
The Integer Ray Projection Method in Column
Generations Models for Arc-Routing and

Cutting-Stock

Daniel Porumbel∗

∗Artois University (LGI2A), Lille-Nord de France

D. Porumbel The Integer Ray Method 1 / 1

1 Set-Covering LPs: Cutting-Stock and Arc Routing

2 The Ray Approach: General Description

3 Ray SubProblem easier than Column Generation Subproblem?

4 Experiments and Conclusions

D. Porumbel The Integer Ray Method 1 / 22

Set-Covering LPs: Cutting-Stock and Arc Routing

1 Set-Covering LPs: Cutting-Stock and Arc Routing

Problem Defintions
Linear Program Modelling

2 The Ray Approach: General Description

3 Ray SubProblem easier than Column Generation Subproblem?

4 Experiments and Conclusions

D. Porumbel The Integer Ray Method 1 / 22

Set-Covering LPs: Cutting-Stock and Arc Routing Problem Defintions

Introducing the Arc-Routing Problem

The Seven Bridges of Königsberg

This famous problem of Euler prefigured the idea of Arc-Routing

• find a walk through the city that would cross each bridge once
and only once

→

D. Porumbel The Integer Ray Method 2 / 22

Set-Covering LPs: Cutting-Stock and Arc Routing Problem Defintions

Introducing the Arc-Routing Problem

The Seven Bridges of Königsberg

This famous problem of Euler prefigured the idea of Arc-Routing

• find a walk through the city that would cross each bridge once
and only once

cross each bridge once and only once
=
service each edge once but:

• never traverse it without service

or

• no “dead-heading”

→

D. Porumbel The Integer Ray Method 2 / 22

Set-Covering LPs: Cutting-Stock and Arc Routing Problem Defintions

Formal Arc-Routing Definition

Find some routes of minimum total length servicing each edge once

capacitated Arc-Routing Assign weights wi on edges: a feasible
route has a total weight of maximum C (w>a ≤ C)

• three routes (red, green,

black) of total length 10

• 7 serviced edges
• 3 dead-headed edges

(dashed lines)

• longest service in one route: 4

→

D. Porumbel The Integer Ray Method 3 / 22

Set-Covering LPs: Cutting-Stock and Arc Routing Problem Defintions

Formal Arc-Routing Definition

Find some routes of minimum total length servicing each edge once

capacitated Arc-Routing Assign weights wi on edges: a feasible
route has a total weight of maximum C (w>a ≤ C)

• two routes (red, green) of

total length 9

• 7 serviced edges
• 2 dead-headed edges

(dashed lines)

• longest service in one route: 5
• infeasible if one imposed a

capacity of maximum 4

→

D. Porumbel The Integer Ray Method 3 / 22

Set-Covering LPs: Cutting-Stock and Arc Routing Problem Defintions

Applications 1

City Maintenance

Garbage Collection Garbage bins are placed on roads

Street Cleaning Costs of thousands of euros for major cities

Street Watering Capacity restrictions are very relevant

Ressources reported in in a study [(2002) Valencia]∗

• An annual budget of > 100.000.000 euros

• > 1000 workers

• > 100 trucks

∗[E. Benavent, Exact methods for Arc Routing Problems, Euro/Informs Congress, Rome,
2013]

D. Porumbel The Integer Ray Method 4 / 22

Set-Covering LPs: Cutting-Stock and Arc Routing Problem Defintions

Applications 2

rail link maintenance an important part in the budget of rail compa-
nies, major security interest

snow plowing Ressources reported in a [1987-1988 Indiana] study †:

• budget: $15.000.000
• 1000 vehicles
• 1140000 miles of roads and highways

meter reading savings of $874.000 reported in a paper [Wunderlich, Collette,

Levy & Bodin: Scheduling Meter Readers for Southern. California Gas Company, 1992]

cattle feeding reported in [Dror Moshe, Livestock Feed Distribution and Arc Traversal Problems, 2000]

†[E. Benavent, Exact methods for Arc Routing Problems, Euro/Informs Congress, Rome,
2013]

D. Porumbel The Integer Ray Method 5 / 22

Set-Covering LPs: Cutting-Stock and Arc Routing Problem Defintions

Cutting-Stock: Introduction

• A fundamental problem in optimization
• Given number of (metal, paper) rolls of fixed length C
• We have n clients that each requires bi items of length wi

Goal: Minimize the number of rolls to produce all required items

Solution example with 5 patterns

D. Porumbel The Integer Ray Method 6 / 22

Set-Covering LPs: Cutting-Stock and Arc Routing Problem Defintions

Cutting-Stock: Practical Interest

• Huge number of applications in the field of cutting and packing

• Capacitated Arc Routing can be seen as a form of
Cutting-Stock if all routes have a cost of ca = 1 and the
patterns indicate serviced edges

a
=

[1
1

1
0

0]
w = [3 4 5 6 8]
b = [1 1 4 1 2]

Solution example with 5 patterns
D. Porumbel The Integer Ray Method 6 / 22

Set-Covering LPs: Cutting-Stock and Arc Routing Linear Program Modelling

1 Set-Covering LPs: Cutting-Stock and Arc Routing

Problem Defintions
Linear Program Modelling

2 The Ray Approach: General Description

3 Ray SubProblem easier than Column Generation Subproblem?

4 Experiments and Conclusions

D. Porumbel The Integer Ray Method 6 / 22

Column Generation Model: the Primal
Defining columns/configurations (or routes or patterns):

Cutting-Stock Capacitated Arc Routing
ai : item i is cut ai times
ca: cost of the pattern a (> 1
in Elastic Cut-Stock)

ai : edge i is serviced ai times
ca: total distance traversed by
route a

Common Capacity constraint: w>a ≤ C , ∀a ∈ K

Goal: minimize total cost of selected columns

min
∑
a∈K

caxa∑
a∈K

aixa ≥ bi , ∀i ∈ [1..n]

x ∈ Z|K|

K: Column set

Set-covering constraints
dualized to dual vector y

Column Generation Model: the Primal
Defining columns/configurations (or routes or patterns):

Cutting-Stock Capacitated Arc Routing
ai : item i is cut ai times
ca: cost of the pattern a (> 1
in Elastic Cut-Stock)

ai : edge i is serviced ai times
ca: total distance traversed by
route a

Common Capacity constraint: w>a ≤ C , ∀a ∈ K

Goal: minimize total cost of selected columns

min
∑
a∈K

caxa∑
a∈K

aixa ≥ bi , ∀i ∈ [1..n]

x ∈ Z|K|

K: Column set

Set-covering constraints
dualized to dual vector y

Set-Covering LPs: Cutting-Stock and Arc Routing

Set-Covering and Column Generation: the Dual

max b>y
a>y ≤ ca, ∀a ∈ K

yi ≥ 0, i ∈ [1..n]

}
P

min
∑
a∈K

caxa∑
a∈K

aixa ≥ bi , ∀i ∈ [1..n]

x ∈ R|K|

P
ri

m
al
→

D
ua

l

Applications

Cutting-Stock Arc Routing
• cutting rolls of metal/paper

into smaller units

• fitting existing items into
containers (bin-packing)

• Street Cleaning

• Waste/Snow Removal

• Rail Maintenance

• Inspection of Power Lines

D. Porumbel The Integer Ray Method 8 / 22

Set-Covering LPs: Cutting-Stock and Arc Routing

Set-Covering and Column Generation: the Dual

max b>y
a>y ≤ ca, ∀a ∈ K

yi ≥ 0, i ∈ [1..n]

}
P

min
∑
a∈K

caxa∑
a∈K

aixa ≥ bi , ∀i ∈ [1..n]

x ∈ R|K|

P
ri

m
al
→

D
ua

l

Applications

Cutting-Stock Arc Routing
• cutting rolls of metal/paper

into smaller units

• fitting existing items into
containers (bin-packing)

• Street Cleaning

• Waste/Snow Removal

• Rail Maintenance

• Inspection of Power Lines

D. Porumbel The Integer Ray Method 8 / 22

Set-Covering LPs: Cutting-Stock and Arc Routing

The Dual Polytope P

Main dual constraints:
• a>y ≤ ca, a ∈ K

Initial constraints:
• yi ∈ [li , ui]∀i ∈ [1..n]

Column generation:

constraints (primal columns)
generated one by one via the
pricing problem

• pricing input: an (infeasi-
ble) dual solution that can
be anywhere in the dual
space

0n o
b
j
fu

n
c

b

D. Porumbel The Integer Ray Method 9 / 22

Set-Covering LPs: Cutting-Stock and Arc Routing

The Dual Polytope P

Main dual constraints:
• a>y ≤ ca, a ∈ K

Initial constraints:
• yi ∈ [li , ui]∀i ∈ [1..n]

Column generation:

constraints (primal columns)
generated one by one via the
pricing problem

• pricing input: an (infeasi-
ble) dual solution that can
be anywhere in the dual
space

0n o
b
j
fu

n
c

b

D. Porumbel The Integer Ray Method 9 / 22

Set-Covering LPs: Cutting-Stock and Arc Routing

1 Set-Covering LPs: Cutting-Stock and Arc Routing

Problem Defintions
Linear Program Modelling

2 The Ray Approach: General Description

3 Ray SubProblem easier than Column Generation Subproblem?

4 Experiments and Conclusions

D. Porumbel The Integer Ray Method 9 / 22

The Ray Approach: General Description

Optimizing Polytope P

max
y∈P

b>y,

where P has prohibitively
many constraints.

Constraints generated
one by one (refine an “outer
approximation” polytope):

• Branch-and-Cut,
P is the primal

• Column Generation,
P is the dual

0n o
b

j
fu

n
c

b

D. Porumbel The Integer Ray Method 10 / 22

The Ray Approach: General Description

Ray Projection in P

Init first ray: r← b

• fastest obj. improvement

• integer rays only

Intersection/Ray Subproblem

find the intersection point
between ray 0n → r and P:

• lb= t · r (contact point)

• a “first hit” facet

the generated facets form an
“outer polytope”: its opti-
mum is ub

0n o
b

j
fu

n
c

b

D. Porumbel The Integer Ray Method 11 / 22

The Ray Approach: General Description

Ray Projection in P

Init first ray: r← b

• fastest obj. improvement

• integer rays only

Intersection/Ray Subproblem

find the intersection point
between ray 0n → r and P:

• lb= t · r (contact point)

• a “first hit” facet

the generated facets form an
“outer polytope”: its opti-
mum is ub

0n o
b

j
fu

n
c

b

D. Porumbel The Integer Ray Method 11 / 22

The Ray Approach: General Description

Ray Projection in P

Init first ray: r← b

• fastest obj. improvement

• integer rays only

Intersection/Ray Subproblem

find the intersection point
between ray 0n → r and P:

• lb= t · r (contact point)

• a “first hit” facet

the generated facets form an
“outer polytope”: its opti-
mum is ub

0n o
b

j
fu

n
c

b

D. Porumbel The Integer Ray Method 11 / 22

The Ray Approach: General Description

A Sequence of Integer Rays

One Intersection Subproblem

• one lower and one
upper bound: lb, ub

=⇒
Next integer ray need to
be generated: search rays
somewhere “in-between” lb
and ub

0n o
b
j
fu

n
c

b

lb

ra
y
=

b

ub

D. Porumbel The Integer Ray Method 12 / 22

The Ray Approach: General Description

A Sequence of Integer Rays

New Ray Generator: find in-
teger points close to the seg-
ment lb − ub

0n o
b
j
fu

n
c

b

lb

ra
y
=

b

ub

next
integer
ray

D. Porumbel The Integer Ray Method 12 / 22

The Ray Approach: General Description

A Sequence of Integer Rays

New constraint, but no bet-
ter lower bound

0n o
b
j
fu

n
c

b

integer
ray lb

ub

the new lower
bound is not
better

D. Porumbel The Integer Ray Method 12 / 22

The Ray Approach: General Description

A Sequence of Integer Rays

New ray: new lower bound,
but no new upper bound.

• The infeasible ub is
not cut by the new
constraint

• No better rays available
nearby lb, ub 0n o

b
j
fu

n
c

b

lb
ub

D. Porumbel The Integer Ray Method 12 / 22

The Ray Approach: General Description

A Sequence of Integer Rays

No potential integer ray im-
proves the gap

=⇒

Discretization Refining

fractional rays are scaled
(×2) to larger integer rays

• ex.: [3.5, 4.5]→ [7, 9]
0n o

b
j
fu

n
c

b

ub
discretization
refining

D. Porumbel The Integer Ray Method 12 / 22

The Ray Approach: General Description

A Sequence of Integer Rays

Rays with larger integers:

• more precision, new
constraint discovered

• more calculations in
the subproblem

0n o
b
j
fu

n
c

b

lb
ub

D. Porumbel The Integer Ray Method 12 / 22

The Ray Approach: General Description

A Sequence of Integer Rays

Stopping Condition: integer
equality of lb and ub

• enough precision

• such polytopes are
often relaxations of IPs

0n o
b
j
fu

n
c

b

lb = ub

D. Porumbel The Integer Ray Method 12 / 22

Ray SubProblem easier than Column Generation Subproblem?

1 Set-Covering LPs: Cutting-Stock and Arc Routing

2 The Ray Approach: General Description

3 Ray SubProblem easier than Column Generation Subproblem?

4 Experiments and Conclusions

D. Porumbel The Integer Ray Method 12 / 22

Ray SubProblem easier than Column Generation Subproblem?

Solving the Intersection Subproblem: Intuition

Intersection Subproblem
between ray 0n → r and P

For r ∈ Zn, find maximum t
such that tr ∈ P

• lb= t · r (contact point)

• a “first hit” constraint 0n o
b

j
fu

n
c

b

D. Porumbel The Integer Ray Method 13 / 22

Ray SubProblem easier than Column Generation Subproblem?

Solving the Intersection Subproblem: Intuition

Intersection Subproblem
between ray 0n → r and P

For r ∈ Zn, find maximum t
such that tr ∈ P

• lb= t · r (contact point)

• a “first hit” constraint 0n o
b

j
fu

n
c

b

D. Porumbel The Integer Ray Method 13 / 22

Ray SubProblem easier than Column Generation Subproblem?

The Intersection SubProblem Formalized

The maximum t such that a>(tr) ≤ ca ∀ a ∈ K

“first hit” constraint a> · (tr) = ca

“Loose” constraint a> · (tr) < ca

Maximum t is associated to a first-hit constraint

t = min
ca

a>r

The Column Generation sub-problem is different: minimize ca − a>y,
where y a dual-solution that is non-integer (or uncontrollable).

D. Porumbel The Integer Ray Method 14 / 22

Ray SubProblem easier than Column Generation Subproblem?

Column Generation and Intersection Subproblems

Column Gen (Separation) Subproblem: min ca − a>y, over all valid
configurations a ∈ K

if ca = 1→ this is equivalent to max a>y

Ray (Intersection) Subproblem minimize cost/profit ratio
ca

a>r
over

all valid configurations a ∈ K

if ca = 1→ this is equivalent to max a>r

=⇒ If the Column Generation Subproblem can be solved by
Dynamic Programming, so can be the Intersection Subproblem

Important Advantage for the Intersection Subproblem: the
input r can be selected (to become integer profits)

D. Porumbel The Integer Ray Method 15 / 22

Ray SubProblem easier than Column Generation Subproblem?

Column Generation and Intersection Subproblems

Column Gen (Separation) Subproblem: min ca − a>y, over all valid
configurations a ∈ K

if ca = 1→ this is equivalent to max a>y

Ray (Intersection) Subproblem minimize cost/profit ratio
ca

a>r
over

all valid configurations a ∈ K

if ca = 1→ this is equivalent to max a>r

=⇒ If the Column Generation Subproblem can be solved by
Dynamic Programming, so can be the Intersection Subproblem

Important Advantage for the Intersection Subproblem: the
input r can be selected (to become integer profits)

D. Porumbel The Integer Ray Method 15 / 22

Ray SubProblem easier than Column Generation Subproblem?

Dynamic program indexing: weights or profits?

Basic knapsack Example: C = 10, w = [5 4 3 2], all profits are 1

• w1 = 5 brings a profit 1

• w2 = 4 brings a profit 1

• w2 = 3 brings a profit 1

• w2 = 2 brings a profit 1

maxP(Q) 0 0 0 0 0 0 0 0 0 0 0

tot weight Q 0 1 2 3 4 5 6 7 8 9 10

D. Porumbel The Integer Ray Method 16 / 22

Ray SubProblem easier than Column Generation Subproblem?

Dynamic program indexing: weights or profits?

Basic knapsack Example: C = 10, w = [5 4 3 2], all profits are 1

• w1 = 5 brings a profit 1

• w2 = 4 brings a profit 1

• w2 = 3 brings a profit 1

• w2 = 2 brings a profit 1

maxP(Q) 0 0 0 0 0 1 0 0 0 0 0

tot weight Q 0 1 2 3 4 5 6 7 8 9 10

D. Porumbel The Integer Ray Method 16 / 22

Ray SubProblem easier than Column Generation Subproblem?

Dynamic program indexing: weights or profits?

Basic knapsack Example: C = 10, w = [5 4 3 2], all profits are 1

• w1 = 5 brings a profit 1

• w2 = 4 brings a profit 1

• w2 = 3 brings a profit 1

• w2 = 2 brings a profit 1

maxP(Q) 0 0 0 0 1 1 0 0 0 2 0

tot weight Q 0 1 2 3 4 5 6 7 8 9 10

D. Porumbel The Integer Ray Method 16 / 22

Ray SubProblem easier than Column Generation Subproblem?

Dynamic program indexing: weights or profits?

Basic knapsack Example: C = 10, w = [5 4 3 2], all profits are 1

• w1 = 5 brings a profit 1

• w2 = 4 brings a profit 1

• w2 = 3 brings a profit 1

• w2 = 2 brings a profit 1

maxP(Q) 0 0 0 1 1 1 0 2 2 2 0

tot weight Q 0 1 2 3 4 5 6 7 8 9 10

D. Porumbel The Integer Ray Method 16 / 22

Ray SubProblem easier than Column Generation Subproblem?

Dynamic program indexing: weights or profits?

Basic knapsack Example: C = 10, w = [5 4 3 2], all profits are 1

• w1 = 5 brings a profit 1

• w2 = 4 brings a profit 1

• w2 = 3 brings a profit 1

• w2 = 2 brings a profit 1

maxP(Q) 0 0 1 1 1 2 2 2 2 3 3

tot weight Q 0 1 2 3 4 5 6 7 8 9 10

D. Porumbel The Integer Ray Method 16 / 22

Ray SubProblem easier than Column Generation Subproblem?

Profit-indexed Dynamic Programming (DP)

Basic knapsack Example: C = 10, w = [5 4 3 2], all profits are 1

• w1 = 5 required to gain a profit 1

• w2 = 4 required to gain a profit 1

• w2 = 3 required to gain a profit 1

• w2 = 2 required to gain a profit 1

minW (p) 0 ∞ ∞ ∞
tot profit p 0 1 2 3

D. Porumbel The Integer Ray Method 17 / 22

Ray SubProblem easier than Column Generation Subproblem?

Profit-indexed Dynamic Programming (DP)

Basic knapsack Example: C = 10, w = [5 4 3 2], all profits are 1

• w1 = 5 required to gain a profit 1

• w2 = 4 required to gain a profit 1

• w2 = 3 required to gain a profit 1

• w2 = 2 required to gain a profit 1

minW (p) 0 5 ∞ ∞
tot profit p 0 1 2 3

D. Porumbel The Integer Ray Method 17 / 22

Ray SubProblem easier than Column Generation Subproblem?

Profit-indexed Dynamic Programming (DP)

Basic knapsack Example: C = 10, w = [5 4 3 2], all profits are 1

• w1 = 5 required to gain a profit 1

• w2 = 4 required to gain a profit 1

• w2 = 3 required to gain a profit 1

• w2 = 2 required to gain a profit 1

minW (p) 0 5 ∞ ∞
tot profit p 0 1 2 3

D. Porumbel The Integer Ray Method 17 / 22

Ray SubProblem easier than Column Generation Subproblem?

Profit-indexed Dynamic Programming (DP)

Basic knapsack Example: C = 10, w = [5 4 3 2], all profits are 1

• w1 = 5 required to gain a profit 1

• w2 = 4 required to gain a profit 1

• w2 = 3 required to gain a profit 1

• w2 = 2 required to gain a profit 1

minW (p) 0 4 9 ∞
tot profit p 0 1 2 3

D. Porumbel The Integer Ray Method 17 / 22

Ray SubProblem easier than Column Generation Subproblem?

Profit-indexed Dynamic Programming (DP)

Basic knapsack Example: C = 10, w = [5 4 3 2], all profits are 1

• w1 = 5 required to gain a profit 1

• w2 = 4 required to gain a profit 1

• w2 = 3 required to gain a profit 1

• w2 = 2 required to gain a profit 1

minW (p) 0 3 7 ∞
tot profit p 0 1 2 3

D. Porumbel The Integer Ray Method 17 / 22

Ray SubProblem easier than Column Generation Subproblem?

Profit-indexed Dynamic Programming (DP)

Basic knapsack Example: C = 10, w = [5 4 3 2], all profits are 1

• w1 = 5 required to gain a profit 1

• w2 = 4 required to gain a profit 1

• w2 = 3 required to gain a profit 1

• w2 = 2 required to gain a profit 1

minW (p) 0 2 5 9
tot profit p 0 1 2 3

D. Porumbel The Integer Ray Method 17 / 22

Ray SubProblem easier than Column Generation Subproblem?

Weight-Indexed DP in Column Generation

Recall goal: max a>y over all a ∈ K

Cutting-Stock and Knapsack-like sub-problems

• calc. maximum profit maxP(Q) for all feasible total weights Q

• a state for each Q =
∑

aiwi with a ∈ K

classical knapsack : Q =
∑

aiwi ∈ [1..C], pattern cost 1
elastic knapsack :

∑
aiwi can slightly exceed C

• cost ca ← penalty for any capacity excess

Route subproblems in Arc-Routing

for each value Q =
∑

aiwi : minCost(v ,Q) defines the min red. cost
of reaching vertex v with quantity Q

D. Porumbel The Integer Ray Method 18 / 22

Ray SubProblem easier than Column Generation Subproblem?

Weight-Indexed DP in Column Generation

Recall goal: max a>y over all a ∈ K

Cutting-Stock and Knapsack-like sub-problems

• calc. maximum profit maxP(Q) for all feasible total weights Q

• a state for each Q =
∑

aiwi with a ∈ K

classical knapsack : Q =
∑

aiwi ∈ [1..C], pattern cost 1
elastic knapsack :

∑
aiwi can slightly exceed C

• cost ca ← penalty for any capacity excess

Route subproblems in Arc-Routing

for each value Q =
∑

aiwi : minCost(v ,Q) defines the min red. cost
of reaching vertex v with quantity Q

D. Porumbel The Integer Ray Method 18 / 22

Profit-Indexed States for Intersection prob.

Recall goal: minimize cost/profit ratio
ca

r>a
over all a ∈ K

We reverse the role of profits and weights

• integer rays → integer profits r = [r1 r2 . . . rn]

• states defined by profit values p =
∑

riai

• minW (p): minimum required weight to yield profit p

cp the minimum required cost to yield profit p is often
determined from minW (p)

return t = min
p

cp
p

Ray SubProblem easier than Column Generation Subproblem?

Knapsack Subproblems in Cutting-Stock: Elastic Versions

Elastic Versions: (base) capacity C can be (slightly) exceeded

configuration cost ca =

{
1 weight ≤ C

f (weight
C

) weight > C

• f can be x2 or x3 or a stair-case function (Var Sized BP)

Dynamic Programming:
• Profit-Indexed: OK

• the same profit-indexed scheme as for Pure Knapsack

• each state has a minimum weight yielding minimum cost ca
• Weight-indexed: TIME-CONSUMING if C >> n

=⇒
Intersection/RAY Subproblem OK
Column Generation Subproblem TIME-CONSUMING for C >> n

• Adapt other Pure Knapsack methods: DIFFICULT
D. Porumbel The Integer Ray Method 20 / 22

Ray SubProblem easier than Column Generation Subproblem?

Knapsack Subproblems in Cutting-Stock: Elastic Versions

Elastic Versions: (base) capacity C can be (slightly) exceeded

configuration cost ca =

{
1 weight ≤ C

f (weight
C

) weight > C

• f can be x2 or x3 or a stair-case function (Var Sized BP)

Dynamic Programming:
• Profit-Indexed: OK

• the same profit-indexed scheme as for Pure Knapsack

• each state has a minimum weight yielding minimum cost ca
• Weight-indexed: TIME-CONSUMING if C >> n

=⇒
Intersection/RAY Subproblem OK
Column Generation Subproblem TIME-CONSUMING for C >> n

• Adapt other Pure Knapsack methods: DIFFICULT
D. Porumbel The Integer Ray Method 20 / 22

Experiments and Conclusions

1 Set-Covering LPs: Cutting-Stock and Arc Routing

2 The Ray Approach: General Description

3 Ray SubProblem easier than Column Generation Subproblem?

4 Experiments and Conclusions

D. Porumbel The Integer Ray Method 20 / 22

Experiments: Scaled and Non-Scaled Instances
Scaled large capacity Cutting-Stock and Arc-Routing:

• C ∗ = C × 1000, w ∗i = wi × 1000− i Mod 10

Inst Ray Method Column Gen With Pricing=
Class Name Iters/Time Minknap Cplex Class Dyn Prog

f
(x

)
=

x
3

vb10∗-scaled 21 / 0.05 — — tm. out
m01∗ -scaled 272/ 1.1 — — tm. out
Hard∗-scaled 578/ 16.2−1 — — tm. out
vb10 21/ 0.04 — — 20 / 18.7
m01 277/ 0.8 — — 199 / 3.7
Hard 568/ 19.3−1 — — tm. out

Arc Routing Inst. Ray Method IP
Name n |V | iters/time final value optimum
gdb1∗ -scaled 22 12 133 /2.5 284 316
kshs1∗ -scaled 15 8 103 /6.6 13553 14661
val1c∗ -scaled 39 24 204 /152 225 319
gdb1 22 12 125 /1.7 284 316
kshs1 15 8 103 /2.7 13553 14661
val1c 39 24 193 /205 225 319

Experiments: Scaled and Non-Scaled Instances
Scaled large capacity Cutting-Stock and Arc-Routing:

• C ∗ = C × 1000, w ∗i = wi × 1000− i Mod 10

Inst Ray Method Column Gen With Pricing=
Class Name Iters/Time Minknap Cplex Class Dyn Prog

f
(x

)
=

x
3

vb10∗-scaled 21 / 0.05 — — tm. out
m01∗ -scaled 272/ 1.1 — — tm. out
Hard∗-scaled 578/ 16.2−1 — — tm. out
vb10 21/ 0.04 — — 20 / 18.7
m01 277/ 0.8 — — 199 / 3.7
Hard 568/ 19.3−1 — — tm. out

Arc Routing Inst. Ray Method IP
Name n |V | iters/time final value optimum
gdb1∗ -scaled 22 12 133 /2.5 284 316
kshs1∗ -scaled 15 8 103 /6.6 13553 14661
val1c∗ -scaled 39 24 204 /152 225 319
gdb1 22 12 125 /1.7 284 316
kshs1 15 8 103 /2.7 13553 14661
val1c 39 24 193 /205 225 319

Experiments and Conclusions

Conclusions: Advantages of the Ray Method

• The computing effort stays in the same order of magnitude for
scaled and unscaled instances
• solved Cutting-Stock and Arc-Routing instances with weight

magnitudes 1000 times larger than usual

• Lower bounds are provided before completely converging:
• this is not a built-in feature in Column Gen.

• The rays (subproblem profits) can be controlled

r ∈ Zn → profit-indexed Dynamic Programming can work even if weight-
indexed Dynamic Programming fails in Col. Gen.

D. Porumbel The Integer Ray Method 22 / 22

Experiments and Conclusions

Conclusions: Advantages of the Ray Method

• The computing effort stays in the same order of magnitude for
scaled and unscaled instances
• solved Cutting-Stock and Arc-Routing instances with weight

magnitudes 1000 times larger than usual

• Lower bounds are provided before completely converging:
• this is not a built-in feature in Column Gen.

• The rays (subproblem profits) can be controlled

r ∈ Zn → profit-indexed Dynamic Programming can work even if weight-
indexed Dynamic Programming fails in Col. Gen.

D. Porumbel The Integer Ray Method 22 / 22

Experiments and Conclusions

Conclusions: Advantages of the Ray Method

• The computing effort stays in the same order of magnitude for
scaled and unscaled instances
• solved Cutting-Stock and Arc-Routing instances with weight

magnitudes 1000 times larger than usual

• Lower bounds are provided before completely converging:
• this is not a built-in feature in Column Gen.

• The rays (subproblem profits) can be controlled

r ∈ Zn → profit-indexed Dynamic Programming can work even if weight-
indexed Dynamic Programming fails in Col. Gen.

D. Porumbel The Integer Ray Method 22 / 22

