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Abstract— Traditional clustering algorithms usually rely on a  Due to their simplicity and computational efficiency, priyfme-
pre-defined similarity measure between unlabelled data to attempt based clustering algorithms are very popular.

to identify natural classes of items. When compared to what a hu- . :

man expert would provide on the same data, the results obtained SUperv,lsed learning, on the other hand, assumes that'ttae cla
may be disappointing if the similarity measure employed by the Structure is already known_. It takes a set of examples wibscl
system is too different from the one a human would use. To obtain labels, and returns a function that maps examples to clasisla
clusters fitting user expectations better, we can exploit, in additio  (e.g. support vector machines [11], [15]).

to the unlabelled data, some limited form of supervision, such as The main goal of the semi-supervised clustering approach is

constraints specifying whether two data items belong to a same I h bi | . ith .. f off
cluster or not. The resulting approach is called semi-supervised [0 allOW @ human to bias clustering with a minimum of eftort

clustering. In this paper, we put forward a new semi-supervised by providing a small amount of knowledge concerning either
clustering algorithm, Pairwise-Constrained Competitive Agglom- class labels for some items or pairwise constraints betdatn

eration: clustering is performed by minimizing a competitive ag- jtems. The constraints specify whether two data items shoul
glomeration cost function with a fuzzy term corresponding to the be in the same cluster or not

violation of constraints. We present comparisons performed on a T . . .
simple benchmark and on an image database. However, the few existing semi-supervised clustering -algo

rithms, such as Pairwise Constrained K-Means (PCKmeans)

[1] and Constrained K-Means [12], rely on parameters that

I. INTRODUCTION are difficult to choose (such as the number of clusters) and re

_ ) ) quire a high number of constraints to reach good results. The

As image collections become ever larger, effective acc&ssw semi-supervised clustering algorithm we put forward in
to their content requires a meaningful categorization @& thhe following, Pairwise Constrained Competitive Agglomer

images. .Such a categorization can rely on clustering meﬂbn (PCCA), provides solutions to these problems.

ods working on image features, but should greatly benefithg organisation of the rest of the paper is as follows. Sacti

from any form of supervision the user can provide, relatqgl yresents the background of our work. Our method is pre-

to the visual content. Consequently, a new approach callggeq in section IIl. The results are discussed and comipare
semi-supervised clustering—clustering using b(_)thllz.';\belle_d andyith other clustering methods in section IV, while section V
unlabelled data— has become a topic of significant interesf, marizes our concluding remarks.

The semi-supervised clustering is between totally unsuisgeal
clustering and fully supervised learning.

Unsupervised clustering takes an unlabelled set of data and
partitions it into groups of examples, without additionabkwl-
edge, such that examples within a clustgr are more "Simitar The quality of any clustering depends on how well the metric
each other than they are to data items in other clusters. Muncwg\tches the user's similarity model. The Competitive Agglo
Wor_k was dedicated to un_superwsed_ learning afmd_ re_sulhng_ &ration (CA) algorithm [2] is a of the fuzzy partitional algo
gorithms can be grouped into two main categories: hieraathi rithm that allows the user not to specify the number of clsste

or partitional. . . . L
" . ... [7], [10]. CA supports multiple metrics, allowing significe
The partitional algorithms are based on the optimization {)/] [10] PP P 919

specific objective functions and the most widely used atgori Briations inthe shapes of the clusters.
b ) y Let X = {x;| i € {1,..,N}} be theN feature points to

is Fuzzy C-Means (FCM) [3], which has been constantly im- _
proved for twenty years by: cluster,V. = {ux| k € {1,..,C}} the prototypes of the”

. L L clusters and’ the set of membership degrees. The objective
« the use of a manually engineered similarity criteria th%nction minimized by CA is:

yield good partitional of data for a given domain (e.g. the
Mahalanobis distance [7]), N N
(

c c 9
« the adjunction of a noise cluster [10], JV.U) = wi)2d2 (x4, ) — 3 u; 1
« the use of competitive agglomeration [2], [6]. ( ) ; ; o) (i, ) ]; {;( k)] )

II. BACKGROUND



under the constraint:

C C N
S win =1, fori e {1,.,N} @  TWU) =D (win)d(xi, ) 3)
k=1 k=1 i=1
c
In (1), d(x;, ;1) represents the distance between a vegfor +a ( ST D> uaug
and a cluster prototype; (for spherical clusters, Euclidean dis- (xix;)EM k=1 I=1,I#k
tance will be used) and;;, is the membership of; to a cluster c c N )
k. The first term is the standard FCM objective function [3]: + Y Zuikujk) -8y [Z(uik)}
the sum of weighted square distances. The second term pro- (xi,%,)€C k=1 k=1 = i=1

gressively reduces the number of clusters.
under the same constraint (2).

The prototypes of the clusters € j < C) are given by
1. PAIRWISE-CONSTRAINED COMPETITIVE

AGGLOMERATION SN (uin)?x;
HE = N . 5 (4)
A. Semi-supervised Clustering > im (uik)

Existing semi-supervised clustering algorithm can band cardinalities are expressed as
grouped into two main categories [13]: search-based and

similarity-based approaches. In similarity-based apghes, N

the similarity metric used to retrieve clusters is firstried to N, = Z Uis (5)
satisfy the constraints in the supervised data (e.g. Mabhla =t

distance trained using convex optimization [14]). The first termin (3) is the sum of squared distances to the pro-

In search-based approaches, the clustering algorithmds meytypes weighted by constrained memberships (Fuzzy C-Mean

ified so as to allow the constraints to “steer” the clustepin®  objective function). This term reinforces the compactrdsise
cess towards an appropriate partition. This is usually done ¢|ysters.

modifying the objective function so that it includes theibva  The second term is composed of:

able supervision provided as pairwise constraints or ¢doeds « The cost of violating the pairwisenust-link constraints.

(18], [17]. - _ _ _ The penalty corresponding to the presence of two such
These two families of semi-supervised clustering methods points in different clusters is weighted by the correspond-

rely on slightly different assumptions. Search-based odh ing membership values.

consider that the similarities between data items provéd&r | The cost of violating the pairwisgannot-link constraints.

tively reliable information regarding the target categation, The penalty corresponding to the presence of two such

but the algorithm needs some help in order to find the most points in a same cluster is weighted by their membership

relevant clusters. Similarity-adapting methods assuraettie values.

initial similarity measure has to be significantly modified & This term is weighted by, which is a way to specify the rela-
local or a more global scale) by the supervision in order to rBve importance of the sup’)ervision

flect correctly the target categorization. The third component is the sum of the squares of the cardi-

While similarity-adapting methods appear to apply to a widej,ities of the clusters (specific to Competitive Agglontiera)
range of situations, they need either significantly moreestp 44 controls the number of clusters.

sion (which can be an unacceptable burden for the user) er sperpe fina| partition will minimize the sum of intra-clustersei
cific strong assumptions regarding the target similaritpsuee 5005 \yhile partitioning the data set into the smallestiver

(which can be a strong limitation in their domain of applica(-)f clusters such that only a minimum number of the constgaint

tion). provided are violated.

Note that when the membership degrees are crisp and the
number of clusters is pre-defined, this cost function reduce
the one used by PCKmeans [1].

PCCA corresponds to the search-based approach. The objedt can be shown (see the Annex) that the updating of the
tive function to be minimized by PCCA combines the featurenemberships must follow the equation:
based similarity between data points and cost terms fordhre p
wise constraints. Ups = ulCM 4 Gonstraints 4, Bias (6)

Let M be the set ofmust-link pairs such thatx;, x;) € M
impliesx; andx; should be assigned to the same cluster, aNghere
C be the set otannot-link pairs such thatx;, x;) € C implies
x; andx; should be assigned to the different cluster. Using the

B. Principle of PCCA

1
same notations as for CA, we can write the objective function uFCM — CdZ(x—“) 7)
PCCA must minimize: ( D k=1 d?(xi,uk)



its membership to the clusterand this is exactly what the up-
Constraints o dating equation does, since the sigmﬁf“stmms is ne_gative.
Ups = m((]vr = Cy,) 8 Conversely, when the former cost is less than the weighted av
e age violation costCo*trei"ts will have a positive sign and the
and membership,., will be increased by the quantityf/onstrints,
The third term leads to a reduction of the cardinality of spu-
uBies = QL(NS - N,) (9) rious clusters, which are discarded when their cardindlitps
(%, pis) below a threshold. Indeed?** is also a signed term that de-
pends on the difference between the cardinalityof the clus-
ter s and the weighted average of the cardinalittés This
c term is positive for clusters whose cardinality is highexrtthe
C,,. = Z Z uji + Z ujs  (10) average, so the membershipsof to such clusters will be in-
(Xr,%;)EM =1, (31,3 ) EC creased.
The 3 factor should provide a balance between the terms of
(3), sog is defined at iteration by:

In (8), C,,, andC,, are defined as

c
(E(x,.,xj)eM El:l,l;ﬁk "”"’Z(x,.,xj)ec “J">

c —t—1
C B Zk:]_ dz(xmuk) /B(t): 770 eXp( | 0|/Tl (12)
U T C C N
> b=t dz(:i,uk) 2321 (Zi:l UU)
(9), N, is defined EC EN
In (9), N, is defined as X u?; d*(x; u,)]
%] 1y ]
ZC Ne j=1i=1
N, = Zh=1 &) (11)

= ZC i
k=1 d?(xy,pk)
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o o o © Fig. 2. How are balanced the terms of the objective functior®s Tigure
o o 9 shows the time variation of the factgs exp(—|t — to|/7) (or “amplitude”) of
© B, for to = 5. The process of agglomeration should act slowly, to enca@urag
3 the formation of small clusters in the beginning. Later, ituddde gradually

reinforced, in order to promote agglomeration until iterattp, wheng3 starts

to decrease. When the number of clusters becomes close to threuoptthe
amplitude of$3 should again decrease to allow the algorithm to converge. Th
x-axis represents the number of iterations and the y-axiarti@itude of3.

Fig. 1. lllustration of semi-supervised clustering baseganwvise constraints.
Given user supervision in the form ofust-link (plain, green) andannot-link
(dashed, red) constraints (2), the clustering processttliraclude this knowl-
edge in the updating membership equation allowing it to find réitjgen that

takes the constraints into account (3). Therefore the exponential factor makes tH&+* term small

in the beginning allow cluster formation, then it is increds

The f|rst_term In eq“a“?” 6)is the_ membership term in ”\ﬁ order to reduce the number of clusters, and it is eventuall
FCM algorithm and considers only distances between vect%[ creased again so that to"7ts andu M terms can
\ o

and prototypgs. The second _term take_s into account the av; minate, to seek the best partition of the data that respleet
able supervision: memberships are reinforced or reduced 8 ecifi ;
. . . ) Becmed constraints.
cording to the pairwise constraints defined by the user(l).
is the cost of violation of the "assignment” of vectoto cluster ]
s, while C,,, is the weighted average violation cost with respeét: Merging Process
to pointr. As the algorithm proceeds, the clusters whose cardinslitie
When the membership of poimtto clusters has a higher drop below a threshold are discarded. The choice of thiskhre
violation cost than the average, it is intuitively betteréoluce old is important since it reflects the size of the final cluster




With respect to the way basic CA (see [2]) discards spurioudile respecting as many as possible of the constraints pro-
clusters, two difficulties arise: vided. PCCA alternates between membership updating step an
« The threshold has to be changed manually by the user gentroid estimation step.
cording to the data he wants to categorize. So clusteringAfter the initialization step, we continue by computifigthe
becomes sensitive to a new parameter, when one importfaator that will determine which term of the membership upda
goal of the PCCA is to automatically find an appropriaténg equation will dominate. Afterwards, memberships wél b
number of clusters. updated. In the second step, based on the cardinalitieffef-di
« Since good clusters may have different cardinalities,-a c@nt clusters and their relative proximity, spurious clusteill
terion based only on the minimal cardinality of clusterbe discarded and close ones will be merged, thus obtaineng th
is not efficient. If the minimal cardinality is too small,centroids of good clusters. The resulting PCCA algorithm is
several prototypes can co-exist for a single large clusteétmmarized below.
Indeed, in this cluster each point shares its membership pcca algorithm outline
among the prototypes and, since there are enough points,
the cardinality of each cluster is larger than the threshold
see Fig. 3).
On the other hand, if the minimal cardinality is too large,
some small but distinct clusters, at equal distance from
other, bigger clusters, will be lost.

« Fix the maximum number of cluste€s.

« Randomly initialize prototypes for all clusters.

« Initialize memberships: equal membership of
every feature point to every cluster.

« Compute initial cardinalities for all clusters.

« Repeat
I — Computes using equation (12).
A .\ — Compute memberships; using equation (6)
. .+ /) — Compute cardinalitied/; for 1 < j < C'using
o8 equation (5).
— Forl < j < C,if N; <threshold then discard
T N e T clusterj.
A B — Update number of clusters.
L [ ]
. t . Ite ! Repeat
N e e '// Merge nearest prototypes using (13).
R Until no further merging is required.

Fig. 3. The large cluster has twice the cardinality of the smiaé. If the — Update the prototypes using equation (4).

minimal cardinality is small enough to retrieve the small clysi®o clusters « Until prototypes stabilize.
can survive in the large one: even if each point shares its mestipebetween
two categories, the sum of these memberships for a categdityendrger than
the threshold under which clusters are discarded IV. EXPERIMENTAL RESULTS

We suggest a strategy for improving the agglomeration pro-We compared our PCCA algorithm to the basic CA algo-
cess in CA. First, we fix the minimum cardinality threshold adithm and to PCKmeans. The first comparison was performed

cording to the number of points in the data-set, such as all A" the well-known IRIS database (also used in [1]), cont@ni

small clusters can be retrieved, obtaining a weak agglomeraclasses of 50 instances each. _
tion. Then, we build new prototypes based on pairwise merg- | "€ Second comparison was performed on a ground-truth im-

ing. The proposed procedure reduces the number of prowtyf8€ database containing 8 classes and a total of 187 images.
by merging the best pair of prototypes among all possiblespai FOr all the experiments presented here, the constraints pro
This process is repeated until no more merging is possible. Vided are randomly selected.

At the k" iteration, we first compute thB = C(C — 1)/2
distancesi(r), forr = 1,..., R, between pairs of prototypes.A. Clustering theIris Data
If min, andmin, are the two indices corresponding to the pair The first database we categorized was used in [1] for evaluat-
having the minimal distanaé..;,, then we merge clustersin;  jng the PCKmeans algorithm and has a long history in the pat-
andmin, when the following criterion is satisfied: tern recognition literature [16]. This data set containga®ses
of 50 instances (Iris flowers) each, a class correspondiray to

drmin /dmae < proximity threshold (13) variety of Iris. Every lIris flower is described by four numeri
where dpi, = min{d(r) | r = 1,...,R} and dpax = cal attributes, which are the length and the width of its Iseta
max{d(r) | r = 1,...,R}. Since our aim is to make theand sepals. The classes are not spherical and only one €lass i

clustering independent of such parameters, the resutepted linearly separable from the other two.
here were obtained with a fixed proximity threshold)df1.
B. Clustering the Image Database

D. Algorithm The second database we categorized is composed of images
The algorithm we propose is based on an iterative realloaaf-different phenotypes dfrabidopsis thaliana, corresponding

tion that partitions a data set into an optimal number ofclugo slightly different genotypes. The categories of phepesy

ters by locally minimizing the sum of intra-cluster distesc provide indications about the role of the different genes.



times smaller than the original one.

¢) Choice of thedistance: Since the shape of the clusters
is usually not spherical, we use the Mahalanobis distars(a
[7]) rather than the classical Euclidean one. For clusters
k < C, distances are computed using:

d? (x5, i) = |Co|" P (x5 = pi) "C (x5 — i) (14)

wherep is the dimension of the subspace after the PCA-based
reduction and’}, is the covariance matrice of the cluster

o L i N 2 L L T
18 plants 32 plants 20 plants 10 plants Cp = i (wik)" (%3 — o) (%i — i) (15)

N )2
Fig. 4. Asample of thérabidopsisimage database, with the number of plants Zi:l (ulk)
in each category

2} 1.02
A sample of the images is shown in Figure 4. There are QE; 11
categories, defined by visual criteria and described bétmvg S g |
total of 187 plant images, but different categories comairy &£ ggg |
different numbers of instances. The intra-class diveisiglso é 094 |
rather high. The categories we attempted to find in our stud)g 092 |
are: ° 0.9 t Do
« textured plants, 2 o088y "
« plants with long stems and round leaves, 5 086 ' S
« plants with long stems and fine leaves, S o084ecoooooccooooooooooo |
« plants with dense, round leaves, & 0.82 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
« plants with desiccated or yellow leaves, 0 20 40 60 80 100 120 140 160 180 200
« plants with large green leaves, Number of pairwise constraints
o plants w!th red(j|sh Ieayes, PCCA —e— CA —om
« plants with partially white leaves. PCKmeans ~—m— Kmeans o

We first present the image descriptors we employ, the method

for dimensionality reduction and our choice for the disganc 8- 5 Results obtained on the Iris dataset
a) Image content description: Finding good image de-

scriptors that can accurately describe the visual aspantol

different classes of images is a challenging task. For opeex 2 1
iments we selected the following descriptors used in ourRCBI ' 0.95 |
o
software IKONA [8]: 3 0.9 | ]
« Weighted Color histograms: statistical color signature .M 0.85 | ?
weighted by the local color activity in the image. Infor- 083 '

mation regarding the neighborhood of the pixels can beg 08 |
taken into account with the help of weighting functions.=  0.75 |

‘S . - e Ml l rrrrrrrrrrrrr ]
We employ a Laplacian weighted histogram and a prob= o . Y j
ability weighted histogram (please refer to [9] for further 3 0.65 L "

Shape 3 N S o o B 5 5 = h

« Shape descriptor:to describe the shape content of anim-* 0.6
age we use a histogram based on the Hough transform,

which gives the global behavior along straight lines in dif-

ferent directions. PCCA — e — CA o

« Texture descriptor: texture feature vectors are based on PCKmeans - KMeans o

the Fourier tran;form, providing a distribution of the SPEG.ig 6. Results obtained on tHeabidopsis database

tral power density along the frequency axes.

b) Dimensionality reduction: The resulting feature vec- K-means and PCKmeans were given the correct number of
tor has 640 dimensions. This very high number of dimemiusters. CA and PCCA found the number of clusters them-
sions of the joint feature vector can produce difficultiesinly  selves, starting from a higher initial value. For the fuzky a
clustering and, also, can make clustering impractical fggeh gorithms (CA and PCCA), every data point is assigned to the
databases. In order to reduce the dimension of the featare weuster to which its membership value is the highest.
tors, we use linear principal component analysis (PCA)cWvhi  For every number of constraints, 100 experiments were per-
is actually applied separately to each of the types of featuformed with different random selections of the constraints
previously described. The number of dimensions we retabn irder to produce the error bars for PCKmeans and PCCA.

Number of pairwise constraints



Figures 5 and 6 present the dependence between the percentve fix the prototypes and solve

age of well-categorized data points and the number of psérwi
constraints considered, for each of the two datasets. Taphgr
for the CA and K-means algorithms (both ignoring the con-
straints) are only given as a reference. We can first notige th
by providing simple semantic information in the form of pair
wise constraints, the user can significantly improve thd-qua
ity of the categories obtained. The number of pairwise con-
straints required for reaching such an improvement isivelgt
low with respect to the number of items in the dataset.

Also, with a similar number of constraints, PCCA perform
significantly better than PCKmeans by making a better use r?z
the available constraints; the signed constraint term8)irpéart
of the fuzzy memberships, directly include the non-viaatof

aJ(V,U)

wheres € {1,.
The solutlon can be 5|mpI|f|ed by assuming that the member-
ip values do not change significantly from an iteratiorhto t
xt, and computin@f\;1 u;s iN (17) using the membership
values from the previous iteration. With this assumptidr)(

:2ursd2 (er Hs (17)

OUys

N
)72/827%5*)%
e}
+a< Z Z uj; + Z Ujs)z

(xr,%x5)EM I=1,l#s (x,,x5)€C

LCH re{l,...,N}.

o o . reduces to
pairwise constraints in the fuzzy clustering process.
The relatively high values for the variance of the resultghb 28N+ N (18)
for PCCA and for PCKmeans, indicate that the random selec- ™"* " 242(x,., u,)
tion of the pairs of data points for which the user is required
to provide constraints is suboptimal. Further assumptieas Z(xm’% EM Zl Lits Wit D, e Uis

garding the data may let us improve the results by using more
adequate methods for selecting the constraints.

V. CONCLUSION

We attempted to show that by providing a limited amount
of simple semantic information in the form of pairwise con-
straints, the user can bring the automatic categorizatigheo
images in a database much closer to her expectations. We
forward a new semi-supervised clustering algorithm, PCCA
based on a fuzzy cost function that takes pairwise constrais]
into account.

Experiments on the Iris dataset and, especially, on a gFoun[i]
truth image database show that PCCA performs considerahlBi
better than unconstrained CA and than PCKmeans. By maki
better use of the constraints, PCCA allows the number of con-
straints to remain sufficiently low for this approach to beein  [7]
esting. Also, the computational complexity of PCCA is linea
in the number of data vectors, making this algorithm suéabl
for real-world clustering applications. o]
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VIl. APPENDIX

To minimize (3) with respect t&/ under the constraints (2)
we use Lagrange multipliers and obtain 14]

= iﬁf:(uik)QdQ(xi,uk ﬁz {Z Uik }

k=11i=1 i=1

O‘( Z ZC: zC: Uik + Z ZubkuJQ

(%4,%5)EM k=11=1,l#k (xi,x5)€C k=1

[15]
[16]
(17]

(18]

(16)

o

2d2 (%, phs)

whereN, = Zf.vzl u;s IS the cardinality of clustes. With the
notations in (10)—(11) we obtain the expressions (6)—(9).
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