another
xTR. With the C bit set, the record count is set to
the number of locators and the REC field contains
the RLOC information to rapidly update the receiver
mapping cache.

The other fields have the same definition as the MAP-
REGISTER message fields [8], i.e., with EID and RLOC fields,
a nonce field used to guarantee session verification, and HMAC
authentication fields useful to secure the communication (with
the important feature that the authentication key used for
CP messages can be different than the key used by MAP-
REGISTER, provided that the xTR is able to handle different
keys as provided in [17]).

B. VM migration process

The LISP mapping system has to be updated whenever
the VM changes its location. Before the migration process
starts, the xTRs register the VM’s EID as a single /32 prefix
or as a part of larger EID (sub-)prefix. The involved devices
communicate with each other to atomically update the priority
attribute of the EID-to-RLOC mapping database entries. The
following steps describe the LISP-based VM migration process
we propose and demonstrate.

1) The migration is initialized by the hypervisor hosting
the VM; once the migration process ends, the des-
tination hypervisor (the container that receives the
VM) sends a CP message to its xTR (also called
destination xTR) with the H bit set to 1, and the VM’s
EID in the EID-prefix field.

2) Upon reception, the destination xTR authenticates the
message, performs an EID-to-RLOC lookup and sets
the highest priority to its own locators in the mapping
database with a MAP-REGISTER message. Then, it
sends a CP message, with H and C bits set to 0,
to update the mapping database of the xTR that was

Algorithm 1 CP processing
Ensure: authenticity of CP message

extract EID from EID-prefix field
if H bit is set to 1 then

set own locators’ priority to 1
send CP to xTR group with H bit and C bit set to 0
register mapping to Map Server

end if
if H bit and C bit are both set to 0 then

set own locators’ priority to 255
set locators’ priority in RLOC field to 1
send CP with C bit set to 1 to all locators that have
requested the VM’s EID
stop registering for EID

end if
if C bit is set to 1 then

update mapping cache according to the received message
end if

managing the EID before the migration (also called
source xTR).

3) Before the VM changes its location, the source xTR
keeps a trace file of all the RLOCs that have recently
requested it (we call them client xTRs), i.e., that have
the VM RLOCs in their mapping cache.

4) When the source xTR receives the CP message from
the destination xTR, it authenticates it and updates
the priorities for the matching EID-prefix entry in its
database.

5) In order to redirect the client traffic, there are two
different client-redirection possibilities, whether the
client xTR is a standard router not supporting CP
signaling (e.g., a Cisco router implementing the stan-
dard LISP control-plane [8]), or an advanced router
including the CP logic (e.g, using the OpenLISP
control plane [18]).

• For the first case, the source xTR sends a
SMR to standard client xTRs, which triggers
mapping update as of [8] (MAP-REQUEST to
the MR and/or to the RLOCs, depending on
the optional usage of mapping proxy, followed
by a MAP-REPLY to the xTR).

• For the second case, in order to more rapidly
redirect the traffic to the VM’s new location
(destination xTR), the source xTR sends a CP
message with C bit set to 1 directly to all the
OpenLISP client xTRs, which will therefore
process it immediately (avoiding at least one
client xTR-MR round-trip-time).

6) Upon EID mapping update, the client xTRs update
their mapping cache and start redirecting the traffic
to the VM’s new routing locator(s).

C. Implementation aspects

The proposed solution has been implemented using open-
source software (see [17]), and its implementation involves
both the hypervisor and the xTR sides.

1) On the hypervisor: we integrated a new function that
interacts with libvirt (a management kit handling multiple

Fig. 3. Example of CP signaling exchange during a VM migration

VMs in the KVM hypervisor) [19] to trigger CP message
generation. When a live migration starts, the hypervisor creates
a “paused” instance of the VM on the destination host.
Meanwhile, libvirt monitors the migration phase from the start
to the end. If the migration is successfully completed, libvirt
checks if the VM is running on the target host and, if yes, it
sends a CP message to its xTR on the UDP LISP control port
4342. The VM EID is included in the EID-prefix field.

2) On the xTR: we implemented the Algorithm 1 function
in the OpenLISP control-plane [18], providing control-plane
features to the OpenLISP data-plane [20]; the OpenLISP data-
plane router runs in the kernel of a FreeBSD machine, while
the control-plane runs in the user space. The control-plane has
a new feature to capture control-plane message type 5 and the
logic to handle CP signaling.

3) A signaling example: upon client’s request, or a consol-
idation engine, a VM needs to be migrated to another public
DC. As in the Figure 3 example, VM Container 2 starts
migrating VM from DC2 to DC1 while Client is still con-
nected. When the migration reaches the stop-and-copy phase,
the VM stops and begins transferring its last memory pages.
Meanwhile, Client loses the connection but keeps directing the
traffic to DC2.

The hypervisor on VM Container 1 detects that VM is now
successfully running, indicating the end of the migration. Then
VM Container 1 announces that VM has changed its location
by sending a CP message with the H bit set to xTR 1. Upon
reception, xTR 1 sends a CP with H bit and C bit set to 0 to
notify xTR 2 about the new location of VM: xTR 1 updates
the priorities for VM’s EID entry in its database.

When xTR 2 receives the CP message, it matches the EID-
prefix to the entries within its mapping database, and modifies
the priorities accordingly, then it stops registering VM’s EID.
As mentioned in Section III-B, xTR 2 keeps a trace file of all
the locators that recently requested the VM’s EID. In this use
case, Client is the only client that is communicating with VM.
As a result, xTR 2 sends a CP with C-bit set to Client xTR.

Client xTR receives the CP message, maps VM’s EID,
and updates its cache, then starts redirecting Client’s traffic to
VM’s new location (DC1).

Fig. 4. LISP testbed topology

IV. TESTBED EVALUATION

We performed live migrations of a FreeBSD 9.0 VM,
with one core and 512 MB RAM (corresponding to a typical
service VM like a lightweight web server), from UROMA1
(Rome) to LIP6 (Paris), under KVM [21]. Figure 4 gives a
representation of the testbed topology. As distributed storage
solution, we deployed a Network File System shared storage
between source and destination host containers. Hence, only
RAM and CPU states are to be transferred during the live
migration. The VM containers are Ubuntu 12.04 servers, dual
core, with 2048 RAM and using KVM and Libvirt 0.9.8.

We measured many parameters during migrations, by
20 ms spaced pings from different clients: distant ones at VNU
(Hanoi, Vietnam) LISP site, and a close one at the INRIA
(Sophia Antipolis, France) LISP site. We should note that:

• the clocks on all LISP sites were synchronized to
the same Network Time Protocol (NTP) stratum [22],
so that a same VM migration can be monitored
concurrently at the different client sites;

• all LISP sites’ xTRs register to a same Map
Server/Map Resolver located in Denmark (www.lisp4.
net), hence avoiding the DDT latency in the mapping
convergence (as already mentioned in Section II-C).

We performed hundreds of migrations from the UROMA1
to the LIP6 sites, over a period of 3 months at different times
of the day. We used the two possible inter-xTR mapping update
modes with the proposed control-plane enhancement: SMRs to
simulate standard client xTRs, and CP to encompass the case
with enhanced xTRs at client LISP sites. Given the Internet
wideness of the testbed, both the bottleneck bandwidth and
RTTs were floating, depending by the time and day, hence we
did a statistical evaluation as described hereafter. The average
measured RTTs between each site during the migration are
reported in Table I; having both close and far clients’ sites
allow us to precisely assess the migration performance.

In order to experimentally assess the relationship between
different time components and network situations, we mea-
sured these different parameters:

• number of lost packets for each client (i.e., the number
of ICMP messages that are lost on each client during
migration);

(a) Number of lost packets

(b) Downtime

(c) Mapping convergence time

Fig. 5. INRIA client result parameters (boxplots statistics)

• mapping convergence time for each client: the time
between the transmission of CP by the hypervisor and
the mapping cache update on each client.

• downtime perceived by each client: the time during
which the client could not communicate with the
VM.

As depicted in Figure 7 and as of previous arguments, it is
worth underlining that one should expect that: downtime ≥
downtime introduced by the hypervisor (stop-and-copy3 du-

3During the stop-and-copy phase the VM stops on the source container in
order to transfer the rest of the memory pages, those that have been recently
used by the VM (also called dirty pages) [23].

(a) Number of lost packets

(b) Downtime

(c) Mapping convergence time

Fig. 6. VNU client result parameters (boxplots statistics)

ration) + the mapping convergence time. The stop-and-copy
duration depends on the volume of the last memory pages to
be transferred that, with standard tools, we do not control.
The mapping convergence time reflects our protocol overhead,
which is differently affected by the RTT between LISP sites
(Table I) depending on the client xTR support of CP signaling.

In order to characterize absolute service downtimes suf-
fered by clients, Figures 5,6 report the boxplots (minimum, 1st
quartile, median with the 95% confidence interval, 3rd quartile,
maximum, outliers) of the obtained number of lost packets,
downtime, and mapping convergence time. We measured the
results with the two possible modes for inter-xTR mapping
update, using SMR signaling and using CP signaling.

4) Using SMR signaling: as explained in Section III-B,
as of LISP standard control-plane, the SMR message is sent
by an xTR to another to solicit mapping update for a given
EID. Upon reception of a SMR, the target xTR sends a
MAP-REQUEST to its map-resolver that forwards it as an
encapsulated message down to the source xTR (if MAP-REPLY
proxy is not enabled as by default In Cisco routers and as is
in our simulations), followed by a MAP-REPLY. The overall
SMR signaling time should therefore be lower bounded by one
and a half the RTT between the two xTRs, which impacts the
mapping convergence time and hence the service downtime.
As of our experimentations, we obtained a median downtime
of about 320 ms for the INRIA client (Figure 5(b)), 1.2s for
VNU (Figure 6(b)). This large gap between the downtimes
of close and distant clients can be explained not only by the
distance that separates each client from the VM, impacting the
propagation delay (see Table I), but also by the fact that the
Map Resolver is closer to INRIA than to VNU, as mentioned
in Section IV. We find this gap also in the number of lost ICMP
packets, two to three times higher for distant clients than for
close ones (Figure 5(a), Figure 6(a)).

5) Using CP signaling: as explained in Section III-B, using
CP signaling the mapping convergence time can be decreased
of at least one RTT between xTRs, with an authenticated one-
way message that directly updates xTR cache upon reception.
For the INRIA client, we obtain a median downtime of 260 ms
gaining a few dozens of ms, whereas we could gain 200 ms
for VNU . Moreover, we notice that the number of lost ICMP
packets for distant clients has exponentially decreased. This
important decrease is due to the fact that xTRs have no longer
to pass via the Map Resolver to update their mapping cache.
Finally, Figures 5(c),6(c) show that the mapping convergence
time component of the downtime decreases with CP signaling
for all cases. While it is roughly between one-third and one-
half the downtime with SMR signaling, it falls to between one-
sixth and one-third with CP signaling, and this ratio is higher
for distant clients. This implies that the hypervisor downtime
(stop-and-copy phase) is less sensible to the RTT than the
mapping convergence is (likely, the last page transfer profits
from an already established TCP connection with an already
performed three-way handshake).

LISP Sites Average RTT
LIP6-UROMA1 30.47 ms
LIP6-VNU 299.86 ms
LIP6-INRIA 16.47 ms
UROMA1-VNU 321.27 ms
UROMA1-INRIA 27.27 ms

TABLE I. AVERAGE MEASURED RTT DURING MIGRATIONS

Fig. 7. Migration duration and downtime composition

A. Comparison with alternative solutions

In conclusion, our approach offers quite interesting perfor-
mance, and we show the advantage of extending the signaling
logic to clients’ xTRs. Our solution offers a median mapping
convergence overhead that varies from 50 ms for nearby clients
(within a few hundreds km) to 200 ms for distant client (at
many thousands km), depending on the signaling scope. With
respect to described alternative methods at the state of the art
(see Section II), fully handled at the hypervisor level, we can
assess that:

• with HyperMIP [11], authors experienced a 100 to
400 ms of overhead, which is almost two times more
than our approach, the main reasons being the usage
of Mobile IP and triangular routing;

• similarly in [10] Mobile IPv6 signaling is used to
detect VM location change, reaching a minimum
overhead around 2500 ms, linearly increasing with the
network delay, hence largely higher than our approach;

• authors in [6] went a step further implementing pro-
active circuit provisioning, reaching an application
downtime varying between 800 and 1600 ms, which
is more than 4 times higher than with our approach.

V. CONCLUSION

In this paper, we have proposed a novel LISP-based so-
lution for VM live migrations across distant datacenters over
the Internet. We tested it via the global LISP testbed. We can
summarize our major contributions as follows:

• we have defined and implemented a new type of LISP
control-plane message to update VM location upon
migration, with the interaction between hypervisors
and LISP routers4;

• we performed hundreds of Internet-wide migrations
between LISP sites (LIP6 - Paris, UROMA1 - Rome)
via the LISP testbed, including the case of clients close
to source and destination containers (INRIA - Sophia
Antipolis), and the case of distant clients (VNU -
Hanoi);

• by exhaustive statistical analysis on measured relevant
parameters and analytical discussions, we have charac-
terized the relationship between the service downtime,
the mapping convergence time and the RTT.

• we showed that with our approach we can easily reach
sub-second downtimes upon Internet-wide migration,
even for very distant clients.

We plan to extend the migration measurement campaign
including other distant LISP sites.

ACKNOWLEDGMENT

The authors would like to thank Damien Saucez from
INRIA Sophia Antipolis for running LISP site clients probing.
.

4The LISP control-plane code with related functionalities is publicly avail-
able in [17]. Part of the CP signaling logic was implemented into libvirt.

This work was partially supported by the French
“Investissement d’Avenir” NU@GE project (http://www.
nuage-france.fr).

REFERENCES

[1] M. Nelson et al., “Fast transparent migration for virtual machines,” in
Proceedings of the annual conference on USENIX Annual Technical
Conference, pp. 25–25, 2005.

[2] S. Setty, “vMotion Architecture, Performance, and Best Practices in
VMware vSphere 5,” tech. rep., VMware, Inc., 2011.

[3] Cisco and VMware, “Virtual Machine Mobility with VMware VMotion
and Cisco Data Center Interconnect Technologies,” Tech. Rep. C11-
557822-00, August 2009.

[4] Cisco, “Cisco Overlay Transport Virtualization Technology Introduc-
tion and Deployment Considerations,” tech. rep., Cisco Systems, Inc.,
January 2012.

[5] L. Dunbar et al., “TRILL Edge Directory Assistance Framework.” draft-
ietf-trill-directory-framework-00, February 2012.

[6] F. Travostino et al., “Seamless live migration of virtual machines
over the MAN/WAN,” Future Generation Computer Systems, vol. 22,
pp. 901–907, Oct. 2006.

[7] H. Watanabe et al., “A Performance Improvement Method for the
Global Live Migration of Virtual Machine with IP Mobility,” in Proc.
ICMU 2010, 2010.

[8] D. Lewis et al., “Locator/ID Separation Protocol (LISP).” draft-ietf-lisp-
22, February 2012.

[9] Cisco, “Locator ID Separation Protocol (LISP) VM Mobility Solution,”
tech. rep., Cisco Systems, Inc., 2011.

[10] E. Harney et al., “The efficacy of live virtual machine migrations over
the internet,” in Proceedings of the 2nd international workshop on
Virtualization technology in distributed computing, p. 8, ACM, 2007.

[11] Q. Li et al., “Hypermip: hypervisor controlled mobile ip for virtual
machine live migration across networks,” in High Assurance Systems
Engineering Symposium, 2008. HASE 2008. 11th IEEE, pp. 80–88, Ieee,
2008.

[12] C. Perkins, “IP mobility support for IPv4.” IETF RFC 3344, 2002.
[13] V. Fuller and D. Farinacci, “LISP Map Server Interface.” draft-ietf-lisp-

ms-16, March 2012.
[14] D. Lewis et al., “LISP Alternative Topology (LISP+ALT).” draft-ietf-

lisp-alt-10.
[15] D. Lewis and V. Fuller, “LISP Delegated Database Tree.” draft-fuller-

lisp-ddt-01, March 2012.
[16] C. White et al., “LISP Mobile Node.” draft-meyer-lisp-mn-08, Oct.

2012.
[17] http://www.lisp.ipv6.lip6.fr, “OpenLISP control plane.”
[18] D. Phung Chi et al., “An open control-plane implementation for LISP

networks,” in Proc. IC-NIDC 2012, 2012.
[19] “libvirt: The virtualization API.” http://libvirt.org/.
[20] L. Iannone et al., “OpenLISP: An Open Source Implementation of the

Locator/ID Separation Protocol,” ACM SIGCOMM, Demo paper, 2009.
[21] A. Kivity et al., “kvm: the Linux virtual machine monitor,” in Proceed-

ings of the Linux Symposium, vol. 1, pp. 225–230, 2007.
[22] D. Mills, “Internet time synchronization: the network time protocol,”

Communications, IEEE Transactions on, vol. 39, no. 10, pp. 1482–
1493, 1991.

[23] C. Clark et al., “Live migration of virtual machines,” in Proceedings
of the 2nd conference on Symposium on Networked Systems Design &
Implementation - Volume 2, NSDI’05, (Berkeley, CA, USA), p. 273286,
USENIX Association, 2005.

