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a b s t r a c t 

In this paper, we propose data clustering techniques to predict temporal characteristics of data consump- 

tion behavior of different mobile applications via wireless communications. While most of the research 

on mobile data analytics focuses on the analysis of call data records and mobility traces, our analysis 

concentrates on mobile application usages, to characterize them and predict their behavior. We exploit 

mobile application usage logs provided by a Wi-Fi local area network service provider to characterize 

temporal behavior of mobile applications. More specifically, we generate daily profiles of “what” types 

of mobile applications users access and “when” users access them. From these profiles, we create usage 

classes of mobile applications via aggregation of similar profiles depending on data consumption rate, us- 

ing three clustering techniques that we compare. Furthermore, we show that we can utilize these classes 

to analyze and predict future usages of each mobile application through progressive comparison using 

distance and similarity comparison techniques. Finally, we also detect and exploit outlying behavior in 

application usage profiles and discuss methods to efficiently predict them. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

The worldwide dissemination of portable smartphones has

ompletely changed the data consumption behavior of humans

uring the past decade. Indeed, data consumption has dramatically

ncreased in volume and frequency, types of data have become

ore diversified, and a majority of users access such data using

attery-powered mobile embedded devices. To cope with this rev-

lution, mobile operators have long sought to provide faster mo-

ile networking technologies, resulting in breakthrough technolo-

ies such as 4G/LTE. However, considering the expected increase in

obile data usage as foreseen by Cisco’s VNI index [1] , even such

n impressive technological progress is not considered to be suf-

cient for the near future, prompting various industries and insti-

utes to examine into rapidly realizing 5G [2] . 

One of the most prominent methods for providing better com-

unication service is to have a better understanding of where,

hen, and how people use these communication technologies. As a

esult, research on characterizing data consumption behavior from

obile communications has recently gained much interest. As al-

eady explored by various researchers, we can exploit usage infor-
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ation from various mobile service providers to discover interest-

ng phenomena related to individual human mobility, social inter-

ctions, application usage, etc. In particular, profiling various as-

ects of human behavior has been a prominent area of research,

s being able to predict the behavior of masses of individuals al-

ows many different proactive planning and service adaptation to

uit the needs of users in the future. 

While existing research shows that call data records (CDR) in-

ormation has proven to be useful for mobility pattern characteri-

ation [3,4] , it is rather limited in providing a rich characterization

f mobile users behavior, and in particular in relation to their mo-

ile Internet data consumption behavior. Indeed, nowadays mobile

nternet traffic takes a large piece of mobile access network re-

ources, and is expected to overcome mobile call traffic volumes.

s outlined in [5] , the current interest in mobile network data

nalytics is shifting toward the characterization of both user mo-

ility and mobile data consumption. There are many application

omains that can benefit from a better understanding of mobile

ata consumption. With the expected integration of network func-

ions virtualization (NFV) [6] and mobile edge computing (MEC)

7] systems in forthcoming 5G infrastructure, eventually coupled

ith programmable network interfaces and equipment and cen-

ralized control, novel needs are expressed to grant flexibility in

etwork and service management. For instance, being able to pre-

ict with an acceptable accuracy a sudden crowd effect in data

onsumption on a per-application way can support adaptive scale
ing mobile application usage, Computer Communications (2016), 
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in/out of virtual servers in NFV and MEC infrastructures and even

legacy cloud infrastructure. Dually, virtual link Quality of Service

(QoS) reservation operations at the controller level of mobile back-

hauling network [8–10] can be triggered as a result of mobile ap-

plication usage estimation, in particular if explicit traffic engineer-

ing and software-defined network interfaces exist. 

In this paper, we propose a method of clustering data consump-

tion behavior in terms of “what” types of services users use at

specific times. The main difference between our work using Wi-Fi

cloud data and other works based on cellular mobile data, is that

our dataset corresponds to a local scale network (e.g., restaurants,

malls etc.), whereas datasets from cellular mobile networks focus

on larger aggregation scales (wide area, metropolitan, nationwide)

– see [11] and [5] for surveys. Consequently, we expect that our

dataset can capture other kinds of mobile usage behavior. Further-

more, this dataset allows us to investigate the data usage itself. We

can analyze traffic patterns of different web services, while most

works focus on interactions between users (calls, text messages,

contacts etc.). 

After describing the related work on mobile data analysis in

Section 2 , we explain in Section 3 the dataset provided by a rapidly

growing Wi-Fi cloud access provider in France. From this dataset,

we specifically focus on extraction of data traffic usage per ap-

plication at a wireless local area network (WLAN) scale, which

gives us fine-grained information of how users behave at this local

scale. Using this dataset, we propose a lightweight methodology

in Section 4 that analyzes mobile data usage logs of anonymized

users connecting to the Wi-Fi cloud. It allows us to analyze when

and how people connect and consume different types of data from

using mobile applications. Specifically, we create daily “profiles” of

each application usage that are aggregated with each other to form

multiple classes that have different characteristics. For profile ag-

gregation, we sort the daily profiles according to the daily usage

patterns and differentiate them, creating distinct classes through

similarity comparison techniques. Two different types of cluster-

ing is considered: homogeneous clustering where equal number of

profiles are used to create evenly balanced classes, and heteroge-

neous clustering where the number of profiles to create each class

can be different depending on their pattern. In Section 5 , we show

through extensive analysis that our method can clearly distinguish

a number of classes that can be utilized to predict future usage

of each application. Then, in Section 6 , we investigate detection of

outlying behavior for each application. Using the aforementioned

clustering methods, we can derive outlying daily profiles that do

not behave according to one of the classes. We show that this

method can be used to identify outliers in on-demand basis, and

we assess their effect on the performance of our prediction tech-

nique. We discuss some future issues and conclude our work in

Section 7 . 

2. Related work 

One of the research areas in exploitation of mobile data logs

are based on characterizing the nature of human mobility. Work

such as [3] provides an analysis of tracking the mobility of phone

users to show that humans do not have random trajectories but

have both temporal and spatial regularities. Further researches by

Isaacman et al. [12] and Noulas et al. [13] experiment with data

from different scales and datasets from various metropolitan areas,

and show that different cities can have variances in human mo-

bility patterns. A recent work by Naboulsi et al. [4] showed that

call data records can be organized into profiles and clustered us-

ing the spatiotemporal usage characteristics of each profile, allow-

ing for accurate prediction and possible adaptation of the network

according to the usage dynamics. However, despite these interest-

ing results, there have also been concerns that call data records
Please cite this article as: K.-W. Lim et al., Characterizing and predict
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re biased [14] in the sense that data records are always limited

nd artificially chosen, and that it may not be a highly accurate

ethod in characterizing general human behavior. Also, mobile

ser information such as CDR is only so informative as to analyze

imited user behavior characteristics such as mobility and crowd

nformation. 

It is important to note, as already stated by Falaki et al. [15] ,

hat usage of smartphones is much more diversified beyond the

oint of phone calls and mobile tracking. Various researchers have

ade some analysis regarding usage of applications and data us-

ng smartphones such as [16] and [17] . These works are differ-

nt from existing work in the sense that they collect the logs

rom the user’s smartphone and analyze the application usage be-

avior of individual users. On the other hand, Xu et al. [18] and

i et al. [19] make their analysis of smartphone apps usage us-

ng anonymized datasets from Internet service providers and cel-

ular networks, which are more diversified and abundant. Xu et al.

18] analyzes correlations between various parameters such as data

olume, subscribers, access time, and various applications; their

nalysis is helpful in increasing QoS of the providers. Even though

he datasets used in these researches have some similarities, our

ork differentiates from existing literature in the sense that we

ocus on: (1) profiling and clustering of different mobile applica-

ions using temporal characteristics, and (2) predicting usage of an

ndividual application at a more fine-grained scale. 

. Dataset description 

Before explaining our methodology for clustering, we give a de-

cription of the dataset that we used. We utilize the mobile appli-

ation usage logs collected from a Wi-Fi cloud service provided by

 rapidly growing operator located in France. The data are collected

rom Wi-Fi cloud locations where multiple access points exist. The

ocation of the Wi-Fi cloud is a public area where every people can

reely access. The collected logs include a session log, which con-

ains information of all connection sessions initialized by the users

uring the time period. Each session log records the start and end

ime of the session, device information, and the data volume used

uring the session. From the provided session logs, we specifically

nalyze the session logs that were generated in four months from

arch to June, 2014, for closer examination and clustering. About

500 to 3500 users access the network each month, with about

0% connected with smartphones, while the other 20% are connec-

ions using laptops and tablet computers. The whole dataset con-

ists of 60 million URL connection logs generated from TCP traffic

assing through port 80 and port 8080. This accounted for about

858 gigabytes of ingoing/outgoing data per month, or about 60

igabytes per day. 

We note that the network controller of such Wifi networks can-

ot capture complete URLs in HTTPS connections, as the URL is en-

rypted in such connections [20] . However, in a limited manner,

artial information of the URL such as the domain name can be

cquired also for HTTPS sessions. One such approach is to exploit

he domain name system (DNS), where the controller can log the

NS request containing the host name and the IP address response

rom DNS, which happens for DNS resolutions not locally cached at

he client. Another approach is to exploit the server name indica-

ion (SNI) [21] during the transport layer security (TLS) signaling

hase, where the extension_data field in the client hello messages

ontains the hostname. These methods cannot retrieve full URLs

rom each packet, but only the domain name part of an URL from

reliminary signaling packets, which matches our needs as we use

runcated URL information. 

Note that the URL information is anonymized in the paper due

o privacy restrictions. These URL connection logs are references

o the sites that mobile applications access, which denotes the
ing mobile application usage, Computer Communications (2016), 

http://dx.doi.org/10.1016/j.comcom.2016.04.026


K.-W. Lim et al. / Computer Communications 0 0 0 (2016) 1–13 3 

ARTICLE IN PRESS 

JID: COMCOM [m5G; May 19, 2016;16:30 ] 

Fig. 1. Correlation of data volume and number of connections. 
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Fig. 2. Temporal patterns of users in the dataset. 
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umber of connections. We measure the number of connections to

ach mobile application. In this dataset, we do not have access to

he data volume usage for each application at each timestep, which

ould be a better measurement of the actual data consumption.

owever, we argue that the number of connections and data vol-

me are highly correlated, hence, we make the assumption that

ur analysis could be done in the exact same way with data vol-

me usage. In support of this idea, we show in Fig. 1 that the

umber of connections and the data volume are strongly corre-

ated when compared with each other in longer periods of time

i.e., usage per hour in one day, usage per day in one month).

ig. 1 (a) shows the qq-plot of the trend of monthly data usage rate

in March) as a function of the number of connections, showing

hat these quantities are roughly proportional. On the other hand,

ig. 1 (b) plots a daily example of correlation between the two pa-

ameters, with a high level of correlation. 

It is worth noting that the association of a URL to a mobile ap-

lication is not straightforward. Indeed, a URL can be associated

o an application server, we have to notice that (i) a single mo-

ile application could use multiple URLs concurrently, hence mul-

iple application servers, and (ii) an application server can be used

y multiple applications. We use truncated URLs, which hide the

onfidential information that may exist in the latter parts of the

RL, while the domain and hostname are visible (possibly also in-

luding 2nd-level domains for short domain names). We compared

hese truncated URLs in order to identify the ones referring to the

ame mobile applications. (i.e. identical domain and hostname).

his preprocessing demands to restrict ourselves to the most fre-

uent truncated URLs. By this way, we restrict the bias due to both

i) and (ii) to a level that we conjecture as being acceptable. There-

ore, the expression ‘mobile application’ used in the following is a

implification referring to this disambiguation process. 

From the data logs, we specifically acquire connection informa-

ion of 20 most popular mobile applications that users connected

o during the four-month period. These top 20 applications are

efined as the 20 most visited mobile applications in terms of

umber of connections during the considered time period. Here,

e utilize only the top 20 mobile applications, as they account

or more than 90% of the total bandwidth, as measured from the

ogs of our dataset. The 20 mobile applications have 11 specific

ypes of services, which are P2P communication; map service; e-

ail; video streaming; music streaming; social networking; news;

earch engine; shopping; advertising; sports media. Of these ser-

ices, search engines accounted for over 70% of the total number

f connections, video and music streaming for 9%, mail for 6%, and

ocial networking accounted for 8% of the connections. 

Before the classification, we first visually explore the data to de-

ect its typical characteristics. In Fig. 2 , we present what we con-

ider as 4 typical daily behaviors in the dataset. The day-oriented
 F  

Please cite this article as: K.-W. Lim et al., Characterizing and predict

http://dx.doi.org/10.1016/j.comcom.2016.04.026 
attern displays a high spike of network usage at lunch time (11

.m. to 12 p.m.) while the usage drastically decreases afterwards.

n our dataset, the majority of these patterns were found in map

nd location search applications, which may be explained by the

act that people usually use these applications before considering

 trip. The night-oriented pattern shows only a slight increase in

he usage during lunch hours, while high rate of usage at night

ime. Applications related to music streaming and sport informa-

ion often display such a pattern, their usage being concentrated

fter working hours. The ‘camelback’ pattern is the most frequent

or most of the applications, the usage being concentrated during

reak hours. The balanced usage pattern is characterized by a reg-

lar usage of the mobile application even during working hours.

t is mostly observable for high usage applications such as web-

earch, social networking, and video streaming. Note that two or

ore different patterns can occur for the same mobile application

t different dates, which depends upon a variety of factors such as

ay of the week, existence of particular events, etc. 

. Data clustering and prediction 

In this section, we explain our clustering method of mobile ap-

lication usage logs, which consists of three phases: 

1. Extracting daily profiles of each mobile application usage to

represent them in time-series plots. 

2. Utilization of homogeneous ( q -quantiles) and heterogeneous

(similarity comparison) clustering techniques to sort and com-

pare daily profiles. 

3. Prediction of daily profiles according to their usage pattern. 

The functional diagram of our analysis methods are depicted in

ig. 3 , which also shows how we explain them in the following
ing mobile application usage, Computer Communications (2016), 

http://dx.doi.org/10.1016/j.comcom.2016.04.026
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Fig. 3. Functional diagram of the proposed data clustering. 
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subsections. The input data is the raw data list of all URL connec-

tion logs per application, while the output is one or more time-

series profiles where each resembles a specific class. Using the

classes generated from the three phases, we also propose a method

to predict future usage for a specific application. It is worth men-

tioning that the proposed methodology is such that we do not re-

quire any training data on a per-user fashion. Instead, we work on

data aggregated at a local scale and we build classes of behaviors,

which are supposed to be robust through time. Therefore, our anal-

ysis is only marginally dependent of the arrival and departures of

users in the network. 

4.1. Profiling daily usage of mobile applications 

In the first phase, we extract the daily usage of each mobile

application from the raw data. Let us precise here the definitions

that we use in the following. 

• A ‘profile’ denotes any collection of the number of connections

to a mobile application as a function of time. In our work, we

used ‘daily profiles’ , that is a collection of the number of con-

nections to a mobile application on a specific day. 
• ‘Clustering’ is the process of repeatedly aggregating daily pro-

files until obtaining few representative clusters, which we de-

fine as ‘classes’ in this context. 
• A ‘class’ is a set of profiles resulting from a clustering method.

It is represented by a profile which is the mean of the ‘daily

profiles’ belonging to the class. 

For each day, the number of usages per application is summed

up in every 30-min intervals, and then represented in a time-

series graph as shown in Fig. 4 . Since our analysis set includes four

months from March to June, we generate 122 profiles for every

mobile application. Fig. 4 shows a visual example of web-search

application usage to how each daily profile can be generated and

depicted as a time-series graph. Each usage profile represents a

specific date, with the x-axis denoting hour of the day and the y-

axis representing number of connections per interval. As shown in

the figure, all graphs have distinct behavior according to the num-

ber of connections. 

4.2. Homogeneous clustering using q -quantiles 

After the creation of daily profiles, for each application, levels

of similarity for the 122 daily profiles (i.e., how similar they are
Please cite this article as: K.-W. Lim et al., Characterizing and predict

http://dx.doi.org/10.1016/j.comcom.2016.04.026 
o each other) are measured using various similarity comparison

echniques. Firstly, to distinguish the volume usage between pro-

les, we utilize quantile-based clustering [23] . q -quantile method

s a lightweight approach of clustering, as it simply demands to

ank profiles according to their total usage volume. Compared to

raditional similarity-based methods, it guarantees a lower com-

utational complexity, i.e. O ( M · logM ) in case quicksort is used,

here M is the number of daily profiles that need to be sorted.

ne characteristic of q -quantiles is that the number of profiles

re evenly distributed into each quantile, making the size of each

uantile homogeneous. 

.2.1. Quantile-based clustering 

To derive specific classes from multiple profiles, we need to be

ble to insert profiles that are resembling each other into a same

lass while differentiating those that are clearly distinct. To iden-

ify the similarity and the difference between any two given pro-

les within a same mobile application, we utilize quantile-based

lustering according to the usage volume of each daily profile. Let

 

k 
t (a ) be the collection of all t -th interval from k -th profile in appli-

ation a , ˜ x t (a ) be the median of x k ta series over k , and P a be the re-

ulting “median profile” with ˜ x t (a ) as temporal components, then:

 a = { ̃  x 1 (a ) , ̃  x 2 (a ) , . . . , ̃  x N (a ) } (1)

We sort each daily profile k according to the overall difference

ith respect to P a . Let x k t (a ) be the volume of t -th interval in pro-

le k . The difference of volume that we define as “volume gap”, for

very profile k in an application a is g k ( a ) computed as: 

 k (a ) = 

N ∑ 

t=1 

(x k t (a ) − ˜ x t (a )) (2)

where t denotes the t -th interval of the profile k and median

rofile P a . Thus, g k ( a ) becomes a collection of volume gap values

or all profiles. Using this method, we can sort all the profiles in

he respective order and apply different q for selecting the number

f quantiles. In our work, we use q = 2 , 4 , 8 , which are median,

uartile, and octile, respectively. For example in the case of q =
 (we can calculate the cutpoints for quartile 1, 2 (median) and

), allows us to retrieve 4 distinct classes. We note that clustering

sing q -quantiles guarantees equal number of profiles per class. 

.2.2. Class generation 

After configuring the range of each quantile, we can derive the

epresentative profile of each quantile, which will act as one of the

lasses for the application. Let c ′ t be the collection of t -th inter-

al in quantile c . The representative profile of quantile c, P c , is the

ean value of all daily profiles that belong to the respective quan-

ile, as shown below: 

 

c = { ̄c ′ 1 , ̄c ′ 2 , . . . , ̄c ′ t } , (3)

For any given application, the number of classes will result in

he same number of q used to configure the number of quantiles.

or example, Fig. 5 shows the result of 4-quantile (quartile) clus-

ering of a web-search application, with each class represented in

he form of a cumulative curve. 

As seen in Fig. 5 , the pattern of each class are easily distinguish-

ble because the gap in the number of connections are distinctively

lear. Basic intuition is that usage of any application tend to have

ramatic increases when N > 22 (after 11:00 a.m.) and gradually

ecreases when N > 40 (after 10:00 p.m.). However, it is evident

hat the rate of the increase for each day can be completely dif-

erent. For example, in the case of Fig. 5 (a) the total usage in the

ourth quantile is more than 30% higher than the usage detected

y the first quantile for the web-search application. 
ing mobile application usage, Computer Communications (2016), 

http://dx.doi.org/10.1016/j.comcom.2016.04.026
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Fig. 4. Visual example of generating daily profiles and classes. 

Fig. 5. Creation of classes using 4-quantile (quartile). 
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It is important to note in Fig. 5 (b) that even though we clus-

ered each daily profile according to their total usage volume,

hen we zoom into the first 8 h, we can observe that there are dif-

erences that can be distinguished between the classes. This leads

s to believe that we can utilize a specific time t to estimate and

redict what the usage of the application will be in the next N − t

ours. 

.3. Heterogeneous clustering 

Even though q -quantiles can create classes of equal size, it does

ot efficiently account for specific applications that may have more

ynamic behavior. This feature especially becomes a drawback

hen applied to network contexts with a heterogeneous distribu-

ion of application usages. Therefore, we resort to more sophisti-

ated techniques to create heterogeneous classes. These methods

re based on the evaluation of the similarity between two profiles

sing tests such as Student’s test [26] and dynamic time warping

DTW) [27] . 
Please cite this article as: K.-W. Lim et al., Characterizing and predict

http://dx.doi.org/10.1016/j.comcom.2016.04.026 
.3.1. Student’s test and DTW 

Student’s test can be used as a basic similarity test between

wo sets of data, based on the differences of their means. In our

ork, we perform the paired difference test using Student’s test to

ompare the mean difference of each profile to every other profile

nd cluster them. 

On the other hand, DTW is an algorithm for measuring the sim-

larity of two time-series. DTW is one of the most favored choices

or time-series comparison in the literature, as shown in many

xisting works [24,25] . It is a method already utilized in various

pplications such as speech recognition, automated signature

ecognition and shape matching. In our work, we calculate the

TW between two daily profiles and then sum the results, which

eturn a single integer value that represents the overall distance

etween the two profiles. 

.3.2. Class generation using clustering 

When Student’s test and DTW is used, the basic assump-

ion is that profiles with low distance scores should be clustered
ing mobile application usage, Computer Communications (2016), 
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Fig. 6. An example of UPGMA clustering of profiles. 
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together, so the strategy is to find the lowest distance pairs among

all profiles and cluster them in this order. To achieve this goal, we

utilize the Unweighted Pair Group Method with Arithmetic Mean

(UPGMA) [4,22] . Using UPGMA, it is possible to cluster all the pro-

files until only one is remaining. Authors of [4] have already uti-

lized UPGMA for application in mobile phone call analytics, and

shown that it can be utilized in differentiating distinct classes of

daily profiles. The application of UPGMA in our work runs in three

steps: 1) finding the lowest distance pair, 2) pairwise aggregation,

and 3) recalculation of distance. 

1. Finding the lowest distance pair: Firstly, all profiles from the

same mobile application are compared with each other using

the selected similarity comparison technique. The two profiles

that return the lowest distance score (highest similarity) are se-

lected for aggregation. 

2. Pairwise aggregation: The aggregation procedure follows the un-

weighted pair grouping of two profiles. If both profiles have

never been aggregated, the average of the two time-series pro-

files are calculated to produce a new aggregated profile. If ei-

ther or both profiles are the results of previous aggregations,

then the mean of the two profiles are weighted according to

the number of aggregations that each profile has experienced. 

3. Recalculation of distance: When a new profile is created from

the aggregation process, its distance is recalculated with all

other remaining profiles. When the calculation is finished, the

lowest distance pair is selected again from either the new pro-

file or the calculation of existing profiles. Pairwise aggregation

and recalculation of distance is repeated until there is only one

profile remaining. We discuss in the following subsection how

to select relevant classes from the UPGMA tree. 

An example of a result of three previous steps can be observed

in Fig. 6 . As shown in Fig. 6 , the heterogeneous clustering us-

ing Student’s test and DTW yields classes that are uneven in size,

which can better reflect the distribution of the profiles compared

to q -quantile based clustering, which evenly balances the number

of profiles per class. However, note that DTW induces a computa-

tional cost in O ( N 

2 ), where N is the number of measurement points

within a daily profile, which can be high in practical contexts (e.g.,

network controllers). Notice that even with a cheaper comparison

method such as Student’s test with cost of O ( N ), the overall time

complexity may be critical, as UPGMA depends on the number of

daily profiles as well. As any profile must be compared to all oth-

ers, the clustering method is in O ( M 

3 ) where M is the number of

daily profiles. As a result, this makes the overall computational cost

of Student’s test in O ( NM 

3 ), and DTW in O ( N 

2 M 

3 ) . 

4.3.3. Threshold configuration 

Like the q -quantile clustering, the UPGMA clustering tree can

be statically cut to configure a specific number of clusters. How-

ever, as different mobile applications have different usage behav-

ior, it is important for each mobile application to maintain a

certain number of classes that is ideal for each. To do this, we

propose a threshold configuration method to configure a number
Please cite this article as: K.-W. Lim et al., Characterizing and predict

http://dx.doi.org/10.1016/j.comcom.2016.04.026 
f classes for each mobile application. Each pairwise aggregation

esult returns the lowest distance score that was recorded dur-

ng one round of calculation. Therefore, after all daily profiles have

een clustered, we can obtain a list of distance scores. It is natu-

al to assume that the distance scores acquired at the latter stages

f the clustering tend to be higher than the values acquired at the

ormer stages. Also, as Fig. 6 suggests, the last stages of the cluster-

ng occur with distant clusters, which will guarantee much higher

istance scores. In fact, our studies show that the list of the dis-

ance scores show an exponential increase. 

Using this observation, we devise a method for configuring a

hreshold that allows to prevent aggregation of profiles/clusters

hat causes a large increase in the distance score. In other words,

his helps us to generate multiple number of classes that are dis-

inct from each other. To calculate this, we use the following test

f as: 

d s − d̄ 
∣∣ > σ (4)

where s is the number of all distances generated from the clus-

ering process, d s is each comparison score, and d̄ is the mean of

ll comparison scores. Therefore, if the test is larger than the stan-

ard deviation σ , then the two profiles are too distant from each

ther to be aggregated and therefore should belong to different

lasses. By using this method, we can calculate a threshold value

hat is relative to each mobile application, without any static pa-

ameters. 

.4. Prediction using generated classes 

Results from the clustering in Fig. 5 (b) show that the gaps be-

ween classes are wider with respect to time, making the distinc-

ion possible with relatively small values of t . This is important be-

ause if we can use a small value of t to predict the rest of the day,

e can forecast how the rate of the data usage increase will be

hen it is at its peak, allowing the service provider to take proac-

ive measures to account for it. To do this, we propose a method to

redict the class of behavior we should observe on a specific day

ccording to the trend at time t . 

When we have the application usage sample from N = 1 to

 = t, this sample can be compared to each of the classes. To do

his, we utilize Euclidean distance measure between the cumula-

ive curve of the sample and the classes. If c t is the t -th entry in

lass c and s t is the t -th entry in test sample s , the distance is sim-

ly: 

(c, s ) = 

√ 

N ∑ 

t=1 

(c t − s t ) 2 (5)

For each class, the distance is measured and the class with the

owest distance to the test sample becomes the predicted class.

ere, we note that for a small value of t , the usage difference be-

ween the classes is low as it is early morning and the human ac-

ivity is also low, making the prediction less reliable. On the other

and, a high value of t allows for a more accurate prediction of
ing mobile application usage, Computer Communications (2016), 
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Fig. 7. Normalized average distance between classes. 
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he future application usage. However, if the value of t is too high

i.e. exceeding the point of time when the data usage is already

eaked), then the objective of forecasting itself becomes invalid

ecause the critical point for adapting to usage increase is already

ast. One of the main objectives of prediction using an early time

f the day is to accurately account for the sudden increase of data

uring the hours with high activity. Therefore, it is important to

nd the appropriate value of t that maximizes the accuracy of pre-

iction while meeting the user demands of the application. 

When the classes are generated from using Student’s test or

TW, then the corresponding similarity comparison technique is

sed to compare the distance between the test sample and each

f the classes from t = 1 to t = N. Naturally, the correct class that

 test sample should belong to is the one that has the lowest dis-

ance when compared with t = N. 

. Performance analysis 

In this section, we conduct extensive evaluation of our pro-

osed clustering and prediction methods. In the first part, we an-

lyze the results from our clustering process. Second part analyzes

he accuracy of the classes that we generate by applying k-fold val-

dation technique. 

.1. Clustering results 

Firstly, we observe the results of clustering using the quantile-

ased partitioning, Student’s test, and DTW similarity comparison. 

.1.1. Average distance between classes 

For the first test we compare the distance between classes

hen the value of q varies. For all applications, we calculate the

uclidean distance for each t between the classes that are adjacent

lowest in distance) to each other, and then normalize the distance
Please cite this article as: K.-W. Lim et al., Characterizing and predict

http://dx.doi.org/10.1016/j.comcom.2016.04.026 
or each application because the usage rate of each application is

ifferent. The results are shown in Fig. 7 . 

Intuitively, it is easier to distinguish between different classes

hen the number of generated classes is low. This can effectively

educe the value of t needed to predict a specific test sample to

elong to a certain class. As seen in Fig. 7 (a), the average distance

etween the adjacent class gradually decreases as the value of q

ecomes higher. This makes excessively high value of q undesir-

ble. 

However, choosing the lowest value of q does not guarantee the

est possible results, because low values of q clusters daily profiles

hich may be quite different from each other. This in turn possibly

ncreases the difference between the average behavior in the pre-

icted class and the actual usage of the test sample. Therefore, we

eed further observation of the effect of q on the overall prediction

ccuracy. In the cases of Student’s test and DTW, as shown in 7 (b)

nd 7 (c), the distance between classes when threshold configura-

ion is used is between q = 2 and q = 4 , which allows the classes

o be more distinguishable from each other while having classes

hich gather relatively homogeneous behavior. 

.2. Prediction accuracy 

We present an analysis of the accuracy of our proposed mobile

pplication clustering methods. For the first analysis, we use the

rofiles from March to June, 2014. Therefore, there are 122 pro-

les for each mobile application. Each profile is considered as a

est sample, using the 121 remaining profiles to define the classes.

his is to ensure that each one of the profiles can be predicted

ithout it being previously referenced in the clustering process. 

We define an accurate prediction as follows. A test sample pro-

le that was not used for the clustering needs to be classified into

ne of the classes using a limited time t . When quantile-based par-

itioning is used, Euclidean distance measure is used to compare

he corresponding daily profile with all classes. If the closest class
ing mobile application usage, Computer Communications (2016), 
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Fig. 8. Evaluation of prediction accuracy. 
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is the class that it should belong to using the clustering process,

then the prediction is accurate. In other words, assessing the ‘pre-

diction accuracy’ gives the network controller an intuition of how

many hours it has to observe the traffic in order to evaluate the

traffic usage during the rest of the day. In the cases of Student’s

test and DTW, prediction is correct when the selected classes us-

ing t < N is the same as the prediction when t = N. We compute

the accuracy with all profiles and analyze the percentage of accu-

rate predictions from the total number of predictions. 

5.2.1. Accuracy sensibility analysis 

Fig. 8 shows the performance of our proposed prediction

method when the value of t varies from 1 to N for all applica-

tions. That is, the prediction accuracy of all 20 mobile applica-

tions are separately calculated, then combined and averaged in

Fig. 8 . Here, N is defined as 48, which means that every gradua-

tion on the x-axis in N represents a 30-min interval. The values

of q are 2, 4, and 8, which denotes the q -quantiles that will be

used to create q classes for all clustering methods. rand denotes the

random classification for homogeneous clustering, therefore each

class has an even chance of being randomly selected. rand − w is

the weighted random classification for heterogeneous clustering,

where each class has a chance to be selected depending on the

number of profiles used to produce the class. 

As mentioned from above, a high enough value of t is required

to accurately predict the appropriate class for a test sample, but

a lower t value is desirable to meet real-time user demands. As

seen in Fig. 8 (a) when q = 2 , the prediction accuracy for t ≥ 24

(12:00 p.m.) is over 70% for all methods, while reaching over 90%

for t ≥ 36 (18:00). When the value of q increases, the prediction

accuracy also falls as shown in Fig. 8 (b) and (c), mainly due to the

fact that there are more classes with less distance between each

other which causes more misclassifications. In general, the per-

formance of the heterogeneous clustering techniques is compara-

ble to the performance of homogeneous clustering, with Student’s
Please cite this article as: K.-W. Lim et al., Characterizing and predict

http://dx.doi.org/10.1016/j.comcom.2016.04.026 
est performing about 10% lower in the worst case than DTW. In

verall, the performance of all three methods greatly outperform

andom classification methods. We note that when applying this

ethod for resource allocation on a WLAN network, the service

rovider should compute an appropriate t for each type of appli-

ation, depending on the demand of each application, to maximize

oS. Fig. 8 (d) shows the performance of Student’s test and DTW

ethods when the threshold configuration in Section 4.3.3 . is used.

ven though the number of classes can vary per application, the

hreshold configuration manages to set an appropriate number of

lasses, enough to guarantee prediction accuracy as high as when

 = 2 . 

From the results in Fig. 8 , it seems that a lower value of q

ould be more efficient than higher values of q because it can in-

rease the prediction accuracy. However, as stated above, the larger

istances between classes can result in considerable distance be-

ween the correctly-guessed class and the test sample. To observe

his effect, we calculate the distance, which we define as “alloca-

ion error”. In Fig. 9 , the y-axis, which we denote as allocation er-

or per mobile application, represents the absolute difference from

he selected class’s number of connections to its actual number of

onnections in the profile considered. We assume that an access

etwork provider decides on allocating bandwidth depending on

he result of the prediction. If an incorrect prediction is made, the

hance of over-allocation (allocating more bandwidth than the ac-

ual usage) or under-allocation (allocating less than the actual us-

ge) of bandwidth for the specific application would also increase.

lso, even if the prediction made is correct, the distance between

he prediction and the actual data usage can still be large. There-

ore, a scheme that allows lower over/under bandwidth allocation

an be considered more accurate than other methods. Here in our

ork, we first observe the effect of q on the bandwidth over/under

llocation (as defined by allocation error), and also compare our

roposed prediction methods with average prediction. Average pre-

iction calculates the average of all profiles for each N and creates
ing mobile application usage, Computer Communications (2016), 
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Fig. 9. Evaluation of allocation error. 
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he corresponding profile. The results can be observed in Fig. 9 ,

hich shows the average bandwidth allocation error. 

Note that we omit the results of rand − w because in all cases

t performed worse than the unweighted random case. As seen

rom Figs. 8 and 9 , high prediction accuracy does not necessarily

ranslate into efficient allocation of bandwidth. For example, q = 2

hich had the highest prediction accuracy in Fig. 8 actually has

igher distance between the test sample and the predicted class

hen the value of t becomes higher. On the other hand, higher

alues of q provide lower distance, which means that even though

he actual prediction is incorrect, in terms of guaranteeing the cor-

ect bandwidth, it performed better as the value of t increases. This

s evident for q -quantiles, where in the case of t = 1 allocation er-

or of q = 2 is 160 and error of q = 8 is about 180, while in case of

 = 48 allocation error of q = 2 is 140 while error of q = 8 is 120. 

All proposed methods of prediction significantly outperform the

andom classification method. However, it is important to note that

llocation error of both heterogeneous clustering methods are con-

iderably higher than the homogeneous counterpart in all cases of

 . We believe this phenomenon results from two reasons. The first

eason is that fixed value of q is not suitable for heterogeneous

lustering which forces slicing a class which should be one, or

ometimes aggregating classes that should be separated. Another

eason is due to outliers, where we found that without any out-

ier control, Student’s test and DTW can sometimes generate small

lasses that are actually outliers. This causes higher error in the

verall prediction. 

The first reason can be easily solved using the proposed thresh-

ld configuration. As shown in Fig. 9 (d), the performance of Stu-

ent’s test and DTW can be increased through threshold configu-

ation. Especially for DTW, compared to q = 4 , the allocation error

s about 10% better when t = 1 , and 20% better when t = 48 . The

eason for this increase is because the threshold configuration al-
 P  

Please cite this article as: K.-W. Lim et al., Characterizing and predict

http://dx.doi.org/10.1016/j.comcom.2016.04.026 
ows classes of different sizes, where sizes are optimal in the sense

hat profiles of a class are supposed to be as similar as possible. 

Note that achieving high performance according to both qual-

ty predictors (accuracy, allocation error) is important. As seen in

ig. 9 , higher prediction accuracy is required to maintain low dis-

ance between the test sample and the predicted class, as low q

or clustering methods guarantees lowest distance when t is low.

owever, as t becomes higher and prediction accuracy for q = 8

lso increases, its distance becomes the lowest as it allows more

efined prediction using more classes. Therefore, finding the ap-

ropriate tradeoff by tuning q becomes an important issue which

eserves further study in future work. 

.2.2. Time granularity analysis 

Fig. 10 shows the differences in performance regarding differ-

nt time granularities. Here the horizontal axis represents the du-

ation of a sample. For each test case, the accuracy and the allo-

ation error is calculated at 12:00 p.m. As different time granu-

arities does not affect the q -quantiles clustering, which only de-

ends on the overall volume usage, the prediction accuracy does

ot depend on time granularity, as can be seen in Fig. 10 (a). How-

ver, Fig. 10 (b) shows that the allocation error actually decreases

ith larger time slots. The reason for this is that the behaviors

re smoothed with larger time granularities, resulting in smaller

ver/under allocations. The allocation error is lower with a higher

ime granularity for q -quantile, however, increasing the granularity

educe the number of time slots for predictions (e.g. 12-hour gran-

larity only allows the controller to make one decision per day).

n the other hand, Fig. 10 (c) shows that for DTW the accuracy

an be significantly increased when larger time slots are used. The

lasses generated seem to be more distinct. However, as shown in

ig. 10 (d), the performance in terms of allocation error is degraded.

rofiles being clustered with a rougher grain, a classification error
ing mobile application usage, Computer Communications (2016), 
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Fig. 10. Evaluation of time granularity. 
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translates in a larger allocation error. Therefore, in case of DTW,

using a finer granularity is the more efficient choice for our

dataset. 

5.2.3. Application-level prediction accuracy 

Even though the performance of the heterogeneous clustering

methods can be improved using the proposed threshold configura-

tion method, outliers in profiles still affect the quality of the pre-

diction process. To observe this, we analyze the application-level

prediction accuracy and the normalized allocation error, which is

shown in Fig. 11 . Here the normalized allocation error refers to the

performance scale of Student’s test when the performance of q-

quantiles is normalized to 1. For simplicity, we show the results of

five different applications, using q = 2 for quantile-based clustering

and Student’s test. 

As shown in the figure, the prediction method depending on

value t can dynamically affect the prediction accuracy of each type

of service, thus showing again why different applications require

different t for more accurate predictions. We can also observe that

quantile-based partitioning guarantees a relatively stable perfor-

mance for all applications, while Student’s test has high fluctua-

tion depending on it. Fig. 11 (b) shows that the accuracy of certain

applications, such as social and maps mobile applications, have rel-

atively lower performance. This is also reflected in Fig. 11 (c) where

the allocation error for predicting social network application is

more than 2.5 times higher. 

The main reason for this difference even though q = 2 for both

methods is because Student’s test is more heavily affected by out-

lying behavior than the homogeneous method of q -quantile clus-

tering. The heterogeneity of the classes using UPGMA makes some

classes with low number of profiles becomes more affected from

an outlier. In some cases, an outlier may be one of the last pro-

files to be clustered in the UPGMA, possibly creating a outlier class.

Our studies showed that in Fig. 11 (b), one of the only two classes

was in fact an outlier which had similar appearance to the other

classes in the early hours of the day. Therefore, many predictions
Please cite this article as: K.-W. Lim et al., Characterizing and predict

http://dx.doi.org/10.1016/j.comcom.2016.04.026 
n the early hours were wrong and the performance was severely

ffected. 

. Challenges in detecting and qualifying outliers 

As noted before, one of the reasons that the proposed clustering

nd prediction schemes may malfunction is due to outlying behav-

ors in a daily profile. An outlier in a daily profile corresponds to an

nexpected behavior that are different from former observations.

o observe outliers in our current dataset, we modify the homo-

eneous and heterogeneous clustering methods according to their

haracteristics. Note here that our work focuses on how to iden-

ify outliers, then we exclude them from the clustering process in

rder to evaluate their actual impact on potential allocation error. 

.1. Outlier detection using q -quantiles 

We utilize quantile cutpoints and the interquartile range (IQR)

o distinguish outliers. However, instead of defining outlier events

ust from the total volume of each profile, we make the compar-

son on a 30-min interval basis. The reason why we utilize such

pproach is to account for sudden fluctuations of volume usage

ithin each daily profile, which occurs frequently but cannot be

redicted in the total usage volume of each day. For simplicity,

e detail the outlier detection in 4-quantile (quartile) division, al-

hough it can be used in the same way for other values of q . Using

ach ˜ x t in P a shown in (1), an outlying 30-min interval is mea-

ured for each profile k . Let Q 3, t be the third quartile and Q 1, t be

he first quartile for the interval t , then IQR of interval t, IQR t , is

efined as 

QR t = Q 3 ,t − Q 1 ,t (6)

Using the IQR t , we configure an upper bound U t and the lower

ound L t to exploit an outlying event, 

 t = Q 3 ,t + 1 . 5(IQR t ) 

L t = Q 1 ,t − 1 . 5(IQR t ) (7)
ing mobile application usage, Computer Communications (2016), 
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Fig. 11. Prediction accuracy and allocation error of types of services. 
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Thus, we gain the lower and upper bounds for each interval of

 for all profiles. Here, for each interval t for profile k , if the num-

er of connections at t is higher than U t or lower than L t , then

hat specific interval t is considered as an outlying event and the

umber of connections corresponding to that t is recorded. For an

pper bound outlier, the number of connections is recorded in a

ositive integer, while for a lower bound outlier, it is recorded in a

egative integer. Therefore, each profile k will end up with a out-

ying number of connections O k . From O k and the median, we can

ecalculate the first and third quartiles and acquire the IQR ′ . In the

ame way, upper bound and lower bound U and L can be acquired.

his enables us to detect the outlier k if the O k is lower than L or

igher than U . Note that the weight given to IQR t is an empirical

alue which can be adjusted to control the number of outliers. 

We apply the outlier detection method on the top 20 used ap-

lications in our dataset to discover specific events. Some outliers

ould be explained by ad hoc interpretations, especially for sports

lasses where outlying dates in sports application coincided with

he European champions league final (May 24, 2014), and world

up games held in June. Also, social networking applications had

utliers that coincided with city scale elections in France, as well

s the European elections. We can therefore suggest that these

vents triggered an unusually high amount of logs for the related

pplications. Even though this approach could detect some intu-

tive events, a majority of the outliers could not be easily related

o a specific date or event. A major reason for this is that our

ataset is based on a WLAN scale volume usage, which may not

lways reflect nation-scale events as crowds belonging to differ-

nt WLAN scale areas may behave differently depending on their

endencies. Furthermore, different applications can be differently

ffected by the type of event, meaning that a specific event may

ffect the usage of an application but may also not affect another

ajority of them. Finally, many outliers cannot be associated to a

recise event, because this event may be unknown to us or simply

fi  
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oes not exist, as outlying behaviors may stem from mere statis-

ical fluctuations. Therefore, to isolate possible outlying events in

 more reactive manner, we utilize the IQR range from the classes

hat are generated in the clustering process. 

For example in the case of q = 4 , the IQR value can act as a

hreshold to single out profiles that are too far away in volume

sage from the first and last quartile cutpoints. In the same way,

QR value can be redefined by the length of the volume of first and

ast classes generated from the quantile-based clustering. When t

enotes the number of 30-min intervals, the upper bound and the

ower bound can be defined as: 

 

′ = C 3 [ t] + 1 . 5(C 3 [ t] − C 1 [ t]) 

L ′ = C 1 [ t] − 1 . 5(C 3 [ t] − C 1 [ t]) (8) 

here C 1 [ t ] and C 3 [ t ] are the values of classes one and three at in-

tant t . For the test profile, if the value of the t -th entry is higher

han U 

′ or lower than L ′ , then it is considered as an outlier. We im-

lement this method in our proposed clustering technique using

uantiles and compare the results with Fig. 11 . When the outlier

etection is used, the detected outliers are isolated and not allo-

ated to any class, reducing the error in over/under allocation of

andwidth. The results are shown in Fig. 12 . 

As shown in the figure, the allocation error is significantly re-

uced. This is because outliers are one of the main reasons for

ncorrect allocation of bandwidth. By eliminating outliers before

aking erroneous predictions from one of the classes, bandwidth

rror can be reduced more than roughly 10% for both q = 2 and

 = 10 . 

.2. Outlier detection using UPGMA 

For Student’s test and DTW, we can utilize UPGMA to exploit

utliers in the clustering phase. The same method as the one de-

ned in (4) can be used to test the variance of all 122 original
ing mobile application usage, Computer Communications (2016), 
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Fig. 12. Allocation error comparison using outlier detection. 
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profiles when they are clustered. To do this, instead of listing the

list of all comparison scores as done in the threshold configuration,

we only list the comparison scores of the original profiles that are

not yet clustered. Then, using (4), we calculate the standard devi-

ation σ and the mean difference M s of the original profiles. If M s 

of an original profile is higher than σ , then it is considered as an

outlier. This can effectively distinguish outlying behavior because

outlying profiles tend to be clustered in the later stages of UPGMA,

as they have higher distances to all other profiles. 

We apply our outlier detection using UPGMA and observe the

improvement compared to the results in Fig. 11 . The improvements

in prediction accuracy and allocation error results for social and

maps mobile applications are shown in Fig. 13 . From Fig. 13 , we

can observe that eliminating outliers during the clustering process

can greatly improve the overall prediction accuracy and allocation

error. Especially in the case of maps application, eliminating out-

liers result in more than 40% increase in prediction accuracy and

40% decrease in the allocation error when t = 4 . This is because

one of the classes that were selected through UPGMA was an out-

lier, and the accuracy of the prediction benefits from eliminating

it. 

We note that in this research, we propose some simple meth-

ods of outlier detection. Even though we manage to acquire some

promising preliminary results, we plan to further enhance our

methodology. Firstly, we believe that we can discover more outly-

ing behaviors on a per-application level basis by examining appli-

cations of the same type. Also, as noted above, the detected out-

liers are currently just isolated in the clustering process and not

treated to enhance the allocation prediction. How to cluster and

predict the actual usage resulting from outliers will also be ad-

dressed in future work. 
Fig. 13. Prediction accuracy and allocat
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. Discussion and conclusion 

Throughout the paper, we have shown how we can cluster and

redict how and when users access mobile applications through

heir wireless communication means. We discuss our methodology

nd some of the use cases where our contributions could be ex-

loited. 

We note that the methods that we designed to profile, cluster,

nd predict mobile application usage are lightweight methods that

re also frequently utilized in other areas of research. However, we

lso note that our work is focused on exploiting data consumption

ehavior depending on the temporal application characteristics as

ell as their type. We believe that our work can be a notable start-

ng point for other researchers that are interested in the analysis of

ata consumption behaviors through various types of mobile appli-

ation usage. 

One of the biggest characteristics of the dataset that we uti-

ize is that the logs are generated from a WLAN-scale network,

hich has a small and limited scale in terms of spatial proper-

ies and number of users. This differs from the dataset used in

ity-scale data from existing work such as [3] and [4] , especially

n the sense that our dataset could be more heavily affected by

uman stochasticity and could tend to have higher fluctuations in

he usage volume. This leads us to believe that each WLAN can

onsume different types and volumes of data depending on the

ontext of the WLAN (restaurant, train station, etc.), and that more

utlying behavior and differences in classes may occur more fre-

uently. Therefore, our analysis and proposed scheme can be useful

or adaptive planning and management of a WLAN-scale network,

specially in software-based network controlling as defined in NFV

nd SDN-type systems. 

If we can predict how much users access what applications at

hich specific times, it becomes possible to pro-actively adjust a

etwork service to meet the user demands. One prominent use

ase is the design of a Wi-Fi cloud system, which in fact our data

as derived from. For example, a SDN-based Wi-Fi cloud consists

f a controller that is capable of controlling the connections be-

ween the users and the external web servers, acting as a gate-

ay. If the controller can predict the usage of service users, then it

s possible to take proactive measures, such as adaptive port con-

rol, proactive content caching, and bandwidth adjustment. In edge

omputing, the application server or network function server ca-

acity can also be adapted as a function of the load, scaling in or

ut the number of cores, memory, and etc. 

The information regarding the correlation of identical applica-

ions can also help network service providers to predict the usage

f applications that are not yet analyzed. As there is an extremely

arge amount of network contents and applications that exists on

he Internet, it is impossible for the service provider to possibly
ion error using outlier detection. 

ing mobile application usage, Computer Communications (2016), 
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nalyze all the existing contents. Instead, by using the analysis

eports of a well-known application, it is possible to accurately

redict the usage, bandwidth consumption, and possible conges-

ion that can occur from the new application, allowing the con-

roller/administrator to make the appropriate decisions in adapting

o the new usages. Notice that the traffic pattern can change, for

xample because of version upgrades or sudden popularity trend

hanges. In this case, our method should allow to change the

lasses in order to match the new traffic patterns detected. This

roblem is closely related to event detection in the system, which

e will address in future work. 

Mobile data analytics have been a vital part of the computing

esearch community over the past decade. Even though many sig-

ificant works have been made in exploiting spatiotemporal be-

avior of mobile users, research regarding data usage and web ac-

ess is limited. For this, we exploit Wi-Fi usage data to profile and

luster human data/content usage behavior, showing how to pre-

ict future data usage for different mobile applications. We show

hat homogeneous clustering method guarantees simple yet effec-

ive classification, while heterogeneous clustering provides more

ffective level of prediction accuracy. Our evaluation shows that

ven with a small window of time sampling, we can predict the

eak data usage of various applications, which considerably dif-

ers in both number of connections and peak usage time. Further

ork is needed to more profoundly integrate outlier detection in

he prediction phase, and evaluate our proposed method in practi-

al use-cases. 
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