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Abstract—Nowadays, the huge worldwide mobile-phone pen-
etration is increasingly turning the mobile network into a gi-
gantic ubiquitous sensing platform, enabling large-scale analysis
and applications. In recent years, mobile data-based research
reaches important conclusions about various aspects of human
mobility patterns and trajectories. But how accurately do these
conclusions reflect the reality? In order to evaluate the difference
between the reality and the approximation methods, we study in
this paper the error between real human trajectory and the one
obtained through mobile phone data using different interpola-
tion methods (linear, cubic, nearest, spline interpolations) and
taking into consideration mobility parameters. From extensive
evaluations based on real cellular network activity data of the
Boston metropolitan area, we show that the linear interpolation
offers the best estimation for sedentary people and the cubic
one for commuters. Moreover, the nearest interpolation appears
as the best one for “ordinary people” doing regular stops and
standard displacements. Another important experimental finding
described in this paper is that trajectory estimation methods
show different error regimes whether used within or outside the
“territory” of the user defined by the radius of gyration.

Index Terms—Mobility pattern, interpolation methods, trajec-
tory estimation, radius of gyration.

I. INTRODUCTION

Human mobility and behavior pattern analysis has long been
a prominent research topic for social scientists, urban planners,
geographers and telecommunication researchers, but the perti-
nency of results has thus far been limited by the availability of
quality data and suitable data mining techniques. Nowadays,
the huge worldwide mobile-phone penetration is increasingly
turning the mobile network into a gigantic ubiquitous sensing
platform, enabling large-scale analysis and applications. In
recent years, mobile data-based research reaches important
conclusions about various aspects of human characteristics,
such as human mobility and calling patterns [1] [2], virus
spreading [3] [4], social networks [5] [6], content consumption
cartography [7], urban and transport planning [8] and network
design [9].

Nevertheless, in such user displacement sampling data, a
high uncertainty is related to users movements, since available
samples strongly depend on the user-network interaction fre-
quency. For instance, we cannot determine the user positions
between the calls with an acceptable accuracy. Some modeling
techniques have been proposed in the literature to predict user
movement between two places.

Authors in [11] propose a space-time prism approach,
where the prism represents reachable positions as a space-time
cube, given user’s origin and destination points, time budget,
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Fig. 1. PDF of the inter-call time empirical distribution

and maximum speed. Spatial prisms allow for evaluation of
binary statements, such as the possibility two moving users
meet. However, the prism’s maximum user speed limits the
model applicability to a customer population using various
transportation methods.

Authors in [12] propose a probabilistic extension of the
space-time approach, applying a non-uniform probability dis-
tribution within the space-time prism. A strong assumption
made therein is that users move linearly over time. This
hypothesis is in a high contrast with the results obtained in [13]
that show the tendency of users to stay in the vicinity of
their call places. Authors in [13] propose a probabilistic inter-
call mobility model that evaluates the density estimation of
the spatio-temporal probability distribution of users position
between calls, but it does not give an approximation of the
fine-grained trajectory between calls. User displacements in
many datasets have been analyzed in [14]; the authors find
the displacement behavior show Levy walk properties (i.e.,
random walk with pause and flight lengths following truncated
power laws). While very interesting in order to model inter-
contact time distributions and general massive mobility, such
random-based approaches cannot give precise approximations
between given points on a per-user basis.

The objective of this paper is to assess the pertinence of
different conceivable trajectory estimation approaches in terms
of error from real available trajectories, via the analysis of
real data from the Boston metropolitan area. By oversampling
data-plan smart-phone user position samplings, and applying
various interpolation methods, we assess the error between
real human trajectories and estimated ones. We evaluate simple
interpolation methods such as linear, nearest, cubic, and spline
interpolations taking into consideration mobility parameters
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Fig. 2. Cumulative Distributive Function of the radius of gyration

the network operator may associate with each user. In par-
ticular, we highlight the dependance on the human mobility
characteristic, with the user’s radius of gyration as user mo-
bility index. Our analysis proves that the linear interpolation
shows the best performance for sedentary people (with a small
radius of gyration) whereas the cubic one outperforms the
others for commuters (having a big radius of gyration). On the
other hand, the nearest interpolation presents the smallest error
for a set of the population we identify as “ordinary people”,
who stop more often while moving during the day, whatever
their radius of gyration is. Finally, we experimentally find that
interpolations are more accurate when performed within the
territory of the user, defined by the user’s radius of gyration.

The paper is organized as follows. Section II presents the
dataset used in our study and describes a user ranking with the
radius of gyration as mobility pattern parameter. Section III
presents the different interpolation methods evaluated in this
paper. Section IV summarizes the results and findings. Finally,
Section V draws some perspectives and discusses possible
future work.

II. DATASET DESCRIPTION

We use a dataset consisting of anonymous cellular phone
signaling data collected by AirSage [15], which converts the
signaling data into anonymous locations over time for cellular
devices. The dataset consists of location estimations - latitude
and longitude - for about one million devices from July to
October 2009 in the Boston metropolitan area. These data are
generated each time the device connects to the cellular network
including:

o when a call is placed or received;

« when a short message is sent or received;

o when the user connects to the Internet (e.g., to browse

the web, or through email synch programs).

The location information is estimated through the AirSage’s
Wireless Signal Extraction (WiSE) technology [15], which
aggregates, anonymizes and analyzes signaling data from
cellular networks, and determines location information.

A. Trajectory Modeling

In order to qualify the precision of different interpolation
methods, we have to determine the deviation of an estimated
trajectory from the real one, being able to fix only a few real
positions along the estimated trajectory.

We select anonymized signaling data of all users of a
same operator during a single day (user identifiers change in
different days in the available data). In order to determine
real user trajectories, we fine-select data of those smartphones
holders with a lot of samplings, typically those data-plan users
with persistent Internet connectivity due to applications such
as e-mail synch. By selecting users with more than 1000
connections (position samplings) during a given day, we can
filter 707 smartphone users out of the whole dataset.

Then, in order to reproduce artificial “normal user”
sampling, we subsample real data-plan smartphone quasi-
continuous traces according to an experimental inter-event
statistical distribution as given in Fig. 1. We determine it by
analyzing real normal user samplings (for which the real quasi-
continuous trajectory is unknown), available in the Airsage
original dataset. Therefore, we extract, from the real trajectory,
a first random position P;(longitude;, latitude;, time;), then
the corresponding next positions are extracted according to the
inter-event time distribution values.

Hence, given a real trajectory with a high number of
positions, and its oversampling that reproduces normal user’s
activity, we apply an interpolation method (see next sec-
tion for the different interpolation methods) to estimate the
trajectory across the given points. Given the real trajectory
points P;(longitude;, latitude;, time;), we estimate its cor-
responding position in time, in the estimated trajectory, P/
(longitudel, latitude}, time;). Then we determine the devi-
ation between the two points P, and P/ as the distance
separating the exact position P; to the estimated position P/
in the interpolating curve joining the samples.

B. Mobility Ranking

People do not behave similarly, each person has different
mobility habits in general and shows different mobility motifs
during the particular day we consider in our study. Many
studies have been conducted to find mobility patterns from
network sampling, from very complex and complete ones able
to determine precise motifs (e.g., [10]), to more aggregated and
synthetic ones extracting a single parameter to characterize
user mobility. A sufficiently precise, synthetic and easy to
compute parameter is the radius of gyration, e.g., analyzed
in [1], defined as the deviation of user positions from the
corresponding centroid position. It is given by :

n
> (Pi — Peentroid)?; wWhere p; represents the
i=1
ith position recorded for the user and Pieniroig 1S the center
of mass of the user’s recorded displacements obtained by
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To explore the statistical properties of the population’s mo-

bility patterns, the cumulative distribution function (CDF) of
the radius of gyration for the smartphone users is represented
in Fig. 2. It is easy distinguish four main categories based on
steep changes in the CDF slope.

 Users with 7, < 3km, who can be identified as the most
sedentary people.

o Users with 3km < ry, < 10km. They might be identified
as urban mobile people as the diameter of the Boston
urban area is very approximately around 10 km.



NIR Intervals

e Users with 10km < ry, < 32km. They might be

identified as peri-urban mobile people as the diameter of ! :O clos: O:'Oio':l 0:'1_?'1;5 015 0':2 T
the Boston peri-urban area is very approximately around oo 1] ST P bl
32 km. | N L P
e Users with ry > 32km, who can be identified as 2220 of |o ARES |
commuters spanning on the wide Boston metropolitan 8ol of 1 [0 o 1] lo
area. é 0.4l
£ oaf | |
e 0.2H — ] - ] ] u
ITI. TRAJECTORY INTERPOLATION METHODS 0.1 N
ok LI T T LT < L] G Iy
Different interpolation methods have been proposed in the 589 589 589 589 5839
literature to describe moving object trajectories. We present in
the following a selection of classical ones, showing how they (a) rg<=3km
approximate the real trajectory (see an example in Fig. 3). NIR Intervals
o the Linear Interpolation, is a popular interpolation used T R ?101? O:'ls.-o'z. ;0'230'2:5
in movement objects databases [16]. It is obtained by 091, : : ' ' . o ' ' ' S
joining straight interpolating lines between each pair of _osti 4o Co : po ' P : P
consecutive samples as shown in Fig. 3(b). Users are : 07F : ; Vo o o P
supposed to move at a constant speed along the straight ~ 2 oef: 1 v Lo b P
lines. 05 b b A P
§os o Pl Lo L
o the Nearest-neighbor Interpolation, is an interpolation -‘go.a ; . N ' ' ' R
often used in mapping programs [17], also known as < o2 ; b P '
proximal interpolation. It consists of taking, for each 0.1 D D D Ij D g G g g Ij g
position, the value of the nearest sampling position in okl = _— = U = O U
time (not plotted because of the simplistic decision). g Es gz g gz 3 gfs B Es
Therefore, if we detect the same user in two different - 2 T2 - = -2
instants, at point A and point B respectively, the nearest (b) 3km<rg<=10km
interpolation attaches the user to position A for the first
half period of time, and to position B for the second half. ooo0s vomaa RVl s oaoas
o the Piecewise Cubic Hermite Interpolation, depicted in oof1 | : D ; . o : l l 1
Fig. 3(c), is often used in image processing studies _osry 1o P o : b ; .
(see [18]). It is a third-degree spline that interpolates o7} ! ! I b P N IS
the function by a cubic polynomial using values of  Zosti i i P . o P P
the function and its derivatives at the ends of each g o.s»i - - . ' ' . R R
subinterval. This method interpolates the samples in such 5 o4t P Vo b , P P
a way that the first derivative is continuous, but the 3 os{ty 4 ! P A b P
second derivative is not necessary continuous. Suppose a < ozlf | D poe ' ; ; . IR
subinterval [z, z2], with the function values: y; = f(z1), 0.1 I:I Ij . ﬂ b g L e 1
Yo = f(xQ)[ and t]he derivative values d; = f’(a:l)( an>d ol £ 5 = g = @ E‘ é 'g' 'Q '%' ‘_é’ ] ‘uél
dy = f'(x2) are given. The cubic polynomial function in gfs N £es 253 gfs
this subinterval is given by: = = = = =
Clx) =a+blx—x)+c(z—x1)%+d(x—21)* (1 — 22) (©) 10km<rg<=32km
satisfying C'(z1) = y1, C(z2) = ya2, C'(x1) = dy and NIR Intervals
C'(z2) = do This interpolation determines the coeffi- 12008 90501 01015 0.15-0.2 0.2:0.25
cients a, b, ¢ and d noting that: ookt 11 b I i : E ! i
C'(z) = b+2c(x—x1) +d[(x—21)2 +2(z —21) (2 — 72)] ost 1 b P . 1
is also continuous. The solution to this system is given — Eosl% i | P P b !
by:a = y1; b =di; ¢ = ;’;:;hl and d = %, %06: : ; ' ' : o - . : . ' :
where y{ = 22, FRV IR T A
o the Spline Interpolation, presented in Fig. 3(d), is a ;%0-3 D : . ' ' : , b vl
polynomial interpolation between samples, possessing a 0.2 D Vo po ' I T,
high degree of smoothness [19] [20]. It is often used in 0.1 D D . s Py Py
ro%ot cgntrol and movement studies [21]. The function o= — g @ lé ? E‘ é 'U:' '_:' é' 'U:L
is constructed in exactly the same way as in Piecewise g § 3 £5s £53 2§38 g % &
Cubic Hermite, but in this case the second derivative is = = = = =
also continuous. (d) rg>32km

Fig. 4. Boxplots of the deviation to the radius of gyration error for classical
interpolation methods.
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IV. RESULTS

In this section, we present the main results obtained by
applying the interpolation methods introduced in Section III.
The spline interpolation is not included since its performance
is by far worse than all other methods; the reason is that likely
its large deviations from the straight lines do not approximate
at all the majority of people paths.

First, we quantify the error, given by the ratio of the overall
position deviation (computed as described in Section II-A) to
the radius of gyration, for the different interpolation methods.
Then, we further investigate the statistical distribution of
the errors with respect to mobility parameters in order to
understand what method performs better for each particular
category of users.

A. Interpolation Error

Let us define the ratio between the number of over-sampled
positions (normal user) to the total number of known positions
(data-plan smartphone user), by the “Network Interaction
Ratio” (NIR) parameter.

Fig. 4 reports boxplot' and average (the star) statistics
about the interpolation error (trajectory deviation to the radius

lie., first quartile, median, third quartile, maximum, minimum and outliers.
It is worth noting that some maximum and outliers are cut in the figure for
the sake of readability.
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of gyration), for the linear, nearest and cubic interpolations.
Boxplot statistics give a compact and rich enough view on the
data to support the following analysis. At a first view, looking
at the error averages, we can assess that:

o The error is decreasing with the increase of the number of
samples, for whatever interpolation, which is reasonable
as one can get more accurate computations with more
samples.

« The gap between the three methods decreases, especially
for those with a radius of gyration higher than 10 km, i.e.,
for those who could be considered as peri-urban users and
commuters (see Section II-B).

o The mean error of the linear interpolation is the smallest
one comparing to other approaches, for users having a
radius of gyration less than 3 km, i.e., sedentary users.

o The cubic interpolation presents the smallest mean error
for higher radius of gyration, especially for commuters.

o For urban users, the linear and cubic interpolations show
close performance.

Therefore, the trajectory deviation strongly depends on the

mobility category, i.e., the user radius of gyration.

Finally, further looking into the whole statistics of the errors,

including median and quartile lines, we can determine that:

o the median is always lower than the average, which
indicates that the population contains an important part
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of users with much higher errors than the rest of the
population.

o The medians and the averages show contradictory trends,
when the average is higher for a method than for another,
often the median is lower.

o The nearest interpolation shows better median statistics
than all the other interpolations.

o The median error gets very low for NIRs higher than 0.1
for peri-urban and commuter users.

How to explain the huge gap between averages and me-
dians, and the performance inversion indicating that nearest
interpolation is on median the best interpolation, whatever the
user category and the NIR are, is a matter of discussion. We
interpret it with the fact that the median does not weight, as the
average does, the error of those users for which a trajectory
interpolation, whatever the type is, is not appropriate. That
is, those “extraordinary” users that deviate too much from

conventional paths. For example, users that have a backward
path behavior (e.g., taxi drivers or similar users patrolling a
zone, tourists coming back to already visited places, etc) can
hardly be modeled by intuitive interpolations. The majority
of “ordinary” users, typically moving forward, and regularly
stopping at visited places, are instead captured by the median.
For ordinary users, the nearest interpolation (introducing long
stops at each sample and instantaneous displacement) is the
best approximation, likely because ordinary users spend most
of time without moving, even if they travel over long distances
during the day.

The presence of a subset of the population which behaves
very differently than the rest is confirmed by the fact that
the average is often close and sometimes higher than the
third quartiles (that indicate the upper bound for 75% of
the population) in Fig. 4, and by the presence of many
outliers especially for high NIRs. The ordinary users represent
therefore more than 75% of the whole population, and the
extraordinary ones have so high errors that the average is
pushed close to the third quartile.

B. Interpolations’ Probability Density Function

In order to further explore the statistical properties of the
trajectory error, Fig. 5 shows the probability density function
of the error for the linear, cubic and nearest interpolations.

It is easy to notice that there are two regimes. The distri-
bution of errors over all users’ positions is well approximated
by a combination of two power law distributions joined by
a breakpoint. It is surprising to notice that the breakpoint
is the same (approximately equal to 2.2) for the different
interpolation methods.

In practice, what does this power law breakpoint really
mean? We interpret it as the point after which the interpolation
error properties change abruptly, worsening. The value, around
2, corresponds to two times the user’s radius of gyration,
which in practice represents the user’s “territory”’(the circle of
radius equal to the radius of gyration). This is a meaningful
result: trajectory interpolations are more appropriate within the
territory of a user than outside it.

In order to further evaluate this dependency, we normalize
the user position by the corresponding radius of gyration,
and we plot in Fig. 6 the conditional cumulative density
distribution of the two variables, error and the normalized
distance to centroid. We can determine therein that:

o when small errors occur, we have a high probability
(80.78%) that the user is inside the territory, and a low
probability (19.22%) the user is outside it.

o When big errors occur, we have a probability of 40.25%
that the user is inside its radius of gyration and a
probability of 59.75% that the user is outside its radius.

Therefore, we have an additional experimental proof that the
trajectory error increases and its characteristics change when
the user moves beyond the territory area roughly approximated
by the radius of gyration.

V. CONCLUSION

Motivated by recent research on human mobility characteri-
zation based on cellular network log and probe data, we study
in this paper the appropriateness of using such data in order
to estimate the trajectory of people across metropolitan areas.
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The applications are manyfold, ranging from content delivery
network design to urban planning, yet our study is application
independent and is of a fundamental nature.

Using Airsage data for millions of users from the Boston
metropolitan area, we select data-plane smartphone users to
get very precise localization data for a few hundreds of users.
Then, we subsample these paths following the experimental
normal user inter-event distribution, and apply to the sub-
sampled position different interpolation methods. Finally, we
finally analyze their errors to better understand the appropri-
ateness of the different methods in detail, and of interpolation
methods in general, for different mobility classes.

The major findings of our work can be summarized as
follows.

o The radius of gyration is an appropriate, compact and
easy to compute parameter to qualify user mobility in a
metropolitan area network scope.

o The linear interpolation is the best approximation for
sedentary users, linear and cubic interpolations work well
for urban users, and the cubic interpolation is the best for
peri-urban users and commuters.

o Separating ordinary users following conventional paths
from the minority of users having unpredictable displace-
ments, the nearest interpolation is by far the best approach
whatever the mobility class is.

o Interpolation methods clearly work better when applied
within the territory of the user defined by the radius of
gyration.

As already mentioned, we believe the applications are

manyfold. We are in particular interested in determining how
content and Cloud delivery points in a urban and peri-urban
environments can be identified and adapted online by inferring
basic user mobility properties from big data log coming from
cellular networks.
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