EuroFGI Workshop on IP QoS and Traffic Control
P. Pereira (Ed.)
Lisbon, Portugal, December 6-7, 2007

CONSTRAINED STEINER PROBLEM WITH DIRECTIONAL METRICS

Stefano Seccil’?, Jean-Louis Rougier!, Achille Pattavina?®

! Départment Informatique et Réseaux, ENST Paris, France.
e-mail: rougier@enst.fr, secciQenst.fr

2 Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy
e-mail: pattavina@elet.polimi.it

Keywords: QoS Routing, directional policies, constrained Steiner problem

Abstract. There is a growing demand for multipoint multimedia services over IP and an
explosion of VPN services. Nowadays, multipoint QoS services need to be extended beyond
provider boundaries. This manuscript studies the tree-constrained tree-optimization problem with
directional metrics. Weights and constraints are not applied to an arc but to a Suple (a,b,c) of
vertices named a directional arc, composed of two simple arcs: one incoming and one outgoing,
to and from a given transit node b. This cost and routing model is well suited to represent
complex Autonomous System (AS) interactions. In this way an AS can apply different policies
based on the direction of the flow.

Although the constrained Steiner problem with directional metrics may be relazed to its clas-
sical form by extending the graph with directional metrics to a larger graph with legacy metrics,
this transformation increases the complezity of the problem. We formulate the problem directly
and devise an ad-hoc breadth-first search approach with limited depth for its resolution. We
analyze the time computational complexity and the optimality of our heuristic. We show that
taking advantage of pre-computation, our algorithm reaches solutions very close to optimality
and appears to be more competitive, less complex than other well known multipoint routing al-
gorithms.

1 INTRODUCTION

Let a point-to-multipoint tree be a directed tree selected with single source and several
destinations over a weighted and directed graph. We differentiate between point-to-multipoint
tree and multicast tree since this latter is usually associated with best-effort transmissions.
Point-to-multipoint connections are intended to be used for single-source connections with some
Quality of Service (QoS) guarantees, for instance using MPLS point-to-multipoint tunnels [1].
From now on instead of “point-to-multipoint” we will use the shorter “multipoint” term; no
confusion should arise with multipoint-to-multipoint connections which are not considered in
this manuscript (it is still a challenging issue).

When the metrics are applied to arcs, and end-to-end bounds are imposed, the extraction of
a constrained tree from a graph is a tree-optimization tree-constrained problem [2], also called
constrained Steiner problem [3].

Let a directional arc be a chain of two adjacent arcs in a graph. Then, let a directional metric
be an additive metric applied to a directional arc. In other words, given a node connected to
at least two other nodes, the metric is different depending on the incoming and outgoing nodes.
This routing behavior appears to be appropriate for policy routing problems such as inter-
domain route computation for inter-domain LSPs [4]: an Autonomous System (AS) can thus
fix different per-direction policies such as transit cost or guaranteed performance to different
neighbouring ASs, some of which can be also grouped to apply per-group specific policies. Or,
more generally, directional metrics can be useful even for overlay, multi-layer or hierarchical

S. Secci et al.

routing. In all these applications, the lower layer paths are computed over the upper-layer route
(e.g. an inter-AS LSP over a given AS path).
An agreed taxonomy is needed to unequivocally identify the elements of a multipoint tree:

Root node: source node of a multipoint con-
nection;

Leaf node: node destination of the trans-
mission; ;
Branch node: mnode that performs data
replication; " Rt
Intermediate node: mnon-branch and non-
root node;

Bud node: a leaf-and-branch node.

Furthermore, a set of nodes can be classified as:
Multipoint sub-tree: part of a tree such that a root or an intermediate node is connected to a
subset of leaves;
Multipoint branch: part of a sub-tree such that a single branch is connected to a subset of leaves.
In this paper, we treat the constrained Steiner problem in the case of directional metrics and
propose a novel heuristic for its resolution. In Sect/2 we introduce the problem by discussing
some heuristics for the classical constrained Steiner problem, explaining how they could be
applied to graphs with directional metrics. Then, in Sect/3] we formulate the problem with
multiple metrics by linear programming. Our approach is presented in Sect.4, and compared to
other heuristics for the case with single metric (apart from the cost) in Sect/5]

2 SOME HEURISTICS
We discuss possible algorithms for the tree-optimization tree-constrained problem.

2.1 Irrespective Route Computation with Post Merging

A simple algorithm is the following: compute the shortest route subject to all constraints
for each leaf; join the sub-route parts of the routes sharing arcs.

We refer to this algorithm with the acronym IRC-PM. The resulting tree has sparse branches
in non-optimal positions. It is important to remark that resources (e.g. bandwidth) can be
shared on common links. Hence it is better to adopt algorithms which reduce tree cost by
encouraging arc sharing.

2.2 Iterative Point to Point Selection

Dividing the multipoint problem into multiple point-to-point route selections, the routes
tend to share arcs. An alternative algorithm is: compute the shortest route subject to all
constraints from the root to a first leaf node; assign null cost to all directional arcs taken by
the first route and compute the route to the second leaf; repeat the process for every remaining
leaf.

We refer to this algorithm with the acronym I-P2P. An advantage is that it still does not
require the knowledge of all leaves during the tree computation, while being sensitive to link
sharing with respect to the IRC-PM algorithm. However, the solution (and its optimality)
strongly depends on the order in which routes to leaf nodes have been computed.

2.3 Steiner Tree

To avoid the dependency on leaf ordering, it is needed to compute directly the optimal
tree that spans all the destinations, i.e., the Steiner tree. Its optimization directly pushes data
replication points (branch nodes) as close as possible to termination points (leaf nodes), seeking
optimality. The optimization problem is known to be NP-hard [3], and is much more complex in

S. Secci et al.

the case of additive constraints. The problem not being tractable for large instances, heuristics
are needed.

In order to run classical heuristics over a graph with directional metrics, it should be ex-
tended, as depicted in the example of Fig/l: each node is to be exploded in a number of virtual
nodes equal to the number of neighbours to which it is connected. Then, directional metrics are
applied to simple arcs connecting these new virtual nodes, while null metrics are to be applied
to arcs connecting virtual nodes related to different originating nodes.

(a) graph with directional weights (b) expanded graph with simple weights

Figure 1: Example of the graph explosion needed to apply classical algorithms

The application that inspired this work was the inter-domain routing problem at the AS
level. Because of policies, an AS should profit by applying directional costs and by announcing
performance in function of the directions taken to its neighbours [4]. Indeed, the AS graph
having a scale-free nature (i.e. a few nodes attract most of the arcs), its few connected ASs
that occupy a key position in the graph for tunnel transit would find in directional policies the
most proper means to optimize their gains and to benefit from their positions. We empirically
discovered that in the AS graph, an optimistic approximation for the average degree of the AS-
node can be /n. This finding suggests that the aforementioned extension for AS graphs requires
approximately n</n new nodes and arcs, for a graph of n nodes with directional metrics.

To compare different algorithms, authors in [5] select a set of heuristics for the tree-optimization
problem with a single additive constraint (end-to-end delay). Two of them have execution times
and optimality gaps almost independent of the multicast group size, and execution times that
scale better than other heuristics offering the same level of optimality (up to 15%). We consider
these two algorithms for performance comparison over the AS graph in Sect/5| The first algo-
rithm is a I-P2P type algorithm employing a constrained version of the Bellman Ford algorithm.

The second one is the Kompella’s centralized algorithm [6]: first, it computes all the con-
strained shortest paths; then, it builds the closure graph of shortest paths from the root to the
leaves, and it finds the constrained spanning tree of the closure graph; finally, it expands the
constrained spanning tree avoiding possible loops. The overall time complexity of the Kom-
pella’s algorithm is O(n®D), where n is the number of vertexes, and D is the integer value for
the delay bound. For graphs with directional metrics, the time complexity becomes O(n4D).

3 PROBLEM FORMULATION

We formulate the constrained Steiner tree optimization problem with directional metrics by
Integer Linear Programming (ILP). The following formulation is independent of multiplicative
constraints (e.g., the bandwidth) that can be discarded by a preliminary pruning of the graph.
The following notation is used:

N is the node set.
M is the destinations group; d € M is a single destination.
(a,b,c) is the directional composed arc from a to ¢ passing through b, where a,b,c € N.

¢ 5. is the directional cost over (a,b, c).

S. Secci et al.

(iz,b,c is the directional additive metrics i over (a, b, c).
C" is the end-to-end bound on metrics 3.

a:ib is a binary variable equal to 1 if the arc (a,b) is used by the route for destination d € M.

fib,e is a binary variable equal to 1 if (a, b, c) is used by the route for destination d.
fa.b,c is & binary variable equal to 1 if the directional arc (a, b, ¢) is used by the selected tree.
The objective is the minimization of the tree cost:

$(f) =min Yy fape (1)
(a,b,c)

We have | M| flow conservation constraints (one route per destination):

1 if 7 = root
in,b - Zm?,a ={ -1 ifi=d VY(i,d) e (N,M) (2)

beN bEN 0 otherwise

These constraints enforce the additive end-to-end bounds:

> fameCope < C, ¥, d) € (N, M) (3)

(ab,c)

These constraints enforce the hop bound:

> fiye < Hpm, YdeM (4)
(a,b,c)

The per-destination directional variables are enabled by:
fg,b,c 2 'I:Z,b + 'Tg,c -1) V(a7 b7 C)? vd S M (5)

The directional variables are enabled by:

|M‘ fa,b,c Z Z fib,m V(a, b7 C) (6)

de M

Finally, the binary domain on variables is imposed by:

xi,b> f:li,b,c, fa,b,c € {07 1} (7)

During the simulations, it is possible to speed up the simplex solving by: (i) setting as upper
bound the objective obtained by suboptimal heuristics; (ii) indicating the priority on variables;
(iii) setting the steepest edge dual simplex gradient.

4 RCOM APPROACH

We have seen that the tree-constrained tree-optimization problem with directional metrics
can be relaxed to the classical constrained Steiner tree problem only by creating a larger graph
with simple metrics. Alternatively, to solve this specific problem we devise an ad-hoc heuristic
called Route Collection and Optimal Matching (RCOM), composed of two steps:

1. Route Collection: some feasible point-to-point routes towards each leaf node are collected

2. Optimal Matching: optimal routes are matched by minimizing the tree cost.

As opposed to IRC-PM algorithms, RCOM retains a subset of feasible routes instead of only
one route per destination. With respect to I-P2P algorithms, RCOM should be more flexible in
branch and bud node placement, since it can reach a wider set of solutions. Last but not least,
in Sectl4.3 we explain how with pre-computation a big slice of the time-complexity can be cut
off-line by computation elements.

S. Secci et al.

4.1 Route Collection

To collect the per-destination routes set, we devise an ad-hoc breadth-first-search algorithm
with limited depth. It starts at the root, moves to unvisited neighbours, collects the routes if
a destination is attained, and so on, until no more routes can be collected. It stops at a given
number of hops and during the search it prunes branches on the base of metric bounds.

This approach was inspired by the A*prune algorithm [7], proposed to solve the constrained
k-shortest paths problem. Our approach differs in that : (i) since the final objective is the
selection of the optimal tree, a further pruning (besides that on the additive metrics) on the
basis of the route cost is performed, giving priority to the least hop routes; (ii) given that there
is no need to sort the candidate routes (as A*prune does when choosing the next path to expand
during the graph exploration), the number k of shortest routes is not fixed and all the found
(feasible) routes are collected (i.e., we do not need a best-first-search approach).

Algorithm 4.1: RoUTE COLLECTION(G)

procedure Popr(ck, h,)

— f : per-destination vector with counters of found routes so far
- a, cfl : next 1-hop arc, it" metric of a

— M : destination group (set of leaf nodes)

ifh=H
if 3 leaf d | ¢ + SPC(w[h],d) < v(d)

then add 7 to (eand
if w[h] € M
if 0 < v(n[h])
add 7 to (ser
then F(xlh]) — f(xlh)) +1
then Q¢ f(xln)) > F
then update v(w[h])

then

for i —1to N
if 7 adjacent to w[h|, and 7 ¢ 7
wh+1] <1
a — (w[h — 1], 7[h], 7[h + 1])
do ifh=0
then Por(ci,h+1,7)
else if ¢l + ¢, < C'Vi >0
then PoP(ci + ¢, h+1,7)

else

main
H «— 1,0« 39, Ccand < {mo = (root)}
while (.ong # 0 or H < Hp,
extract a subroute 7 from (.qng
do { Por(ci,H —1,7)
H«—H-+1

Collection algorithm

Let T be the threshold cost vector with one entry per destination. Each entry is a threshold
re-calculated at each new route collection. The starting values are infinite. An entry is initialized
when at least F' routes have been collected for that destination; I’ has to be chosen conveniently
(we use F' = /n). Each threshold is calculated as the average cost of those routes with a
variance on the average cost less than the average of this variance: within the first F' routes,
those with a very high cost with respect to the others are not kept. In this way, the threshold
has a decreasing trend, with a starting value not excessively high. The least hop routes are thus
privileged because the cost bound is higher in the first hops. Favouring routes of few hops is a

S. Secci et al.

suitable approach for our specific problem, since long routes crossing several ASs may only have
a small number of arcs in common with those previously selected, which tends to increase the
cost. In this way we try to cut a lot of branches that would have been considered by general
purpose solvers for (1)-(7).

We define the projected cost of a sub-route as the cost given by the sum of the current sub-
route cost and the cost of the shortest path from the tail toward the destination. To determine
the projected costs, the costs of the shortest paths need to be pre-calculated.

The pseudo-code is shown in Alg[4.1] The search starts looking for feasible routes at 2 hops,
then 3, and so on. It proceeds with a graph exploration by evaluating for feasibility, at each
iteration, only the routes of an equal number of hops H, up to a given hop bound H,,.

At every iteration, the sub-routes in the set (.qna are the starting point of the search. At
every call of POP(), ¢ and d are the cumulative cost and delay of the route handled by the
current route vector w with h hops. €. indicates the cumulative metrics vector for the route
handled by 7, where ¢& is the i*" metric of the vector, and ¢2 is the cost. When visiting the
root neighbours (h=0), 7 is only the root, and the delay is not verified. Then, the function
recursively visits every neighbour of the sub-route tail node, updating 7, and evaluating the
route feasibility on the cumulative delay. At the H*" hop, the route is collected in the set Cse
if a leaf is visited, if its cost is less than the threshold, and if the delay bound is respected; it is
also added to (cana for further expanding and possible selection in the next hop only if, for at
least one destination, its projected cost is equal to or less than the threshold.

4.2 Routes Matching

The routes in (s subtend a subgraph built as the superimposition of their directional arcs.
The final least cost tree is a composition of directional arcs linking the root to the leaves.

Let p € A indicating the affiliation of route p to subgraph A, a € A and a € p the affiliation
of directional arc a to subgraph and to route. Let yg be a parameter equal to 1 if the leaf node
d is a tail or an intermediate node of p, 0 otherwise. The following binary variables are used:
Zq is 1 if @ is enabled in the tree solution; f, is 1 if p has been selected to reach its destination.
The objective is the minimization of the tree cost as the sum of the costs of the directional arcs:

g(z) = min Z CaZa (8)
acA

By imposing that each destination is crossed by at least one of the enabled routes, we can assure
that all the leaves are reached and that the delay constraint is satisfied.

> uifp=1, YdeM (9)
PECsel

The route enabling is linked with the enabling of the directional arcs it is composed of by:
o > fp VD€ (e, Va €Ep (10)

The binary domain of the variables is imposed:

Ta, fp € {071} (11)

4.3 Pre-computation and Complexity

In the collection algorithm, the majority of the time is spent in computing the (uncon-
strained) shortest path costs, which are needed to determine the projected costs. Our proposi-
tion is to pre-compute the shortest paths, prior to any request, and after any topological and
cost update. This can stand when the cost and topology update arrival rate is much less than

S. Secci et al.

the request arrival rate. Hence prior to the request (characterized by root, leaves, and end-to-
end constraints) a simplified version of the Floyd-Warshall algorithm [8] can be pre-computed
to calculate the cost of the shortest paths (SPC matrix in Algl/4.1) from any node to any node
(A2ASP). For sake of completeness, it is worth mentioning that when the destination group M
can be known in advance, |M||N| executions of the Dijkstra algorithm could fill sufficiently the
SPC matrix; nevertheless, in the following we assume that M is not known in advance.
Floyd’s algorithm takes O(n®) time to compute, which becomes O(n*) for graphs with
directional metrics assuming an average degree of /n. The subsequent breadth-first search

would have, without pruning, a time complexity of O(n%H ™) for the worst case, approximating
the base (branching factor) to ¢/n, but, because of pruning, it is more efficient than that.

To improve the execution time, A2ASP computation should be run off-line prior to any re-
quest, and triggered by each topology and costs update. In this way the post-request complexity

of the collection becomes O(n%Hm) for the worst case. Indeed, computation elements as the
Path Computation Element (PCE) [10] currently studied at the IETF for inter-AS LSPs com-
putation, or the AS Selection Element (ASE) proposed in [4] for constrained disjoint inter-AS
routes computation, could perform such operations prior to requests coming with a different
time scale to the A2ASP computation without overloading the router.

The centralized heuristics proposed so far for constrained multicast routing, such as those
in [5], do not have a sub-algorithm independent from the constraint values. For example, Kom-
pella’s algorithm computes the constrained A2ASP to build the closure graph with a complexity
proportional to the delay bound (see Par[2.3)); Zhu’s algorithm [9] uses as a starting point a least-
delay spanning tree. Both Kompella’s and Zhu’s algorithms have an overall complexity equal
to the post-request complexity, which is, for our graph, more than O(n4).

Then, the optimal route matching is solved through the ILP formulation (8)-(11) that has
a number of variables < (1 4+ H.,)|Cser| and a number of constraints < Hiy, [(ser|| M| since the
number of shared arcs is expected to be < Hn|(ser|. The limited number of variables in the
objective, and the relaxation of (9), guarantee that the subproblem is tractable.

Finally, it is worth mentioning that given the breath-first-search nature of the collection
algorithm and the additive constraint transparency of the route matching, an extension of the
RCOM approach to multiple additive constraints would scale with the number of constraints.

5 PERFORMANCE ANALYSIS

We compare all the described algorithms in terms of optimality and execution time, and
characterize the selected trees, in the case of a single metric. We chose to use realistic topologies:
we dumped the AS whois database with interconnections available at [11]. A first topology is
selected in the following way: among all the ASs, only those with at least 7 adjacencies are
kept; then, only those ASs with more than 2 adjacencies within the selection are kept in. The
final topology, called ATL7, has 643 AS-nodes. A second and a third topologies, TOP100 and
TOP300, are built with the 100 and 300 most connected nodes of ATL7. Then we generated
the directional metrics to apply. We ranked the nodes on the basis of their degree. We then
assigned transit delays and inter-AS capacities normally around different values on the basis
of AS ranking. The transit costs are calculated with a log(z)/z law where z is the minimal
directional capacity between two neighbours ASs. More details can be found in [4] (not included
because of page limit).

5.1 Algorithms’ performance

We run one new instance for each size of the multicast group. Root and leaves are generated
randomly. The delay bound is fixed to 1.5 s and the bandwidth is randomly set bigger than 5
Mb/s.

S. Secci et al.

5.1.1 Execution times

Figs[2hce display the execution times obtained for TOP100, TOP300 and ATLT7 as a function
of |[M|. For ATL7 the upper hop bound is fixed to 8 (that is a sufficient value for this topology
[4]), while for TOP100 and TOP300 it is fixed to 5 (also sufficient because of the smaller
diameter). The case of the optimal approach is not plotted: it grows more than exponentially
with |[M|. For RCOM we display: the total time (RCOM), the times of the collection (.RC) and
matching (.OM) procedures. The time of the A2APC (Floyd) is separated since we assume that
it can be pre-computed. Then, the case of IRC-PM, I-P2P and Kompella’s (KOMP) algorithms
is also plotted. We can affirm that: (i) the complexity of the RCOM due to matching becomes
more negligible as the topology grows; (ii) as expected, KOMP is lower bounded by Floyd
since it implements a constrained version of Floyd; (iii) including the ASAPC, RCOM has an
execution time comparable to that of KOMP; without (assuming A2APC pre-computation) it
has the lowest time almost always; (iv) I-P2P and IRC-PM have a similar behaviour, and both
seem to scale worst with |M| and the topology size than the other algorithms; (v) an increase
of M does not worsen the complexity of RCOM and of KOMP.

Hence RCOM and KOMP are the least complex algorithms, independently of the group size,
and RCOM is much more competitive if the A2ASPs can be pre-computed.

5.1.2 Optimality

Figs[2bd display the excess cost ratio w.r.t. the optimal solution for TOP100 and TOP300.
For ATLT7 this could not be computed, but Figl2f displays the excess cost ratio w.r.t. RCOM
for ATL7. We can affirm that: (i) RCOM is the best option since it gave with TOP100 the
optimal solution always, and with TOP300 often optimal, largely under 10%; (ii) KOMP had
always 50% excess cost w.r.t. RCOM; (iii) I-P2P and IRC-PM gave very close solutions.

5.2 Tree Characterization
5.2.1 Nodes type

Figl3] displays the number of intermediate, branch and bud nodes as defined in the Intro-
duction. The ATLT results are considered.

We can affirm that: (i) the number of intermediate nodes increases with |M| (reflecting the
fact that more isolated branches are selected as the number of leaves increases), and we can see
that because of its irrespective behaviour IRC-PM selects many more isolated branches than the
other algorithms, with RCOM having a lower number of intermediate nodes; (ii) the number
of branch nodes is interestingly lower bounded by KOMP, and also interesting is the fact that
KOMP sets un upper bound on the number of bud nodes; (iii) on the contrary, RCOM has
more branch nodes and less bud nodes than KOMP. (ii) and (iii) may be explained as follows.
While RCOM uses an unconstrained A2ASP pre-computation for projecting costs during the
constrained exploration to pragmatically discard routes, KOMP uses a constrained A2ASP
computation for producing a closure graph where the minimum spanning tree is computed:
KOMP falls more easily in local minima represented by longer routes, the closure graph not
being sensitive to real hop numbers, and thus the possibility of branching at leaves becomes
higher.

5.2.2 Tree slimness

Let the utility of a directional arc be the number of destinations it can serve minus one. Let
the tree slimness be defined as the ratio between the sum of all these utilities and the number
of directional arcs the tree is composed of. The slimness expresses how much the selected tree is
exploited, or how much the selected tree has backbone directional arcs. This is not intended as an
overall evaluation parameter of a tree, but just as a silhouette feature; however, the less optimal
a tree is, the smaller its slimness is expected to be. We are motivated in analyzing this parameter
because in multi-layer network, a major application of these algorithms, a computation in one

S. Secci et al.

Execution time (s) Execution time (s)

Execution time (s)

Number of intermediate nodes

Number of bud nodes

06

-

X

e
i

Number o mulicast gruup members

(a) TOPIOO Execution times

10 15

excess cost ratio relative to optimal solution excess cost ratio relative to optimal solution

excess cost ratio relative to RCOM solution

35 T T T T T T

30
Number of mulicast gmup members

(b) TOP100: Tree cost gaps w.r.t. the

0

5 10 15 20 25 30 35
Number of multicast group members

Tree cost gaps w.r.t. the optimum

40

0.8

0.6

0.4

0.2

0
5 10 30 35
Number of mulicast gmup members

(f) ATL7: Tree cost gaps w.r.t. RCOM

Figure 2: Results for TOP100 (a)-(b), TOP300 (c)-(d) and ATL7 (e)-(f) topologies

5 20 25 35 40
Number of multicast group members
(c) TOP300: Execution times
L i 1-P2p -— |
A IRC-PM —+-
L i RCOMRC -5-- 4
I . 1
e
5 20 25 30 35 40
Number of multicast group members
(e) ATLT: Execution times
5 10 5 20 25 30 35 40
Number of multicast group members.
(a) Intermediate nodes number
ba
5

20 25
Number of multicast group members.

(c) Bud nodes number

Number of branch nodes

Tree slimness

40

5 20 25 30
Number of multicast group members

(b) Branch nodes number

20 25
Number of multicast group members

(d) Solution tree slimness as function of M

Figure 3: Characterization of the solution tree

S. Secci et al.

layer can be followed by computations in other lower layers along the routes chosen in the
upper layer. Hence the slimmer the tree is, the less the complexity for the under-layer path
computation (and maybe signalling) could be in the case of multi-layer networks.

Figl3d displays the slimness of solution trees obtained for the ATL7 graph. We can affirm
that: (i) RCOM offers the best slimness; (i) KOMP offers the worst slimness; (iii) I-P2P and
IRC-PM behave better than KOMP w.r.t. the slimness, but significantly worst than RCOM.

6 CONCLUSIONS

We dealt with the constrained Steiner problem in the case of directional metrics. Directional
metrics are more useful than simple metrics in multi-layer routing problems at those layers where
business or social policies need to be taken into account. In particular, our study was on the
inter-domain AS-level tree selection problem. We noticed that the heuristics proposed so far for
the case with simple metrics do not scale well in the case of directional metrics. Furthermore, we
remarked the absence of adequate routing algorithms aware of the possibility of pre-computing
part of the job by computation elements, and of the subsequent sub-layer path computation
characterizing multi-layer networks and hierarchical architectures.

To overcome these deficiencies, we devised a search algorithm called RCOM, and demon-
strated that: (i) exploiting pre-computation RCOM is faster than the two best algorithms at
the state of the art in the case of a single additive metric; (ii) multiple metrics do not affect
RCOM asymptotical time complexity; (iii) it often reaches the optimality and the optimality
is always under 10% on realistic AS graphs; (iv) it produces efficient trees w.r.t. under-layer
computation issues characterizing multi-layer networks.

REFERENCES

[1] A. Farrel, I. Bryskin, “GMPLS Architecture and Applications”, Morgan Kaufmann, 2006.

[2] Bin Wang, J.C. Hou, “Multicast routing and its QoS extension: problems, algorithms, and
protocols”, Network, IEEE Vol. 14, Nb. 1,Pp: 22-36 (2000).

[3] S. Chopral, M.R. Rao, “The Steiner tree problem I: Formulations, compositions and
extension of facets”, Journal Mathematical Programming. Vol.64, pp:209-229 (1994).

[4] S. Secci, J.-L. Rougier, A. Pattavina, “On the Selection of Optimal Diverse AS-Paths for
Inter-Domain IP/(G)MPLS Tunnel Provisioning”, to appear in Proceedings of 4" Inter-
national Telecommunication Networking Workshop on QoS in Multiservice IP Networks
(IT-NEWS 2008), 13-15 Feb. 2008, Venezia, Italy.

[5] H.F. Salama, D.S. Reeves, Y. Viniotis, “Evaluation of multicast routing algorithms for
real-time communication on high-speed networks”, IEEE J. SAC 15, No. 3, pp::332-345
(1997).

[6] VP Kompella, JC Pasquale, GC Polyzos, “Multicast routing for multimedia communica-
tion”, ITEEE/ACM Transactions on Networking (1993).

[7] G Liu, KG Ramakrishnan, “A*Prune: an algorithm for finding K shortest paths subject
to multiple constraints 7 INFOCOM 2001

[8] R. W. Floyd, “Algorithm 97: Shortest Path”, Communications of the ACM 5 (6): 345,
(June 1962)

9] Q. Zhu, M. Parsa, J.J. Garcia-Luna-Aceves, “A source-based algorithm for delay-
constrained minimum-costmulticasting”, in Proc. of INFOCOM ’95.

[10] A. Farrel, J. P. Vasseur, J. Ash, “A Path Computation Element (PCE)-based architecture”,
RFC 4655, Aug. 2006.

[11] The CIDR report, http://www.cidr-report.org/.

http://www.cidr-report.org/

	INTRODUCTION
	SOME HEURISTICS
	Irrespective Route Computation with Post Merging
	Iterative Point to Point Selection
	Steiner Tree

	PROBLEM FORMULATION
	RCOM APPROACH
	Route Collection
	Routes Matching
	Complexity

	Performance analysis
	Algorithms' performance
	Execution times
	Optimality

	Tree Characterization
	Nodes type
	Tree slimness

	Conclusions

