
Dense Semidefinite Programming by Projective
Cutting-Planes

Daniel Porumbel

Conservatoire National des Arts et Métiers, Paris

ob
jec

tiv
e fun

cti
on

ite
ra

tio
n 1

y1 = [0 0]>

Iteration 1 : uncharted territory, follow objective function, i.e.,
advance along y1 → d1 where d1 takes the value of the
objective function

6 / 21

ite
ra

tio
n 1

y1 = [0 0]> opt(P1)

y1+t∗1d1feasible solution

outer solution

Iteration 1 : found a first outer solution opt(P1) and a first inner
solution (contact point) y1 + t∗1d1

6 / 21

y1 = [0 0]> opt(P1)

y1+t∗1d1

y2+t∗2d2

opt(P2)

y2

Iteration 2 : an inner feasible solution (contact point) y2 + t∗2d2

and a new outer solution. We take d2 = opt(P1)− y2.

6 / 21

P

y3

y3+t∗3d3

y1 = [0 0]> opt(P1)

y1+t∗1d1

y2+t∗2d2

opt(P2)

y2

opt(P3)

Iteration 3 : the feasible solution y3 + t∗3d3 is almost optimal

6 / 21

P

y3

y1 = [0 0]> opt(P1)

y1+t∗1d1

y2+t∗2d2

opt(P2)

y2

opt(P3)

Iteration 4 : optimality of opt(P3) proved
You can see the proposed method is convergent because it
solves a separation problem on opt(Pk) at each iteration k

The convergence proof takes two lines, cool !

6 / 21

P

y3

y1 = [0 0]> opt(P1)

y1+t∗1d1

y2+t∗2d2

opt(P2)

y2

opt(P3)

Building on existing work [1,2], the new method was deliberately
designed to be more general and when possible simpler

[1] Daniel Porumbel. Ray projection for optimizing polytopes with
prohibitively many constraints in set-covering column generation.
Mathematical Programming, 155(1) :147–197, 2016.

[2] Daniel Porumbel. Projective Cutting-Planes, SIAM Journal on
Optimization, 30(1) : 1007-1032, 2020

6 / 21

We now focus on the following standard (semidefinite programming) SDP problem in scalar
variables y1, y2, . . . yk, where C,A1, A2, . . . Ak are symmetric n× n matrices.

(SDP)

max
y

b>y = b1y1 + b2y2 + . . . bkyk

s.t X = C −
k∑

i=1

Aiyi is semidefinite positive (SDP)

...

Ty ≤ s → variables y (also) live in a polytope

8

We now focus on the following standard (semidefinite programming) SDP problem in scalar
variables y1, y2, . . . yk, where C,A1, A2, . . . Ak are symmetric n× n matrices.

(SDP)

max
y

b>y

s.t X = C −
k∑

i=1

Aiyi

X � 0 ⇐⇒ X ·vv> ≥ 0 ∀v ∈ Rn

Ty ≤ s → variables y (also) live in a polytope

using notation

�
�

�
X·vv> =

n∑
i=1

n∑
j=1

Xijvivj

9

Let us develop on the SDP constraint below. In some sense, it describes the SDP cone as
a polytope with infinitely-many constraints, one for each v ∈ Rn.

X � 0 ⇐⇒ X ·vv> ≥ 0 ∀v ∈ Rn

Recall X is this linear combination of matrices defined by variables y1, y2, . . . , yk

X = C −
k∑

i=1

Aiyi

10

Let us develop on the SDP constraint below. In some sense, it describes the SDP cone as
a polytope with infinitely-many constraints, one for each v ∈ Rn.

X � 0 ⇐⇒ X ·vv> ≥ 0 ∀v ∈ Rn

Recall X is this linear combination of matrices defined by variables y1, y2, . . . , yk

X = C −
k∑

i=1

Aiyi

Solution y = [y1y2 . . . yk]
> respects above SDP constraint if and only if(

C −
k∑

i=1

Aiyi

)·vv> ≥ 0, ∀v ∈ Rn equiv to

(
k∑

i=1

Aiyi

)·vv> ≤ C·vv>, ∀v ∈ Rn equiv to...

11

Let us develop on the SDP constraint below. In some sense, it describes the SDP cone as
a polytope with infinitely-many constraints, one for each v ∈ Rn.

X � 0 ⇐⇒ X ·vv> ≥ 0 ∀v ∈ Rn

Recall X is this linear combination of matrices defined by variables y1, y2, . . . , yk

X = C −
k∑

i=1

Aiyi

Solution y = [y1y2 . . . yk]
> respects above SDP constraint if and only if(

C −
k∑

i=1

Aiyi

)·vv> ≥ 0, ∀v ∈ Rn equiv to

k∑
i=1

(
Ai·vv>) yi ≤ C·vv>, ∀v ∈ Rn

The eigenvector corresponding to the minimum eigenvalue of X gives the strongest con-
straint for a given y.

12

(SDP)

max
y

b>y

s.t

k∑
i=1

(
Ai·vv>) yi ≤ C·vv>, ∀v ∈ Rn

Ty ≤ s → variables y (also) live in a polytope

We could address the problem by progressively separating infeasible solutions yout ∈ Rk,
generating at each iteration a v associated to the minimum eigenvalue of X. This standard
Cutting-Planes is not considered very effective; work on this area remains a rare sight (a
half-dozen of articles).

13

Yet the cutting-planes framework has some advantages. Imagine that the tight saturated
constraints generated at some iteration belong to some set VCUTSnow:

b>yout = max
y

b>y

α :

k∑
i=1

(
Ai·vv>) yi ≤ C·vv>, ∀v ∈ VCUTSnow

The dual LP solution α ≥ 0 will satisfy∑
v∈VCUTSnow

(
Ai·vv>)αv = bi, ∀i ∈ [1..k]

14

Yet the cutting-planes framework has some advantages. Imagine that the tight saturated
constraints generated at some iteration belong to some set VCUTSnow:

b>yout = max
y

b>y

α :

k∑
i=1

(
Ai·vv>) yi ≤ C·vv>, ∀v ∈ VCUTSnow

The dual LP solution α ≥ 0 will satisfy∑
v∈VCUTSnow

(
Ai·vv>)αv = bi, ∀i ∈ [1..k]

This is equivalent to
Ai· ∑

v∈VCUTSnow

vv>αv︸ ︷︷ ︸
Z � 0

= bi, ∀i ∈ [1..k]

which means Z is a feasible SDP solution in the dual SDP.

15

Yet the cutting-planes framework has some advantages. Imagine that the tight saturated
constraints generated at some iteration belong to some set VCUTSnow:

b>yout = max
y

b>y

α :

k∑
i=1

(
Ai·vv>) yi ≤ C·vv>, ∀v ∈ VCUTSnow

The dual LP solution α ≥ 0 will satisfy∑
v∈VCUTSnow

(
Ai·vv>)αv = bi, ∀i ∈ [1..k]

This is equivalent to
Ai· ∑

v∈VCUTSnow

vv>αv︸ ︷︷ ︸
Z � 0

= bi, ∀i ∈ [1..k]

which means Z is a feasible SDP solution in the dual SDP.
Projective-Cutting-Planes generates at each iteration a feasible primal solution y ∈ Rk and
a feasible dual Z ∈ Rn×n, something an Interior Point Method can not do (by default along
the way).

16

An SDP heuristic
Projective-Cutting-Planes needs a feasible solution y to start. I found none in the literature,
so I implemented one. Say y is not feasible, meaning there is a v associated to a negative
eigenvalue λ− of X such that(

C −
k∑

i=1

Aiyi

)
︸ ︷︷ ︸

X

·vv> = λ− < 0

17

An SDP heuristic
Projective-Cutting-Planes needs a feasible solution y to start. I found none in the literature,
so I implemented one. Say y is not feasible, meaning there is a v associated to a negative
eigenvalue λ− of X such that(

C −
k∑

i=1

Aiyi

)
︸ ︷︷ ︸

X

·vv> = λ− < 0

But notice this f is linear and that f(0) = λ−

f(d) =

(
C −

k∑
i=1

Ai(yi + di)

)·vv>
We can maximize f over all d in a small hypercube. If that is above λ−, we can make a
step y = y + d and improve the minimum eigenvalue.
If there is a feasible solution y∗, we have f(y∗−y) > 0. But since the minimum eigenvalue
function is concave, this means f(ε(y∗ − y)) > 0 for any ε ∈ (0, 1], so we can surely find
an improving step d in the hypercube!

18

Upgrading separation → projection

(SDP)

max
y

b>y

s.t

k∑
i=1

(
Ai·vv>) yi ≤ C·vv>, ∀v ∈ Rn

Ty ≤ s → variables y (also) live in a polytope

In Projective-Cutting-Planes, we upgrade the separation sub-problem to the projection
sub-problem: given feasible y in a feasible area (SDP) and an arbitrary direction d =
yout − y, what is the maximum step-length t∗ so that y + t∗d ∈ (SDP)?

19

Upgrading separation → projection

(SDP)

max
y

b>y

s.t

k∑
i=1

(
Ai·vv>) yi ≤ C·vv>, ∀v ∈ Rn

Ty ≤ s → variables y (also) live in a polytope

In Projective-Cutting-Planes, we upgrade the separation sub-problem to the projection
sub-problem: given feasible y in a feasible area (SDP) and an arbitrary direction d =
yout − y, what is the maximum step-length t∗ so that y + t∗d ∈ (SDP)?

In SDP programming, projecting y→ d requires solving t∗ = max{t : X + tD � 0} for
this X � 0 and D:

• X = C −∑k
i=1Aiyi is SDP when y is feasible

• D = C −∑k
i=1Aidi may be SDP or not.

20

We have to project X → D in the SDP cone:

t∗ = max{t : X + tD � 0}

21

We have to project X → D in the SDP cone:

t∗ = max{t : X + tD � 0}

An easy-to-implement approach: notice t∗ is the generalized eigenvalue of X and −D.
The corresponding generalized eigenvector v satisfies Xv = −t∗Dv.

This is far too slow: we need a very particular generalized eigenvalue, namely, the
lowest real eigenvalue above 0. With existing software, computing all eigenvalues or only
the eigenvalues close to zero seems much too slow.

22

The main challenge is the speed of the projection algorithm. It should be closer to com-
puting Cholesky or the smallest eigenvalue of matrix. If the speed is closer to computing
the whole eigendecomposition, all seems lost.

And speed it’s all you’ll ever need.
All you’ll ever need to know.
You and me we’re going nowhere slowly
You go down on the pedal and you’re ready to roll.

Meat Loaf - Nowhere slowly

23

Recall we have to project X → D in the SDP cone:

t∗ = max{t : X + tD � 0}

Th projection sub-problem is quite simple if X � 0. In this case, there is a unique Cholesky
decomposition X = KK> and K is non-singular and triangular. We can determine by
simple and fast back-substitution D′ as the unique solution of D = KD′K>.

24

Recall we have to project X → D in the SDP cone:

t∗ = max{t : X + tD � 0}

Th projection sub-problem is quite simple if X � 0. In this case, there is a unique Cholesky
decomposition X = KK> and K is non-singular and triangular. We can determine by
simple and fast back-substitution D′ as the unique solution of D = KD′K>.
The following are equivalent:

t∗ = max{t :X + tD � 0}
t∗ = max{t :KK> + tKD′K> � 0}
t∗ = max{t :In + tD′ � 0}

We can determine max{t : In + tD′ � 0} by computing λmin(D
′) Total projection cost:

• one Cholesky

• a few back-substitutions

• one minimum eigenvalue

• a fast calculation of products vv>

• k + 1 dot products of the form Ai ·vv>, recording Ai as an array

25

This projection is more difficult if X is not strictly SDP. Yet, the simplified pure SDP
case enabled us to solve some particular instances very rapidly.

Instance below was solved by advancing to the optimum trough a sequence of strictly
SDP matrices (strictly interior points): X0 = εIn, X1, X2, X3 . . .

0 1 2 3 4 5 6 7 8 9
8

10

12

14

16

Time

b
ou

n
d
(s
)
on

ob
j.
va
l.

k = 11, n = 400, eigs(Ai) ∈ [0.1, 2.5], eigs(C) ∈ [17, 50]

upper bounds of a standard cutting planes converging in 9.26s

lower&upper bounds of projective cutting planes converging in 1.15s

Mosek needs
7.21 seconds

Conic Bundle needs 2.23
seconds (and I gave it
the optimal trace)

26

Results on sparse and densified instances from the literature

Most instances are very very sparse and IPM algorithms really exploit this. In such cases,
Proj-Cut-Planes is not competitive with mosek. But what if we densify the instances by
adding some noise over all zeros?

original sparse instance | densified instance
k n LP-cuts mosek | mosek Proj-Cut-Planes

-----------------------------------+------------------------
buck1 36 49 36 0.2 | 0.01 0.9 speed gain
buck2 144 193 144 1 | 6 4.2 42%
buck3 544 641 544 19 | 1320 828 60%
buck4 1200 1345 1200 163 | 38696 15931 142%

27

Results on highly feasible dense instances

Instance
Software highFsb5 highFsb10 highFsb15 highFsb20 highFsb25 highFsb30 highFsb50

n, k = 50, 5 n, k = 100, 10 n, k = 150, 15 n, k = 200, 20 n, k = 250, 25 n, k = 300, 30 n, k = 500, 50

Proj-cut-Planes 0.26 0.37 0.88 0.91 1.06 1.09 2.51
Mosek 0.04 0.17 0.77 2.39 5.34 11.7 79
SeDuMi 0.1 0.36 1.40 2.21 4.66 10.1 61
ConicBundle 0.06 0.62 0.97 1.71 — — —
CSDP 32 132 441 2215 — — —
Clarabel 5.26 339 — — — — —
Loraine 0.03 — — — — — —

The polyhedral nature of the new method enables it to easily adapt to change, like extend-
ing the linear part Ty ≤ s to follow a branch-and-bound decision or some robustness.

28

