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Abstract— Traditional clustering algorithms usually rely on a
pre-defined similarity measure between unlabelled data to attempt
to identify natural classes of items. When compared to what a hu-
man expert would provide on the same data, the results obtained
may be disappointing if the similarity measure employed by the
system is too different from the one a human would use. To obtain
clusters fitting user expectations better, we can exploit, in addition
to the unlabelled data, some limited form of supervision, such as
constraints specifying whether two data items belong to a same
cluster or not. The resulting approach is called semi-supervised
clustering. In this paper, we put forward a new semi-supervised
clustering algorithm, Pairwise-Constrained Competitive Agglom-
eration: clustering is performed by minimizing a competitive ag-
glomeration cost function with a fuzzy term corresponding to the
violation of constraints. We present comparisons performed on a
simple benchmark and on an image database.

I. I NTRODUCTION

As image collections become ever larger, effective access
to their content requires a meaningful categorization of the
images. Such a categorization can rely on clustering meth-
ods working on image features, but should greatly benefit
from any form of supervision the user can provide, related
to the visual content. Consequently, a new approach called
semi-supervised clustering—clustering using both labelled and
unlabelled data— has become a topic of significant interest.
The semi-supervised clustering is between totally unsupervised
clustering and fully supervised learning.

Unsupervised clustering takes an unlabelled set of data and
partitions it into groups of examples, without additional knowl-
edge, such that examples within a cluster are more ”similar”to
each other than they are to data items in other clusters. Much
work was dedicated to unsupervised learning and resulting al-
gorithms can be grouped into two main categories: hierarchical
or partitional.

The partitional algorithms are based on the optimization of
specific objective functions and the most widely used algorithm
is Fuzzy C-Means (FCM) [3], which has been constantly im-
proved for twenty years by:

• the use of a manually engineered similarity criteria that
yield good partitional of data for a given domain (e.g. the
Mahalanobis distance [7]),

• the adjunction of a noise cluster [10],
• the use of competitive agglomeration [2], [6].

Due to their simplicity and computational efficiency, prototype-
based clustering algorithms are very popular.

Supervised learning, on the other hand, assumes that the class
structure is already known. It takes a set of examples with class
labels, and returns a function that maps examples to class labels
(e.g. support vector machines [11], [15]).

The main goal of the semi-supervised clustering approach is
to allow a human to bias clustering with a minimum of effort
by providing a small amount of knowledge concerning either
class labels for some items or pairwise constraints betweendata
items. The constraints specify whether two data items should
be in the same cluster or not.

However, the few existing semi-supervised clustering algo-
rithms, such as Pairwise Constrained K-Means (PCKmeans)
[1] and Constrained K-Means [12], rely on parameters that
are difficult to choose (such as the number of clusters) and re-
quire a high number of constraints to reach good results. The
new semi-supervised clustering algorithm we put forward in
the following, Pairwise Constrained Competitive Agglomera-
tion (PCCA), provides solutions to these problems.

The organisation of the rest of the paper is as follows. Section
II presents the background of our work. Our method is pre-
sented in section III. The results are discussed and compared
with other clustering methods in section IV, while section V
summarizes our concluding remarks.

II. BACKGROUND

The quality of any clustering depends on how well the metric
matches the user’s similarity model. The Competitive Agglom-
eration (CA) algorithm [2] is a of the fuzzy partitional algo-
rithm that allows the user not to specify the number of clusters
[7], [10]. CA supports multiple metrics, allowing significant
variations in the shapes of the clusters.

Let X = {xi| i ∈ {1, .., N}} be theN feature points to
cluster,V = {µk| k ∈ {1, .., C}} the prototypes of theC
clusters andU the set of membership degrees. The objective
function minimized by CA is:

J (V,U) =

C
∑

k=1

N
∑

i=1

(uik)2d2(xi, µk)−β

C
∑

k=1

[

N
∑

i=1

(uik)
]2

(1)
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under the constraint:

C
∑

k=1

uik = 1, for i ∈ {1, .., N} (2)

In (1), d(xi, µk) represents the distance between a vectorxi

and a cluster prototypeµk (for spherical clusters, Euclidean dis-
tance will be used) anduik is the membership ofxi to a cluster
k. The first term is the standard FCM objective function [3]:
the sum of weighted square distances. The second term pro-
gressively reduces the number of clusters.

III. PAIRWISE-CONSTRAINED COMPETITIVE

AGGLOMERATION

A. Semi-supervised Clustering

Existing semi-supervised clustering algorithm can be
grouped into two main categories [13]: search-based and
similarity-based approaches. In similarity-based approaches,
the similarity metric used to retrieve clusters is first trained to
satisfy the constraints in the supervised data (e.g. Mahalanobis
distance trained using convex optimization [14]).

In search-based approaches, the clustering algorithm is mod-
ified so as to allow the constraints to “steer” the clusteringpro-
cess towards an appropriate partition. This is usually doneby
modifying the objective function so that it includes the avail-
able supervision provided as pairwise constraints or classlabels
[18], [17].

These two families of semi-supervised clustering methods
rely on slightly different assumptions. Search-based methods
consider that the similarities between data items provide rela-
tively reliable information regarding the target categorization,
but the algorithm needs some help in order to find the most
relevant clusters. Similarity-adapting methods assume that the
initial similarity measure has to be significantly modified (at a
local or a more global scale) by the supervision in order to re-
flect correctly the target categorization.

While similarity-adapting methods appear to apply to a wider
range of situations, they need either significantly more supervi-
sion (which can be an unacceptable burden for the user) or spe-
cific strong assumptions regarding the target similarity measure
(which can be a strong limitation in their domain of applica-
tion).

B. Principle of PCCA

PCCA corresponds to the search-based approach. The objec-
tive function to be minimized by PCCA combines the feature-
based similarity between data points and cost terms for the pair-
wise constraints.

Let M be the set ofmust-link pairs such that(xi,xj) ∈ M
impliesxi andxj should be assigned to the same cluster, and
C be the set ofcannot-link pairs such that(xi,xj) ∈ C implies
xi andxj should be assigned to the different cluster. Using the
same notations as for CA, we can write the objective function
PCCA must minimize:

J (V,U) =

C
∑

k=1

N
∑

i=1

(uik)2d2(xi, µk) (3)

+ α
(

∑

(xi,xj)∈M

C
∑

k=1

C
∑

l=1,l 6=k

uikujl

+
∑

(xi,xj)∈C

C
∑

k=1

uikujk

)

− β

C
∑

k=1

[

N
∑

i=1

(uik)
]2

under the same constraint (2).
The prototypes of the clusters (1 ≤ j ≤ C) are given by

µk =

∑N
i=1(uik)2xi
∑N

i=1(uik)2
(4)

and cardinalities are expressed as

Ns =

N
∑

i=1

uis (5)

The first term in (3) is the sum of squared distances to the pro-
totypes weighted by constrained memberships (Fuzzy C-Means
objective function). This term reinforces the compactnessof the
clusters.

The second term is composed of:
• The cost of violating the pairwisemust-link constraints.

The penalty corresponding to the presence of two such
points in different clusters is weighted by the correspond-
ing membership values.

• The cost of violating the pairwisecannot-link constraints.
The penalty corresponding to the presence of two such
points in a same cluster is weighted by their membership
values.

This term is weighted byα, which is a way to specify the rela-
tive importance of the supervision.

The third component is the sum of the squares of the cardi-
nalities of the clusters (specific to Competitive Agglomeration)
and controls the number of clusters.

The final partition will minimize the sum of intra-cluster dis-
tances, while partitioning the data set into the smallest number
of clusters such that only a minimum number of the constraints
provided are violated.

Note that when the membership degrees are crisp and the
number of clusters is pre-defined, this cost function reduces to
the one used by PCKmeans [1].

It can be shown (see the Annex) that the updating of the
memberships must follow the equation:

urs = uFCM
rs + uConstraints

rs + uBias
rs (6)

where

uFCM
rs =

1
d2(xr,µs)

∑C
k=1

1
d2(xr,µk)

(7)
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uConstraints
rs =

α

2d2(xr, µs)
(Cvr

− Cvs
) (8)

and

uBias
rs =

β

d2(xr, µs)
(Ns − Nr) (9)

In (8), Cvrs
andCvr

are defined as

Cvrs
=

∑

(xr,xj)∈M

C
∑

l=1,l 6=s

ujl +
∑

(xr,xj)∈C

ujs (10)

Cvr
=

∑C
k=1

(

∑

(xr,xj)∈M

∑

C

l=1,l 6=k
ujl+

∑

(xr,xj)∈C
ujk

)

d2(xr,µk)
∑C

k=1
1

d2(xr,µk)

In (9), Nr is defined as

Nr =

∑C
k=1

Nk

d2(xr,µk)
∑C

k=1
1

d2(xr,µk)

(11)
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Fig. 1. Illustration of semi-supervised clustering based onpairwise constraints.
Given user supervision in the form ofmust-link (plain, green) andcannot-link
(dashed, red) constraints (2), the clustering process directly include this knowl-
edge in the updating membership equation allowing it to find a partition that
takes the constraints into account (3).

The first term in equation (6) is the membership term in the
FCM algorithm and considers only distances between vectors
and prototypes. The second term takes into account the avail-
able supervision: memberships are reinforced or reduced ac-
cording to the pairwise constraints defined by the user (1).Cvs

is the cost of violation of the ”assignment” of vectorr to cluster
s, whileCvr

is the weighted average violation cost with respect
to pointr.

When the membership of pointr to clusters has a higher
violation cost than the average, it is intuitively better toreduce

its membership to the clusters and this is exactly what the up-
dating equation does, since the sign ofuConstraints

rs is negative.
Conversely, when the former cost is less than the weighted aver-
age violation cost,uConstraints

rs will have a positive sign and the
membershipurs will be increased by the quantityuConstraints

rs .
The third term leads to a reduction of the cardinality of spu-

rious clusters, which are discarded when their cardinalitydrops
below a threshold. Indeed,uBias

rs is also a signed term that de-
pends on the difference between the cardinalityNs of the clus-
ter s and the weighted average of the cardinalitiesNr. This
term is positive for clusters whose cardinality is higher than the
average, so the membership ofxr to such clusters will be in-
creased.

Theβ factor should provide a balance between the terms of
(3), soβ is defined at iterationt by:

β(t)=
η0 exp(−|t − t0|/τ)
∑C

j=1

(

∑N
i=1 uij

)2 (12)

×

[

C
∑

j=1

N
∑

i=1

u2
ij d2(xi, µj)

]
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Fig. 2. How are balanced the terms of the objective function? This figure
shows the time variation of the factorη0 exp(−|t− t0|/τ) (or “amplitude”) of
β, for t0 = 5. The process of agglomeration should act slowly, to encourage
the formation of small clusters in the beginning. Later, it should be gradually
reinforced, in order to promote agglomeration until iteration t0, whenβ starts
to decrease. When the number of clusters becomes close to the optimum, the
amplitude ofβ should again decrease to allow the algorithm to converge. The
x-axis represents the number of iterations and the y-axis theamplitude ofβ.

Therefore the exponential factor makes theuBias
rs term small

in the beginning allow cluster formation, then it is increased
in order to reduce the number of clusters, and it is eventually
decreased again so that theuConstraints

rs anduFCM
rs terms can

dominate, to seek the best partition of the data that respects the
specified constraints.

C. Merging Process

As the algorithm proceeds, the clusters whose cardinalities
drop below a threshold are discarded. The choice of this thresh-
old is important since it reflects the size of the final clusters.
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With respect to the way basic CA (see [2]) discards spurious
clusters, two difficulties arise:

• The threshold has to be changed manually by the user ac-
cording to the data he wants to categorize. So clustering
becomes sensitive to a new parameter, when one important
goal of the PCCA is to automatically find an appropriate
number of clusters.

• Since good clusters may have different cardinalities, a cri-
terion based only on the minimal cardinality of clusters
is not efficient. If the minimal cardinality is too small,
several prototypes can co-exist for a single large cluster.
Indeed, in this cluster each point shares its membership
among the prototypes and, since there are enough points,
the cardinality of each cluster is larger than the threshold,
see Fig. 3).
On the other hand, if the minimal cardinality is too large,
some small but distinct clusters, at equal distance from
other, bigger clusters, will be lost.

Fig. 3. The large cluster has twice the cardinality of the small one. If the
minimal cardinality is small enough to retrieve the small cluster, two clusters
can survive in the large one: even if each point shares its membership between
two categories, the sum of these memberships for a category will be larger than
the threshold under which clusters are discarded

We suggest a strategy for improving the agglomeration pro-
cess in CA. First, we fix the minimum cardinality threshold ac-
cording to the number of points in the data-set, such as all the
small clusters can be retrieved, obtaining a weak agglomera-
tion. Then, we build new prototypes based on pairwise merg-
ing. The proposed procedure reduces the number of prototypes
by merging the best pair of prototypes among all possible pairs.
This process is repeated until no more merging is possible.

At the kth iteration, we first compute theR = C(C − 1)/2
distancesd(r), for r = 1, . . . , R, between pairs of prototypes.
If min1 andmin2 are the two indices corresponding to the pair
having the minimal distancedmin, then we merge clustersmin1

andmin2 when the following criterion is satisfied:

dmin/dmax < proximity threshold (13)

where dmin = min{d(r) | r = 1, . . . , R} and dmax =
max{d(r) | r = 1, . . . , R}. Since our aim is to make the
clustering independent of such parameters, the results presented
here were obtained with a fixed proximity threshold of0.01.

D. Algorithm

The algorithm we propose is based on an iterative realloca-
tion that partitions a data set into an optimal number of clus-
ters by locally minimizing the sum of intra-cluster distances

while respecting as many as possible of the constraints pro-
vided. PCCA alternates between membership updating step and
centroid estimation step.

After the initialization step, we continue by computingβ, the
factor that will determine which term of the membership updat-
ing equation will dominate. Afterwards, memberships will be
updated. In the second step, based on the cardinalities of differ-
ent clusters and their relative proximity, spurious clusters will
be discarded and close ones will be merged, thus obtaining the
centroids of good clusters. The resulting PCCA algorithm is
summarized below.

PCCA algorithm outline
• Fix the maximum number of clustersC.
• Randomly initialize prototypes for all clusters.
• Initialize memberships: equal membership of

every feature point to every cluster.
• Compute initial cardinalities for all clusters.
• Repeat

– Computeβ using equation (12).
– Compute membershipsuij using equation (6).
– Compute cardinalitiesNj for 1 ≤ j ≤ C using

equation (5).
– For1 ≤ j ≤ C, if Nj < threshold then discard

clusterj.
– Update number of clustersC.

Repeat
Merge nearest prototypes using (13).
Until no further merging is required.

– Update the prototypes using equation (4).
• Until prototypes stabilize.

IV. EXPERIMENTAL RESULTS

We compared our PCCA algorithm to the basic CA algo-
rithm and to PCKmeans. The first comparison was performed
on the well-known IRIS database (also used in [1]), containing
3 classes of 50 instances each.

The second comparison was performed on a ground-truth im-
age database containing 8 classes and a total of 187 images.

For all the experiments presented here, the constraints pro-
vided are randomly selected.

A. Clustering the Iris Data

The first database we categorized was used in [1] for evaluat-
ing the PCKmeans algorithm and has a long history in the pat-
tern recognition literature [16]. This data set contains 3 classes
of 50 instances (Iris flowers) each, a class corresponding toa
variety of Iris. Every Iris flower is described by four numeri-
cal attributes, which are the length and the width of its petals
and sepals. The classes are not spherical and only one class is
linearly separable from the other two.

B. Clustering the Image Database

The second database we categorized is composed of images
of different phenotypes ofArabidopsis thaliana, corresponding
to slightly different genotypes. The categories of phenotypes
provide indications about the role of the different genes.
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22 plants 28 plants 44 plants 13 plants

18 plants 32 plants 20 plants 10 plants

Fig. 4. A sample of theArabidopsis image database, with the number of plants
in each category

A sample of the images is shown in Figure 4. There are 8
categories, defined by visual criteria and described below,for a
total of 187 plant images, but different categories containvery
different numbers of instances. The intra-class diversityis also
rather high. The categories we attempted to find in our study
are:

• textured plants,
• plants with long stems and round leaves,
• plants with long stems and fine leaves,
• plants with dense, round leaves,
• plants with desiccated or yellow leaves,
• plants with large green leaves,
• plants with reddish leaves,
• plants with partially white leaves.

We first present the image descriptors we employ, the method
for dimensionality reduction and our choice for the distance.

a) Image content description: Finding good image de-
scriptors that can accurately describe the visual aspect ofmany
different classes of images is a challenging task. For our exper-
iments we selected the following descriptors used in our CBIR
software IKONA [8]:

• Weighted Color histograms: statistical color signature
weighted by the local color activity in the image. Infor-
mation regarding the neighborhood of the pixels can be
taken into account with the help of weighting functions.
We employ a Laplacian weighted histogram and a prob-
ability weighted histogram (please refer to [9] for further
details).

• Shape descriptor:to describe the shape content of an im-
age we use a histogram based on the Hough transform,
which gives the global behavior along straight lines in dif-
ferent directions.

• Texture descriptor: texture feature vectors are based on
the Fourier transform, providing a distribution of the spec-
tral power density along the frequency axes.
b) Dimensionality reduction: The resulting feature vec-

tor has 640 dimensions. This very high number of dimen-
sions of the joint feature vector can produce difficulties during
clustering and, also, can make clustering impractical for huge
databases. In order to reduce the dimension of the feature vec-
tors, we use linear principal component analysis (PCA), which
is actually applied separately to each of the types of features
previously described. The number of dimensions we retain is5

times smaller than the original one.
c) Choice of the distance: Since the shape of the clusters

is usually not spherical, we use the Mahalanobis distance (as in
[7]) rather than the classical Euclidean one. For clusters1 ≤
k ≤ C, distances are computed using:

d2(xi, µk) = |Ck|
1/p(xi − µk)T C−1

k (xi − µk) (14)

wherep is the dimension of the subspace after the PCA-based
reduction andCk is the covariance matrice of the clusterk:

Ck =

∑N
i=1(uik)2(xi − µk)(xi − µk)T

∑N
i=1(uik)2

(15)
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Fig. 5. Results obtained on the Iris dataset
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Fig. 6. Results obtained on theArabidopsis database

K-means and PCKmeans were given the correct number of
clusters. CA and PCCA found the number of clusters them-
selves, starting from a higher initial value. For the fuzzy al-
gorithms (CA and PCCA), every data point is assigned to the
cluster to which its membership value is the highest.

For every number of constraints, 100 experiments were per-
formed with different random selections of the constraintsin
order to produce the error bars for PCKmeans and PCCA.
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Figures 5 and 6 present the dependence between the percent-
age of well-categorized data points and the number of pairwise
constraints considered, for each of the two datasets. The graphs
for the CA and K-means algorithms (both ignoring the con-
straints) are only given as a reference. We can first notice that,
by providing simple semantic information in the form of pair-
wise constraints, the user can significantly improve the qual-
ity of the categories obtained. The number of pairwise con-
straints required for reaching such an improvement is relatively
low with respect to the number of items in the dataset.

Also, with a similar number of constraints, PCCA performs
significantly better than PCKmeans by making a better use of
the available constraints; the signed constraint terms in (8), part
of the fuzzy memberships, directly include the non-violation of
pairwise constraints in the fuzzy clustering process.

The relatively high values for the variance of the results, both
for PCCA and for PCKmeans, indicate that the random selec-
tion of the pairs of data points for which the user is required
to provide constraints is suboptimal. Further assumptionsre-
garding the data may let us improve the results by using more
adequate methods for selecting the constraints.

V. CONCLUSION

We attempted to show that by providing a limited amount
of simple semantic information in the form of pairwise con-
straints, the user can bring the automatic categorization of the
images in a database much closer to her expectations. We put
forward a new semi-supervised clustering algorithm, PCCA,
based on a fuzzy cost function that takes pairwise constrains
into account.

Experiments on the Iris dataset and, especially, on a ground-
truth image database show that PCCA performs considerably
better than unconstrained CA and than PCKmeans. By making
better use of the constraints, PCCA allows the number of con-
straints to remain sufficiently low for this approach to be inter-
esting. Also, the computational complexity of PCCA is linear
in the number of data vectors, making this algorithm suitable
for real-world clustering applications.
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VII. A PPENDIX

To minimize (3) with respect toU under the constraints (2),
we use Lagrange multipliers and obtain

J (V,U)=

C
∑

k=1

N
∑

i=1

(uik)2d2(xi, µk) − β

C
∑

k=1

[

N
∑

i=1

(uik)
]2

+ α
(

∑

(xi,xj)∈M

C
∑

k=1

C
∑

l=1,l 6=k

uikujl +
∑

(xi,xj)∈C

C
∑

k=1

uikujk

)

−

N
∑

i=1

λi

(

C
∑

k=1

uik − 1

)

(16)

We fix the prototypes and solve

∂J (V,U)

∂urs
=2ursd

2(xr, µs) − 2β

N
∑

i=1

uis − λt (17)

+α
(

∑

(xr,xj)∈M

C
∑

l=1,l 6=s

ujl +
∑

(xr,xj)∈C

ujs

)

= 0

wheres ∈ {1, . . . , C}, r ∈ {1, . . . , N}.
The solution can be simplified by assuming that the member-

ship values do not change significantly from an iteration to the
next, and computing

∑N
i=1 uis in (17) using the membership

values from the previous iteration. With this assumption, (17)
reduces to

urs=
2βNs + λt

2d2(xr, µs)
(18)

−α

∑

(xr,xj)∈M

∑C
l=1,l 6=s ujl +

∑

(xr,xj)∈C ujs

2d2(xr, µs)

whereNs =
∑N

i=1 uis is the cardinality of clusters. With the
notations in (10)–(11) we obtain the expressions (6)–(9).
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