
TNSM-2017-01406 1

ParaCon: A Parallel Control Plane for
Scaling Up Path Computation in SDN

Kun Qiu, Siyuan Huang, Qiongwen Xu,
Jin Zhao, Member, IEEE, Xin Wang, Member, IEEE, Stefano Secci, Senior Member, IEEE

Abstract—The fundamental tasks of the control plane in
Software Defined Networking (SDN) are to customize forwarding
policies for the data plane and to provide global network view
for applications. The logically centralized control plane design
brings benefits in terms of network programmability and can
largely ease network management. However, it also increases
efficiency concerns. One practical control plane challenge is
path computation, because it can require a significant amount
of computation load if the network scale is large and the
path requests from applications are frequent. In this paper,
our goal is to build a high-performance control plane for path
computation using multiple controllers. Previous works attempt
to improve control plane efficiency by balancing only the load
for data plane behavior between multiple controllers. Going
beyond conventional wisdom, we designed ParaCon, a solution
we propose to speed up the control plane by distributing the
load of path computation. We also address the consistency and
synchronization overhead challenges related to ParaCon design.
To the best of our knowledge, ParaCon is the first attempt that
utilizes node parallelism in SDN path computation. We evaluated
ParaCon using both Mininet and real-world clusters. Our results
show that the path computing time of ParaCon can achieve a
speedup of 10x over Floyd (used in POX) and Dijkstra (used in
ONOS) baseline implementations for networks with hundreds of
nodes.

Index Terms—software-defined networks, distributed algo-
rithms, performance management.

I. INTRODUCTION

RECENTLY, Software-Defined Networking (SDN) be-
came a hot topic in both academia and industry. SDN

brings the benefit of network controllability by separating
the control plane from the data plane. With OpenFlow [1],
a southbound interface specified by the ONF [2], a single
centralized SDN controller can control the behavior of all
the switches in a network. Despite its advantages, the single
centralized structure may lead to scalability and performance
challenges [3]. The SDN controller can easily suffer from
performance degradation resulting from a rapid increase of the
network scale. Thus, such a design cannot scale up for real-
world deployments, which is one of the reasons why current
SDN deployments do not seem to take place in carrier-grade
networks.

Therefore, improving the SDN controller performance and
scalability is one of the major concerns in realizing SDN

K. Qiu, S. Huang, Q. Xu, J. Zhao, X. Wang are with the
School of Computer Science, Fudan University, Shanghai 201203, China
mail:qkun;syhuang14;qyxu15;jzhao;xinw@fudan.edu.cn). S. Secci is with the
Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, Paris, France
(e-mail: stefano.secci@upmc.fr)

benefits. To address this challenge, academia and industry
have proposed a diverse range of methods. One approach is
to optimize the system architecture of existing single-server
controllers for higher efficiency. To achieve better execution
efficiency, some high-level language based controllers were re-
designed as low-level language based controllers [4]. Another
approach is offloading (partial or full) load from the controller
to switches [5], [6]. Alternatively, utilizing multiple controllers
in managing the SDN provides yet another choice [7]–[12] and
the distributed control plane designs are becoming increasingly
popular. For example, ONOS [11] claims to be the first carrier-
grade distributed SDN controller, and Onix [10] is used in
Google’s B4 [13] as their distributed control plane. Moreover,
a new control plane design, which is based on a database
approach was recently proposed [14].

Existing multi-controller solutions aim to tackle the scal-
ability issue in handling more switches, which may come
at a prohibitive cost for maintaining and computing network
information. More specifically, the SDN controllers periodi-
cally monitor the links, the forwarding tables and compute the
network information such as the routing path and spanning
tree of the global network. Among the variety of network
information to be computed and processed in SDN controllers,
the routing path is the most important one. Performance
of mainstream SDN applications such as traffic engineering
and content delivery networking [15] is tightly coupled with
the performance of path computation. Path computation in a
large-scale network indeed requires a significant amount of
computation load. However, the path computation method in
most of the existing SDN controllers is unable to meet the
performance needs. As an example, ONOS [11], a widely
used SDN controller, cannot achieve the intended throughput
in a 205-switch topology due to its inefficiency in path
computation. It is reported that the current ONOS design,
though with multiple controller instances, only uses one single
controller instance to compute paths, thus not fully utilizing
the potential of parallelism in path computation [16].

A straightforward approach to scaling path computation is to
leverage the multiple controller instances in a distributed SDN
control plane. For example, a possible solution is to implement
parallel Dijkstra or Floyd algorithms [17] on multiple con-
trollers. However, naı̈vely applying node parallelism to these
algorithms within the context of the SDN control plane has
suffered from two major challenges in practice.

First, the computation overhead is sensitive to topology
changes. Even when there are only minor changes in the
topology, offline algorithms need to start path computation

TNSM-2017-01406 2

on the updated topology from scratch. More specifically, all-
pairs path computation on the updated graph involves roughly
O(n3) time complexity [17]. Due to the potentially large size
of SDN networks, frequent or even moderate network changes
will pose a substantial amount of computation overhead.
Second, parallel path computation needs to synchronize path
information between involved controllers. Existing algorithms
for parallel path computation are usually based on the Bulk
Synchronous Parallel Computing (BSP) model [18]. Fig. 1(a)
shows that blocking synchronization in the path computation
reduces the efficiency significantly. Moreover, synchronous
path computation does not adapt ‘online’ property in the
network either. With the increase in the number of involved
SDN controllers, the synchronization overhead will result in
significant performance degradation.

Controller
1

Controller
2

Controller
3

Controller
4

Block

Block

Step N

Step N+1

Sync

Controller
1

Controller
2

Controller
3

Controller
4

Block

Block

Block

BlockAsync

Fig. 1. Synchronous and asynchronous path computation. In synchronous
computation, the synchronization process separates path computation into sev-
eral steps, and synchronization happened between the steps. In asynchronous
computation, synchronization happened during the computation.

In this paper, we propose ParaCon, a distributed SDN
control plane that addresses the performance challenges of
distributed path computation of SDN. Under this design, SDN
programmers can settle path computation without worrying
about the details of synchronization while achieving the
benefits offered by parallel computing. To the best of our
knowledge, ParaCon is the first control plane architecture to
utilize parallelism in path computation for SDN. More specif-
ically, ParaCon introduces several new features to make path
computation in multiple controllers efficient. It introduces a
new distributed model in SDN that is capable of asynchronous
path computation like Fig. 1(b) between multiple controllers.

ParaCon includes an online algorithm that enables all SDN
controllers to make incremental changes to the computed path
results upon receiving a particular topology change while ex-
isting approaches need to restart the computation from scratch.
It makes ParaCon more efficient in scenarios with frequent
topology updates. Moreover, it seeks to minimize the overhead
between multiple controllers by designing an asynchronous
algorithm. In this algorithm, different controllers can syn-
chronize information without blocking. Finally, it introduces
a hybrid consistency model to maintain the topology-related
information and path information between controllers during
the asynchronous path computation. It utilizes both strong
consistency and eventual consistency in the maintenance of
this information for further improving the performance. Our
theoretical analysis shows that the online algorithm has a

bounded convergence time. Moreover, experimental results
show that ParaCon can significantly reduce the path compu-
tation time when the scale of the network is increasing.

The rest of the paper is organized as follows. Section II gives
an abstraction of the problem space and challenges. Section III
gives an overview of ParaCon architecture. Section IV gives
the details of the algorithm. We present our evaluation in
Section V and related work in Section VI. We conclude in
Section VII.

II. PROBLEM STATEMENT

As we have mentioned above, we seek to minimize the
overhead between multiple controllers by designing an asyn-
chronous path computation algorithm. To motivate the asyn-
chronous computing approach, we need to consider several
aspects, among which the consistency problem is the most
important one. Namely, we need to consider what information
is to be synchronized, when to synchronize it, and how
to minimize the synchronization overhead during the path
computation.

Generally speaking, to compute path information in a dis-
tributed fashion, we need to maintain at least the following
information:

1) Link view: The topology-related information, i.e., the
link/switch status.

2) Association information: The association between
switches and controllers.

3) Path view: The path information in each controller
during the path computation.

From the example described in Fig. 2, we can see the link
view (topology-related information) needs to be synchronized
between all controllers to make sure the applications in dif-
ferent controllers get the same global topology. Otherwise, an
inconsistent link/switch status will make an inconsistent result
of path computation. We refer to this synchronization policy
as strong consistency policy.

Before we define the consistency policy formally, we intro-
duce some notations. Let H be some new information updated
to a controller such as a link state or path change. For a
given controller c ∈ C, where C is controller set, pc indicates
its status such as pc ∈ {NO,Y ES}: when in status NO, a
controller has not received or accepted H , when in Y ES it has
received or accepted H . The control plane is defined as in a
consistent state after H only if ∀c ∈ C, pc = Y ES. The multi-
controller SDN control plane is said to be available when it
can reply to control plane request messages. Otherwise, it is
said to be not available. Different consistency models impose
diverse levels of strictness on the availability of the control
plane during in the inconsistent state. A strong consistency
policy only allows new changes to be accessed after they have
been applied to all controllers.

Definition 1: (Strong Consistency Policy) After a control
plane global information update H , supposed to change the
status of the receiving controller from NO to Y ES, with a
strong consistency policy, the control plane is available only
if ∀c ∈ C, pc = Y ES.

TNSM-2017-01406 3

C1

S1 S3 S4

S2

C2

Link View Link View

Path View Path View

Fig. 2. Suppose there are four switches S1, S2, S3 and S4 in a network.
Controllers C1, C2 are added to the network with the association. The
topology-related information needs to be synchronized to controller C1 and
controller C2 to make sure they have the same path view on switches S1,
S2, S3 and S4. Otherwise, an inconsistent link/switch status will make an
inconsistent result of path computation. For example, if we do not synchronize
the link status when the link between S1 and S2 fails (we use a red line
between S1 and S2), we may get an inconsistent path view (the path from
S1 to S2 is S1 → S2 → S3 in C1, but S1 → S3 in C2).

Meanwhile, association information also needs to be syn-
chronized to each controller with a strong consistency policy,
or the assignment between controllers and switches may be
incoherent if migrations of switches happened in the mean-
time.

However, synchronizing path view (path information) dur-
ing the path computation, even at a minimum required fre-
quency, may eventually lead to network congestion due to
the excessive overhead in control message exchange under
a strong consistency policy [19]. For example, Two-Phase
Commit [20] or Paxos [21] are revealed to be inefficient by
signaling overhead.

Therefore, it is necessary to reduce the synchronization
overhead of path information. Considering that the three types
of information we mentioned above involve different trans-
mission overhead, we need to study the amount of exchanged
messages quantitatively. We assume the exchange process on
the control plane adopts a message-passing model [22] [23],
and we consider the minimum number of messages transmitted
for reflecting the change in a link/switch status and a switch-
controller assignment is 1 unit. We have two types of oper-
ations: synchronizing topology-related information and syn-
chronizing path information. Synchronizing topology-related
information involves one simple message that is associated
with one switch. In contrast, synchronizing path information
requires more transmission overhead. If there are n switches,
the controller needs to transmit up to n2 messages because
the change is associated with the path information that has n2

paths at most.
Accordingly, synchronizing the path information can be

much more resource-intensive than other operations. This mo-
tivates us to minimize the overall overhead in synchronization
by reducing message transmission for path information. Dif-
ferent from strong consistency policy, an eventual consistency
policy is a specific form of weak consistency. The SDN control
plane guarantees that if there are no new updates such as link
status change, eventually all controllers will return the same
path information, which is computed based on the topology-
related status. Consequently, an eventual consistency policy
can be used for synchronizing path information to reduce the
transmission overhead.

Instead of synchronizing path information to all controllers
immediately, an eventual consistency policy allows a delay in
synchronization. The path information can be accessed during
the time with inconsistent results.

Definition 2: (Eventual Consistency Policy) After a control
plane global information update H , supposed to change the
status of the receiving controller from NO to Y ES, with an
eventual consistency policy, the control plane is available also
during the inconsistency window going from the instant when
∃!c ∈ C | pc = Y ES, and the instant when ∀c ∈ C, pc 6=
Y ES.

Naturally, the eventual consistency results in inconsistent
path information during the inconsistency window. To avoid
inconsistency effects as much as possible, each controller
should independently compute the path information based on
topology-related information to ensure consistency. However,
with the increasing scale of the network, the computation
overhead will inflate rapidly since the time complexity of all-
pairs path computation algorithm is O(n3) in general [17].

In summary, finding an equilibrium between synchroniza-
tion overhead and computation time is difficult. It motivates
us to propose a distributed architecture, which neither sig-
nificantly increases synchronization overhead nor obviously
increases computation time for parallel path computation.

III. THE PARACON ARCHITECTURE

The core objective of ParaCon is to offer a high-
performance SDN control plane for path computation with
minimal transmission overhead between multiple controllers.
Fig. 3 shows the architecture of ParaCon. Our architecture
is based on a distributed structure with an asynchronous
parallel algorithm. We will give a brief introduction to its two
components.

A. The Distributed Structure

1) Switch: The data plane consists of switches and links.
If a switch needs to forward a packet to other switches, it will
request a path between two switches from the controller.

2) Topology Abstraction: We abstract the topology using
a graph [24]. The global topology view includes both a link
view and a path view. Link view is composed of nodes and
edges, where nodes are switches and edges are links. Link
view indeed reflects the topology of the underlying network.
Path view provides information on the best route between
any two switches. Path view indeed reflects a snapshot of the
weights for the all-pairs shortest paths at a given time. As the

TNSM-2017-01406 4

algorithm progresses, the path view will be updated till the
results at all the controllers converge.

3) Controller and Allocator: The control plane is dis-
tributed. Each controller monitors the status of their
switches/links, which are allocated by the Allocator. If the sta-
tus of switches/links has changed, the controller will synchro-
nize the topology-related information to other controllers by
utilizing the strong consistency policy. Thus, all controllers are
sharing the same global topology view based on switches/links
status. Meanwhile, each controller also computes the path
information of their switches and receives the topology-
related/path information from other controllers.

Controller

Global
Topology

View

Controller

Global
Topology

View

Controller

Global
Topology

View

Controller

Global
Topology

View

The Allocator

Switch

Switch

Switch

Switch

Switch

Switch

Changing
Topology

Parallel
Computing

Parallel
Computing

Parallel
Computing

Changing
Topology

Changing
Topology

Fig. 3. ParaCon structure. All controllers are distributed and sharing the global
topology view. Switches are allocated to different controllers by an allocator,
and each controller only computes the path information of its switches. All
the controllers can compute the path together by parallel computing.

B. The asynchronous parallel algorithm

An asynchronous parallel algorithm is introduced, which
uses the eventual consistency policy to improve the efficiency
of the distributed controller design and eliminates the effects of
the inconsistency due to the eventual consistency policy. More
specifically, the design choice we choose is to synchronize
the topology-related information (link view) and the affiliation
with a strong consistency policy and to synchronize path
information (path view) with an eventual consistency policy,
with the goal of making a correct balance between transmitting
overhead and computing overhead.

Furthermore, different from existing algorithms such as
Floyd-Warshall [17] or Dijkstra [17], which are used in ex-
isting controllers, the proposed algorithm utilizes the ‘online’
property to reduce synchronization overhead. Upon a new
topology change event, it does not need to wait until the end of
updating the previous event. Instead, our algorithm can handle
the new event immediately.

IV. PARALLEL PATH COMPUTATION

As mentioned above, we synchronize the link/switch status
and the affiliation of switches with a strong consistency policy.
To this end, we use Two-Phase Commit policy to submit the

change so that all controllers can receive it. This section details
the asynchronous path computation algorithm. The algorithm
is more complicated than the synchronous one because of
its interweaving with the eventual consistency policy. We use
several steps to describe our algorithm.

A. Key notions

Switch and controller set: There are switches and con-
trollers in a Software-Defined Network. The controllers are
spatially distributed, and each switch is only controlled by
one controller. Set S stands for the switches and C stands for
the controllers. There are n switches s1, s2, s3, ..., sn in set
S, and m controllers c1, c2, c3, ..., cm in set C. The element
in vector Con(s) means the controller which controls switch
s.

Link view: Link view is a graph L(S,E) where S stands for
the switches set and E stands for the links set. All elements in
set E are two-tuples (x, y), x, y ∈ S. The link status between
two switches is expressed in an integer as the weight w. The
link view is thus represented as an adjacency matrix. La,b
stands for the weight of the link between sa and sb. If there
is no link between sa and sb, the La,b = −1.

Path view: The path view provides information on the
cost of the best (usually the shortest) route between any two
switches. A path view can also be regarded as a weighted full
graph T (S,W), where S stands for switches and W stands
for the weight of the shortest path between two switches. The
weight of the shortest path is expressed as an integer, which is
calculated based on link view L(S,E). The path view can be
implemented as an adjacency matrix as well. Ta,b stands for
the weight of the shortest route between sa and sb. Ta,∗ stands
for the weights for all the shortest routes beginning with sa.

Forwarding table: Each switch has a list of forwarding
rules to indicate the next hop of the best path to other
switches. When we compute path view, we can also get the
corresponding forwarding table for the shortest paths. The
forwarding table is described as a matrix. Fa,b represents the
next hop from sa to sb, which is the first constituent edge
along the shortest path from sa to sb.

In summary, we use 1) link view L as the topology-
related information; 2) vector Con(S) as switch-controller
association; and 3) path view T and forwarding table F as
path information.

B. Centralized approach

We discuss a centralized algorithm first. There are several
centralized algorithms for computing the paths in a network.
The well-known Floyd-Warshall [17] and Dijkstra [17] algo-
rithms have an O(n3) time complexity for the all-pairs shortest
path (APSP) problem in a network with n nodes. These
algorithms have been used in various SDN controllers. For
example, POX uses the Floyd-Warshall algorithm. However,
both algorithms are offline algorithms, i.e. they can not deal
with any link change while the algorithm is in progress. In
contrast with existing approaches, we first design an online
APSP algorithm based on Moore [17] algorithm and then
tailor it for parallel scenarios. Note that Moore algorithm is

TNSM-2017-01406 5

an optimized version of the Bellman-Ford algorithm used for
solving the single-pair shortest path (SPSP) problem.

The centralized algorithm uses a queue at each controller
to store the nodes that will be checked for path cost update.
We briefly explain how it works. If the queue is not empty,
the algorithm will fetch the head of the queue and relax it.
Relaxing a node involves updating the cost of existing paths
if the total cost can be reduced by passing through the node.
If the node can be relaxed, which means that there is at least
one path which becomes shorter by passing through this node,
its neighbors will be inserted into the queue.

The correctness of our algorithm can be proved by con-
tradiction. We can prove all-pairs shortest path are computed
when the queue is empty. We use a contradiction to give simple
descriptive proof: First, we assert the following Lemma:
shortest path is composed of shortest path. In other words,
for a shortest path x → . . . → a → . . . → b → . . . → y,
any sub-path a → . . . → b must be a shortest path. The
proof is based on the notion if there was a path shorter
than any sub-path a → . . . → b, we can replace the sub-
path with the shorter path to make the whole path shorter.
We want to prove the Proposition: all-pairs shortest paths are
computed when the queue is empty. Suppose for the sake of
contradiction that is not true: there exists one path that is not
the shortest one when the queue is empty. We assume the
path is x → . . . → u → . . . → y. With the Lemma we
proposed above, we can find u that satisfy the part of the path
x → . . . → u is the shortest path, and the other part of the
path u → . . . → y is not the shortest path. Thus, we can
always find another path u → v → . . . → y passing through
v to make it shorter. To relax v, the algorithm will put u and
its neighbor v into the queue, which is a contradiction to the
Proposition.

Example: Suppose we have 4 switches and 1 controller.
The link view and path view are shown in Fig. 4. When we
change the link status between s0 and s1 to 30. The changes
of topology view and the queue P and Q are shown in Fig. 4.

The approach can deal with link status change by just
putting switches into the queue and waiting for the result.
Because of its ‘online’ property, the time complexity is
O(p∗e∗n), where e is the number of links and p is related to
the diameter of the graph. In general, if the network diameter
is small, e.g., the diameter of some topology in data-center
is less than 3, the iterations will be completed very fast. In
contrast, some extreme topologies with a large diameter made
the p become large due to an iteration oscillation. For example,
a topology with a large linear subgraph (in which most nodes
have a degree ≤2) will lead to more iterations. Fortunately, the
graph of real network topology rarely has a linear subgraph,
and the oscillation can be with further optimizations.

The algorithm runs in a centralized way in each controller,
which has no additional node-parallelism advantages com-
pared to the other existing algorithms.

C. Asynchronous parallel path computation

Adopting a parallel path computation approach makes it all
possible for all controllers to compute the path collaboratively.

0

1

2

32

3

6

50
2

Q

0 3 2 7
3 0 5 10
2 5 0 5
7 10 5 0

0

1

2

330

3

6

52
1
3

Q

0 3 30 35
3 0 5 10
30 5 0 5
35 10 5 0

0

1

2

330

3

6

53
0
2

Q

0 3 9 35
3 0 6 11
9 6 0 5
35 11 5 0

0

1

2

330

3

6

50
1
3

Q

0 3 9 14
3 0 6 11
9 6 0 5
14 11 5 0

Fig. 4. The centralized version. There are several steps to compute the path.
The right matrix shows the weight of shortest routes between switches. We
use the blue square with the blue background to indicate that the path view
is updated by the controller. After link 0, 2 has changed to 30, we put 0
and 2 to the queue Q. The algorithm gets the head of Q and computes the
shortest route of it. After processing 0, we add the adjacent: 1 and 3 to Q
because there are some changes when processing 0. If the queue is empty,
the algorithm stops. In this example, the algorithm uses 6 steps: 0, 2, 1, 3,
0, 2 to finish the algorithm.

We assign the switches and computation load to different
controllers. However, due to the heterogeneity in computing
power and transmission overhead, the inconsistency of path
view becomes severe under this design. A straightforward
approach to consistency is to add a barrier to the queue after an
iteration has been done. The barrier is used for synchronizing
the path computation process for all controllers. If the head
of the queue is a barrier, the path computation thread will
be blocked until other controllers have reached the barrier.
However, adopting a barrier will increase the synchronization
delay substantially.

To turn our algorithm into an asynchronous one, we re-
design the barrier to trade consistency for synchronization
overhead. Thus, we employ the eventual consistency. A weak
synchronization signal, or SYNC, is introduced which allows
a controller to send its path view to other controllers without
blocking any computation thread.

Another concern is that we need to deal with the rising con-
flicts when synchronizing the path view in different controllers
with the eventual consistency. It is clear that some conflicts
must be overwritten, and some conflicts cannot be overwritten.
Otherwise, the algorithm may take extra time to compute the
path (e.g., if a new path is overwritten by an old one), and it
can significantly increase the overhead in our control plane.

TNSM-2017-01406 6

Algorithm 1: Path computation (parallel, online, asyn-
chronous)

Input: Link view L, The number of switches n, The
queue of switches need to be maintained Qid

Output: Path view T
1 SYNC is a synchronization signal that makes the current

controller synchronize the path view to other controllers.
2 while True do
3 while Queue Qid is not empty do
4 now ← Qid.head()
5 if now is a SYNC then
6 for Each controller i except current one id do
7 Send queue Qi to controller i.
8 Send Path view Ti,∗ to controller i.

9 continue
10 for Each adjacent node i of node now do
11 if Tnow,i can be relaxed then
12 Relaxing Path View Tnow,i.
13 Get t, which minimized prior calculation

Tnow,i.
14 Forwarding Table Fnow,i ← t

15 if Tnow has changed then
16 Put all adjacent nodes k into QCon(k).
17 Put SYNC into QCon(k).

We introduce the following policy for path overwriting.
1) If the received path information is newer than the existing

one, the existing one needs to be overwritten
2) If the received path information is older than the existing

one, the existing one need not be overwritten
The chronological order, either newer or older, is based on

the logical clock. This motivates us to use Vector Clock to
establish the global logical clock for each element in path view
T .

Besides newer conflicts and older conflicts, there still exist
other conflicts, which are neither newer nor older in vector
clock that should be solved manually. Fortunately, under
ParaCon design, these conflicts can be overwritten immedi-
ately, because directly overwriting path view is equivalent
to changing the sequence of the queue Q in the centralized
approach. This operation does not affect the results of the path
computation which is an iteratively based approach.

Algorithm 1 is the ParaCon parallel path computation
algorithm we proposed; it keeps the path view eventually
consistent. The algorithm is deployed into all controllers
and makes controllers compute the paths concurrently. The
algorithm has a loop and is separated into three parts. First,
it fetches the head of the queue and checks if the head is a
synchronization signal. If yes, it sends its path view to other
controllers and continues the loop. Otherwise, it relaxes its
path view of the head and puts the adjacency nodes which
are relaxed by the head to the queue. At last, it pushes a
synchronization signal into the queue. The algorithm can do
path computation in multiple controllers efficiently. During

0

1

2

330

3

6

52

Q1

0 3 2 7
3 0 5 10

2 5 0 5
7 10 5 0

0

Q0

0

1

2

330

3

6

53

Q1

0 3 30 35
3 0 6 10

30 6 0 5
35 10 5 0

1

Q0

0

1

2

330

3

6

52

Q1

0 3 30 35
3 0 6 11

30 6 0 5
35 11 5 0

0

Q0

0

1

2

330

3

6

5

Q1

0 3 9 14
3 0 6 11

9 6 0 5
14 11 5 0

1

Q0

Fig. 5. The distributed version. 4 switches are associated with 2 controllers.
We use blue color (blue queue, nodes, and matrix) to indicate controller C1
controls these elements; we also use the red color (red queue, nodes and
matrix) to indicate controller C2 controls these elements. Thus, the matrix
on the right is separated into two parts. The top two rows are maintained
by controller C1 and the bottom two rows are maintained by controller
C2. We use the square with the blue (red) background to indicate the path
view is updated by controller C1 (C2). We also use the square with the
purple background to indicate the path view is updated because of data
synchronization from other controllers. For example, in step 2, ‘6’ in C1
is synchronized from C2, and ‘35’ in C2 is synchronized from C1. They
only use 3 steps to finish the algorithm. Each controller computes the path
and synchronizes the path information with other controllers at the end of
each step.

the inconsistency window, the controller can fall back to on-
demand mode (utilizing Dijkstra/Floyd algorithm) to obtain
correct results.

Example: Suppose we have a topology with 4 switches and
2 controllers. Switch s0 and s1 are controlled by controller c0,
while s2 and s3 are controlled by c1. When we change the link
status (weight) between s0 and s2 to 30, the changes of path
view and the queue Q0, Q1 are shown in Fig. 5.

D. Convergence analysis

We use an epidemiology model [25]–[27] to analyze our
algorithm. Usually, the epidemiology model is used as an
analyzing tool for network protocols such as Gossip or RIP
(Routing Information Protocol) [28], [29].

Firstly, we define the symbols. We suppose there are n nodes
(switches) in the graph (link view), and we assume k as the
average number of nodes relaxed in the graph when SYNC is
received (from line 5 to line 9 in Algorithm 1). To put this
another way, when SYNC is received, the cost of existing paths
can be updated as they can be shorter through these k nodes.
Thus, we define β as update rate with β = k

n , (0 < β < 1).
As we have mentioned in the centralized approach, each node
has two states: it can be relaxed or cannot be relaxed. Nodes
will stay in the second state (cannot be relaxed) eventually
and will not convert into the first state (can be relaxed).

TNSM-2017-01406 7

Can be relaxed (x)
Cannot be relaxed (y)

….

t

t1 t2 te

Fig. 6. An example for explaining the convergence analysis. There are n = 9
nodes in the graph. Each node has two states: it can be relaxed (red) or cannot
be relaxed (green). There are 4 nodes relaxed at time t1, but only 3 nodes
stay in the second state (the left one may have chances to be relaxed by other
nodes). At time t2, 2 nodes relaxed in the graph, and both of them stay in
the second state. Finally, all nodes will be in the second state eventually at
the last time te. We assume kn as the number of nodes relaxed at time tn. In
this example, at least we have k1 = 3, k2 = 2. k is the average number of
nodes relaxed in the graph, which is the average number of k1, k2, . . . , ke.
Obviously, k is closely related to the topology, such as the average degree of
nodes or the diameter of the graph.

At any time t, we assume the number of nodes in the first
state is yt and the number of nodes in the second state is xt.
Thus, x0 = n, y0 = 1 when a link status change happened,
and at any time, xt + yt = n+ 1. Also, we have

dx

dt
= −βxy

and we get

y =
n+ 1

1 + ne−β(n+1)t

Obviously,
lim
t→∞

y = n+ 1

Thus, all nodes will be in the second state finally.
We assume t = clog(n), we can get

y ≈ (n+ 1)− 1

nck−2

We give an example to describe these symbols in Fig. 6.
As the update rate β is related to k, which is influenced by
the property of the graph, i.e., the diameter and the average
degree of nodes, the number of nodes that are not in the second
state at a given time t, is widely ranged. For example, k in
a full mesh topology is larger than k in a linear topology,
and obviously, the convergence time of a graph with a small
diameter is less than the time of a graph with a large diameter.
We have confirmed this conclusion by evaluation results in
section V.

V. THE PARACON PROTOTYPE

Our work is motivated by the intuition that the performance
of multi-controller solution can be improved using parallel
computing in a cluster. We believe the most exciting results
from the efficiency of the structure can be achieved in a real-
world implementation.

A. Implementation

We implemented ParaCon structure using commodity hard-
ware. The distributed control plane is based on 10 Dell Pow-
erEdge 2950 (Xeon E5405 with 2G RAM) servers. We have
four virtual machines in one server, and each virtual machine
handles one controller. Therefore, we have 40 controllers at
most. The controller is based on a modified POX, in which
we replace the module of path computation by our parallel
version. The switches are provided by Mininet [30]. We
convert topologies into a Python program, which is used as
topology input by Mininet. Due to its programmability, we
can use any topology to test our distributed control plane. We
will discuss the details as follows.

1) Path View Module: The path view module is separated
into three threads: computing the path, handling event of
topology-related information change, transmitting and receiv-
ing messages. The module uses an adjacency matrix to store
the path view. We also implement a Two-Phase Commit to
submit the change of link/switch status and assignment of
switches. The transmitting and receiving thread uses TCP
to communicate with its counterpart in other controllers. To
improve efficiency, we employ eventlet, a concurrent network-
ing Python library that provides highly scalable non-blocking
I/O [31].

2) Modified POX: We implement ParaCon based on
POX, a widely used controller in SDN research com-
munity. Two modules in POX are modified, namely,
Openflow.Discover, which controls the topology discov-
ery, and Forwarding.l2_multi which controls path com-
puting. Briefly, first, POX catches link change event by LLDP
protocol using Openflow.Discover, and send to path
view module. Next, our module sends an event of topology-
related information change to all controllers and computes the
path using parallel computing. After the computing is finished,
we get the route and modify the flow table in OpenFlow
switches using module Forwarding.l2_multi.

B. Processing path computation after link change

To evaluate ParaCon’s performance in processing link
change, we generate several full mesh topologies ranging the
number of switches from 50 to 300. With the dense topologies,
we can balance the heavy path computation load to controllers
using even switch assignment. Meanwhile, we also change
the number of controllers from 1 to 40 and assign switches
to controllers. Even if the common number of controllers is
generally less than 10 [11], we still set up to 40 controllers
in order to test its scalability. We assign each controller 1
CPU core. We randomly shut down links and measure the
time from when the link fails to when the new all-pairs path
computation is over. In Fig. 7 we can see that by increasing
the number of controllers, the computing time is reduced
significantly. However, with 40 controllers, each (PowerEdge
2950) server has to run 4 controllers, each occupying 1 CPU
cores; since each server only has 4 CPU cores, and the
hypervisor uses at least 1 core for scheduling, the performance
of each controller gets decreased. This explains the slight

TNSM-2017-01406 8

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

50 100 150 200 250 300

C
o

m
p

u
ti
n

g
 T

im
e

(m
s
)

Number of Switches

Number of Controllers:1 ParaCon
Number of Controllers:4 ParaCon
Number of Controllers:20 ParaCon
Number of Controllers:40 ParaCon

Fig. 7. Average computing time from 1 controller to 40 controllers. With the
increasing of the number of switches, more controllers can get more benefit.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

50 100 150 200 250 300

C
o

m
p

u
ti
n

g
 T

im
e

(m
s
)

Number of Switches

Number of Controllers:20 ParaCon
Number of Controllers:20 Standard POX
Number of Controllers:20 OSPF

Fig. 8. Average computing time between 3 different modes in 20 controllers.
The standard POX uses much more time in path computation by a single
controller, and the OSPF uses much more time in waiting for the finish of
last computation task.

improvement in computing time between 20 controllers and
40 controllers.

We also compare our module to other existing modules: a
standard POX module (implemented by Floyd-Warshall algo-
rithm), and an OSPF module (implemented by a distributed
Dijkstra algorithm). From Fig. 8, we can see that with an
increasing number of switches, the computing time used by
ParaCon is far less than other modules.

We count the average frequency of communication between
controllers in one controller. From TABLE I, we can see that
with an increasing number of controllers, the communication
overhead is well balanced into all controllers.

C. Comparing with ONOS

1) Setup: To study the performance gain of ParaCon over
the state-of-the-art solution, we compare it with ONOS v1.3,
a popular and stable distributed OpenFlow controller [32].

TABLE I
COMMUNICATION OVERHEAD

Number of controllers 4 20 40

Average communication times
(per link change) 19.6917 2.8478 1.4506

Note that the path computation in ParaCon is in a dif-
ferent way than is done in ONOS. ONOS uses an on-
demand mechanism of path computation, but ParaCon uses
a pre-computed one. In ONOS, the forwarding module
(fwd.ReactiveForwarding) receives the PacketIn and
fetches the source and destination address. Then it calls the
path computation modules to get a path from the source
to the destination. ONOS provides a variety of algorithms
for path computation. The default algorithm getPaths()
uses a DijkstraGraphSearch() method. Finally, the
forwarding module converts the path to flows and inserts them
into switches.

Therefore, we compare the path computation module of
ParaCon with the getPaths() (using Dijkstra by default)
method in ONOS.

In this evaluation, we do not use full mesh topology because
a Dijkstra-based module (e.g., OSPF, ONOS) is obviously
slower than ParaCon with an increasing number of nodes in a
full mesh topology. Therefore, we compare path computation
module between ParaCon and ONOS using real topologies.
We set up 4 ParaCon controllers, and we use three typical
topologies as shown in TABLE II. ‘CERNET’ and ‘USCarrier’
are provided by Topology Zoo [33]. In order to use these
topologies, we first get topology files from the Topology Zoo.
These files are on a ‘GML’/‘GraphML’ format, and we use
Python and its library iGraph to convert these files into an
adjacency matrix and edge list. For the topologies we made by
ourselves (‘Leaf-Spine’), we directly generate the adjacency
matrix and edge list. ‘CERNET’ is a small topology with a
small diameter; while ‘USCarrier’ is a large topology with
a larger diameter. The third one ‘Leaf-Spine’ is a generated
topology, which is usually used in a data center. Although it
has a large number of nodes and links, the diameter is the
smallest (only two hops from any hosts to any hosts in this
topology).

TABLE II
SIMULATED TOPOLOGIES

Topology Node Link Diameter

CERNET (2006) 41 57 6

USCarrier (Region, 2008) 158 189 35

Leaf-Spine (Core:1, Spine:50, Leaf:500) 551 25050 2

2) Path Computation Latency: It is not straightforward to
evaluate the performance between ParaCon and ONOS due to
the different mechanisms for path computation (pre-compute
v.s. on-demand). If there’s no topology change, ParaCon can
reply to the path request immediately with no extra latency

TNSM-2017-01406 9

because the results have been pre-computed. Consequently,
ParaCon will outperform ONOS in scenarios with infrequent
topology change.

For a fair comparison, we consider the case with link
failures. Suppose the network topology has changed as a result
of a link failure, the controller must re-compute the path. We
compare the average latency for answering a batch of path
requests. For ParaCon, the latency mainly relies on APSP
computation despite the batch size, because ParaCon only
computes APSP once, and it does not consume any time in
querying a path. Therefore, to evaluate the computing time
in ParaCon, we set up the topology and make a link fail,
then we measure the running time from when the link fails
to when new APSP are computed. Finally, we divide the
running time with the number of requests to get the average
computing time of one request. For ONOS, we set up the
same topology and make a link fail; then we also measure the
running time of getPaths() method for getting a path in
the new topology. The running time for one request is stable,
no matter how many requests it received. It is because the
running time of getPaths() method only depends on the
number of nodes (switches). Note that Dijkstra algorithm can
have a time complexity of O(e+n log n) if implemented with
a Fibonacci heap. However, since the original ONOS only
utilizes the Dijkstra algorithm without Fibonacci heap, and the
Fibonacci heap can take a very long time to complete some
operations in the worst case [34], we consider the general case
O(n2) [17].

From Fig. 10, we can see that ParaCon performs better
than ONOS in ‘CERNET’ and ‘Leaf-Spine’ because these
topologies have a small diameter. Although the iterations of
our algorithm are closely related to the diameter of the graph,
the increasing number of nodes and links does not reduce the
performance of the algorithm significantly. The ‘USCarrier’
is the worst case for ParaCon: if the number of queries is
smaller than 60, the efficiency of ParaCon is less than ONOS.
However, with the increase in path requests, the computing
time decreases substantially. In ‘CERNET’, the efficiency of
ParaCon exceeds that of ONOS in the early stage. In ‘Leaf-
Spine’, the ParaCon uses less time to finish the computation of
APSP than ONOS, while ONOS uses more time to compute
only a single-pair path. We believe ParaCon is more suitable
for a data center environment than ONOS, given that data
center topologies usually have a small diameter.

3) Recovery Time Upon Failure: We define recovery time
as the time between when a link fails and when a new path
is obtained. From TABLE IV, we can see that in ‘CERNET’
and ‘USCarrier’, ParaCon only increases the overhead slightly,
but in ‘Leaf-Spine’, ParaCon is much faster than ONOS. This
is because a larger number of iterations will make ParaCon
perform worse. A topology with a large diameter will make the
number of iterations larger. In the linear part of the topology,
where nodes have fewer degrees than in the non-linear part
of the topology, path change information propagates slowly. It
will increase a larger number of iterations in ParaCon. The
observation provides evidence for the result that there are
many linear topology subgraphs in ‘USCarrier’.

Although the new path upon link failure is computed,

 Changes in topology

(a) USCarrier

 Changes in topology

(b) CERNET

 Changes in topology

(c) Leaf-Spine

Fig. 9. The correctness ratio in different topologies with 30 changes in the
topology. The correctness ratio, which is defined as a percentage of consistent
results, show the consistency influence on the result. The dot Changes in
topology with green line indicate the time when our algorithm start processing
the topology changes request from the queues in controllers, while controllers
receive topology changes from switches and put them into queues in 1s
interval. The initial process, before the first topology change, makes the
correctness ratio start from 0% to 100%.

TNSM-2017-01406 10

 10

 100

 1000

 10000

 20 40 60 80 100 120 140 160 180 200

C
o

m
p

u
ti
n

g
 T

im
e

 (
m

s
)

Number of Path Computation Requests

ParaCon: USCarrier
ONOS: USCarrier

(a) USCarrier

 0.1

 1

 10

 100

 10 20 30 40 50 60 70 80 90 100

Number of Path Computation Requests

ParaCon: CERNET
ONOS: CERNET

(b) CERNET

 1

 10

 100

 1000

 10 20 30 40 50 60 70 80 90 100

Number of Path Computation Requests

ParaCon: Leaf-Spine 551
ONOS: Leaf-Spine 551

(c) Leaf-Spine

Fig. 10. The computing time per request with ONOS and ParaCon in different topologies and with 4 controllers

queues in controllers may not be empty. The controllers are
still computing until queues are empty. In other words, at the
time “Recovery Time Upon Failure”, the new path upon link
failure is computed, but not all the all-pairs shortest paths are
fully computed. Thus, the recovery time is smaller than the
computing time for the all-pairs shortest paths, as mentioned
in the previous section.

4) Convergence Upon Incoming Requests from Switches:
As the eventual consistency application is one of our con-
tributions, whose impact we want to assess precisely, we
export the intermediate results during path computation from
our program to measure the ‘dynamical correctness ratio’.
The dynamical correctness ratio is defined as a percentage
of consistent results, to show the consistency influence on the
results during the computation. A lower correctness ratio may
increase the possibility of getting a stale path. We used the
same topologies (‘USCarrier’, ‘CERNET’ and ‘Leaf-Spine’)
to perform this evaluation. For each topology, we randomly
change the topology 30 times by selecting two switches, and
randomly adding/removing the link between them with a 1s
time interval. We measure the correctness ratio during the
process. From Fig. 10, we can see that the results are con-
firming our intuition that a graph with small diameter (‘Leaf-
Spine’) gets a smaller convergence time, and a graph with a
large diameter (e.g., ‘USCarrier’ has a linear part) makes the
convergence time larger. Comparing Fig. 9 (a) with Fig. 9 (b),
we can see that most topology changes in ‘USCarrier’ make
the correctness ratio go down to 80% ∼ 90%, and it uses more
time to recover. But in ‘CERNET’, topology changes only
make the correctness ratio going down to 95%, with a faster
recovery than in ‘USCarrier’. In ‘Leaf-Spine’, the correctness
seldom changes, which is pretty stable around 100%, and the
recovering time is the fastest. In summary, a graph with a large
diameter (especially with some linear part) will lead to a large
number of iterations, which increases the amount of data that
needs to be synchronized, besides the convergence time.

5) Synchronization Data Overhead: One way to evaluate
the impact of the communication overhead is to quantify the
amount of data that needs to be synchronized. As defined in
Section II, we consider the minimum number of messages
transmitted (such as a link/switch status message) as 1 unit.
As for the previous evaluation, we measure the amount of data
synchronized in controllers with 30 random topology changes

TABLE III
THE AMOUNT OF SYNCHRONIZED DATA IN ‘CERNET’

(WITH 30 TOPOLOGY CHANGES IN 1s INTERVAL,
THE UNIT IS 1 MESSAGE DEFINED IN SECTION II)

Number of controllers 2 4 6

Total data synchronized with
30 changes (global, all controllers) 129,601 149,117 193,069

Average data synchronized with
30 changes (1 controller) 64,780 37,269 32,144

Average data synchronized with
1 change (1 controller) 2,173 1,230 1,066

in 1s interval, using the ‘CERNET’ topology. We use a number
of controllers (2, 4 and 6) to perform our evaluation. Note that
we balance switches (41 switches in ‘CERNET’) among all
controllers. We export the number of messages that need to
be synchronized in all controllers during path computation to
measure the amount of synchronized data. TABLE III reports
the results, showing that the communication overhead due
to synchronization marginally increases with an increasing
number of controllers, knowing that one would not expect
having a very high number of controllers in a common SDN
scenario. Moreover, the amount of synchronized data in one
controller is decreased with respect to the computation load,
which is well balanced among all controllers. Furthermore,
looking at the overhead due to one single change (the last
row in the table), it is smaller than 1, 681 units (equal to n2

with n = 41, which composes the whole path view) when the
number of controllers equals to 4 and 6. The overhead is a bit
larger than 1, 681 when the number of controllers equals to 2
(this overhead is introduced by Vector Clock and overwritten,
as discussed in Section IV.C)

TABLE IV
RECOVERY TIME UPON FAILURE

Topology CERNET USCarrier Leaf-Spine

ParaCon Recovery Time (ms) 110.7091 175.2438 115.9289

ONOS Recovery Time (ms) 50.6363 107.5338 526.5933

TNSM-2017-01406 11

VI. RELATED WORK

1) Large-scale graph computation: As the scale of many
graphs, e.g. web graphs or social network graphs, can reach
billions of nodes and trillions of edges, data processing
over such graphs becomes a concern. Some research such
as GraphChi [35] and BBQ [36] enables large-scale graph
computation using just one PC. Obviously one single PC
has only limited scalability in large-scale graph computation.
Thus, Pregel [37] presents a parallel computation model for
solving this task. Other solutions such as GraphX [38] and
PowerGraph [39] also focus on increasing the performance
of large-scale graph computation. However, most of them are
BSP-based algorithms, which are inflexible in networking path
computation.

2) Distributed shortest path algorithm: The shortest path
block is the key one of many network applications, such
as related to routing or failure recovery. Most of distributed
shortest path algorithms are variations of either the Dijkstra
or Bellman-Ford algorithm. J. K. Antonio [40] proposed an
O((n/p) log n) (n is the number of nodes, p is the number of
processors for each node) algorithm for solving all-pairs short-
est path problem on balanced hierarchically clustered (BHC)
topology. Hence, S. Zhu and G. M. Huang [41] proposed
to adopt a newer algorithm for solving the multiple origins
shortest path problems (MOSP) on hierarchically clustered
topology, where m is an integer related to the topology. It
is worth mentioning that there is also a work [42] designed
for computing Single Pair Shortest Path (SPSP) in a High
Performance Computer (HPC) with 500, 000+ CPU cores
system. Moreover, some approximation algorithms can speed
up the shortest path computation. Suppose D is the diameter
of the graph and n is the number of nodes in the graph,
B. Patt-Shamir and C. Lenzen [43] proposed a distributed
approximation algorithm with Õ(n(1/2)+(1/2k) + D)-time,
(8kdlog(k + 1)e − 1)-approximation (k ≥ 1) for single-pair
shortest path and Danupon [44] give an algorithm with a
smaller time complexity Õ(n(1/2)D(1/4)+D)-time, (1+o(1))-
approximation to solve the weighted single-pair shortest path
computation. However, these algorithms are designed for a
special topology or getting approximation results, which are
less useful for logically centralized SDN routing environment.

3) SDN graph modeling: In SDN environments, a net-
work can be represented as a graph. SDN controllers thus
can compute the network information by utilizing the graph
algorithms [24]. Most of the current SDN controllers such as
POX, OpenDaylight and ONOS directly use Dijkstra or Floyd
algorithm for path computation. Apparently, such designs lack
scalability when processing all-pairs shortest path due to the
O(n3) time complexity.

4) Consistency model: The consistency problem is a no-
table trade-off in the distributed system. As for the distributed
SDN controller, the consistency model can either be coarse-
grained or fine-grained. Under coarse-grained design, con-
sistency is guaranteed by controllers and is transparent to
applications. For example, HyperFlow [7] manipulates a pub-
lish/subscribe system and Kandoo [8] utilizes a hierarchical
design (root controller and local controller) for maintaining

the consistency of network information. Although ONOS [11]
employs a Gossip protocol, which relaxes the constraints in
data consistency of topology-related information, it cannot
provide effective optimization for some particular operations
like path computation. Moreover, ONOS delegates the com-
plexity of maintaining the consistency to an external system
while using an external system also increases the management
difficulty. A fine-grained consistency policy is firmly corre-
lated to a particular algorithm or application. A proper fine-
grained consistency model can increase the synchronization
efficiency significantly. That is the reason why Onix [10] does
not synchronize network information in a transparent way for
the SDN programmers, who have to create and maintain the
network information by themselves explicitly.

VII. CONCLUSION

In this paper, we proposed ParaCon as a solution to address
the performance bottleneck in the SDN control plane. To
accelerate the path computation, we designed a set of mech-
anisms that utilize the untapped parallel computing potential
of a multi-controller control-plane system. More specifically,
ParaCon integrates the following features into an overall
design: first, it exploits an asynchronous distributed algorithm
for path computation in SDN; second, it reduces the trans-
mission overhead by utilizing a hybrid consistent model. The
evaluation results show that our design can achieve higher
performance than legacy systems. Furthermore, we analyzed
the convergence time, both theoretically and experimentally,
by comparing ParaCon with the state-of-the-art solutions. The
results demonstrated the effectiveness of our architecture.

For future work, we are interested in integrating the design
into commodity Open-Source SDN controllers, such as Open-
Daylight or ONOS. Also, we plan to leverage the power of
heterogeneous computing to further improve the performance.

ACKNOWLEDGMENTS

This work was partially funded by the 863 program (Grant
no. 2015AA016106), the EU FP7 IRSES MobileCloud Project
(Grant no. 612212) and the ANR Reflexion project (Grant no.
ANR-14-CE28-0019).

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation
in campus networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, 2008.

[2] Open network foundation homepage. [Online]. Available: http:
//www.opennetworking.org

[3] J. Hu, C. Lin, X. Li, and J. Huang, “Scalability of control planes for
software defined networks: Modeling and evaluation,” in Proc. IEEE
IWQoS, 2014, pp. 147–152.

[4] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker, “NOX: towards an operating system for networks,” ACM
SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, pp. 105–110, 2008.

[5] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable Flow-based
Networking with DIFANE,” in Proc. ACM SIGCOMM, 2010, pp. 351–
362.

[6] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “DevoFlow: Scaling Flow Management for High-
performance Networks,” in Proc. ACM SIGCOMM, 2011, pp. 254–265.

[7] A. Tootoonchian and Y. Ganjali, “Hyperflow: a distributed control plane
for openflow,” in Proc. USENIX INM/WREN, 2010, pp. 3–3.

TNSM-2017-01406 12

[8] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: a framework for efficient
and scalable offloading of control applications,” in Proc. ACM SIG-
COMM HotSDN, 2012, pp. 19–24.

[9] S. H. Yeganeh and Y. Ganjali, “Beehive: Towards a Simple Abstraction
for Scalable Software-Defined Networking,” in Proc. ACM SIGCOMM
HotNets. ACM, 2014, p. 13.

[10] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama et al., “Onix: A Dis-
tributed Control Platform for Large-scale Production Networks.” in Proc.
USENIX OSDI, 2010, pp. 1–6.

[11] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar,
“ONOS: Towards an Open, Distributed SDN OS,” in Proc. ACM
SIGCOMM HotSDN, 2014, pp. 1–6.

[12] A. Panda, W. Zheng, X. Hu, A. Krishnamurthy, and S. Shenker, “Scl:
Simplifying distributed sdn control planes,” in Proc. USENIX NSDI,
2017.

[13] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with
a globally-deployed software defined wan,” in Proc. ACM SIGCOMM,
2013, pp. 3–14.

[14] B. Davie, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. Gude, A. Pad-
manabhan, T. Petty, K. Duda, and A. Chanda, “A database approach
to sdn control plane design,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 47, no. 1, pp. 15–26, 2017.

[15] M. Wichtlhuber, R. Reinecke, and D. Hausheer, “An sdn-based cdn/isp
collaboration architecture for managing high-volume flows,” IEEE
Trans. Networking and Service Management, vol. 12, no. 1, pp. 48–60,
2015.

[16] H. Yamanaka, E. Kawai, and S. Shimojo, “[demo]scaling-up flow path
computation for a large number of virtual sdn/nfv infrastructures,” in
Proc. ACM SIGCOMM SOSR, 2015.

[17] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction
to Algorithms, 2nd ed. McGraw-Hill Higher Education, 2001.

[18] M. Goudreau, K. Lang, S. Rao, T. Suel, and T. Tsantilas, “Towards
efficiency and portability: Programming with the bsp model,” in Proc.
ACM SPAA, 1996, pp. 1–12.

[19] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
amazon’s highly available key-value store,” vol. 41, no. 6, pp. 205–220,
2007.

[20] C. Mohan, B. Lindsay, and R. Obermarck, “Transaction management in
the r* distributed database management system,” ACM TODS, vol. 11,
no. 4, pp. 378–396, 1986.

[21] L. Lamport et al., “Paxos made simple,” ACM Sigact News, vol. 32,
no. 4, pp. 18–25, 2001.

[22] M. Canini, P. Kuznetsov, D. Levin, S. Schmid et al., “A distributed and
robust sdn control plane for transactional network updates,” in Proc.
IEEE INFOCOM, 2015, pp. 190–198.

[23] K. Dashdavaa, S. Date, H. Yamanaka, E. Kawai, Y. Watashiba,
K. Ichikawa, H. Abe, and S. Shimojo, “Architecture of a high-speed
mpi bcast leveraging software-defined network,” in Proc. Springer Euro-
Par, 2014, pp. 885–894.

[24] R. Raghavendra, J. Lobo, and K.-W. Lee, “Dynamic graph query
primitives for sdn-based cloud network management,” in Proc. ACM
SIGCOMM HotSDN, 2012, pp. 97–102.

[25] M. Jelasity and A. Montresor, “Epidemic-style proactive aggregation in
large overlay networks,” in Proc. IEEE ICDCS, 2004, pp. 102–109.

[26] I. Gupta, A.-M. Kermarrec, and A. J. Ganesh, “Efficient and adaptive
epidemic-style protocols for reliable and scalable multicast,” IEEE
Trans. Parallel and Distributed Systems, vol. 17, no. 7, pp. 593–605,
2006.

[27] J. Holliday, R. Steinke, D. Agrawal, and A. El Abbadi, “Epidemic
algorithms for replicated databases,” IEEE Trans. Knowledge and Data
Engineering, vol. 15, no. 5, pp. 1218–1238, 2003.

[28] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE Trans. Networking, vol. 14, no. SI, pp. 2508–2530,
2006.

[29] M. Haridasan and R. Van Renesse, “Gossip-based distribution estimation
in peer-to-peer networks.” in Proc. USENIX IPTPS, 2008, p. 13.

[30] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proc. ACM SIGCOMM
HotNets, 2010, p. 19.

[31] Eventlet. [Online]. Available: http://eventlet.net/
[32] Onos version 1.3. [Online]. Available: http://onosproject.org/
[33] Topology zoo. [Online]. Available: http://www.topology-zoo.org

[34] M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E. Tarjan, “The
pairing heap: A new form of self-adjusting heap,” Algorithmica, vol. 1,
no. 1, pp. 111–129, 1986.

[35] A. Kyrola, G. Blelloch, and C. Guestrin, “Graphchi: Large-scale graph
computation on just a PC,” in Presented as part of the 10th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
2012, pp. 31–46.

[36] Q. Xu, X. Zhang, J. Zhao, X. Wang, and T. Wolf, “Fast shortest-path
queries on large-scale graphs,” in Proc. IEEE ICNP, 2016, pp. 1–10.

[37] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in Proc. ACM SIGMOD, 2010, pp. 135–146.

[38] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica, “Graphx: A
resilient distributed graph system on spark,” in Proc. ACM GRADES,
2013, p. 2.

[39] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Pow-
ergraph: Distributed graph-parallel computation on natural graphs,” in
Proc. USENIX OSDI, 2012, pp. 17–30.

[40] J. K. Antonio, G. M. Huang, and W. K. Tsai, “A fast distributed shortest
path algorithm for a class of hierarchically clustered data networks,”
IEEE Trans. Computers, vol. 41, no. 6, pp. 710–724, 1992.

[41] S. Zhu and G. M. Huang, “A new parallel and distributed shortest
path algorithm for hierarchically clustered data networks,” IEEE Trans.
Parallel and Distributed Systems, vol. 9, no. 9, pp. 841–855, 1998.

[42] V. T. Chakaravarthy, F. Checconi, P. Murali, F. Petrini, and Y. Sabharwal,
“Scalable single source shortest path algorithms for massively parallel
systems,” IEEE Trans. PDS, vol. 28, no. 7, pp. 2031–2045, 2017.

[43] D. Nanongkai, “Distributed approximation algorithms for weighted
shortest paths,” in Proc. ACM STOC, 2014, pp. 565–573.

[44] B. Patt-Shamir and C. Lenzen, “Fast Routing Table Construction Using
Small Messages,” in Proc. ACM STOC, 2013, pp. 381–390.

Kun Qiu received his Bachelor Degree from Fudan
University. He is now a Ph.D. student at Fudan
University, His research interests include computer
network and computer architecture.

Siyuan Huang received his Bachelor Degree from
Zhejiang University. He is now a graduate student at
Fudan University. His research interest is software-
defined networking (SDN), especially hybrid SDN
and network convergence.

Qiongwen Xu received her Bachelor Degree from
Central China Normal University. She is now a
graduate student at Fudan University. Her research
interest is software-defined networking (SDN), es-
pecially in routing optimization.

TNSM-2017-01406 13

Jin Zhao received his B. Eng. Degree in computer
communications from Nanjing University of Posts
and Telecommunications, China, in 2001, and the
Ph.D. Degree in computer science from Nanjing
University, China, in 2006. He joined Fudan Uni-
versity in 2006. He stayed at University of Mas-
sachusetts Amherst for 1 year as a visiting scholar in
2014. His research interests include software defined
networking, media streaming and network coding
theory. He is a member of IEEE and ACM.

Xin Wang received his Bachelor Degree and the
Master Degree from Xidian University, Xian, China,
in 1994 and 1997 respectively, in Information The-
ory and Communications. He received the Ph.D.
Degree from Shizuoka University, Japan in 2002,
in Computer Science. Since 2002, he has been with
the School of Computer Science at Fudan University,
where he is currently a full professor.

Stefano Secci received the M.Sc. Degree in commu-
nications engineering from Politecnico di Milano,
Milan, Italy, in 2005, and a dual Ph.D. Degree in
computer science and networks from Politecnico di
Milano and Telecom ParisTech, France. Now he
is an Associate Professor at the Universite Pierre
et Marie Curie (UPMC - Paris VI - Sorbonne
Universites), Paris, France. Webpage: https://lip6.fr/
Stefano.Secci.

