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a b s t r a c t 

The Multipath Transport Control Protocol (MPTCP) is undergoing a rapid deployment after a recent and 
quick standardization. MPTCP allows a network node to use multiple network interfaces and IP paths 
concurrently, which can lead to several advantages for the user in terms of performance and reliability. 
In this paper, we describe an MPTCP implementation in the Network Simulator 3 (ns3), comparing it with 
both the Linux implementation and previous ns3 implementations. We show that it is compatible with 
the Linux implementation and that it has a desirable similar behavior in traffic handling. Our goal is 

to allow researchers to develop and evaluate new features of MPTCP using our simulator in a much 

faster way than they would with a kernel implementation, hence boosting MPTCP research.

© 2017 Elsevier B.V. All rights reserved.
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. Introduction

Nowadays modern mobile devices are usually equipped with

everal network interfaces: it may be WiFi and Ethernet for lap-

ops, or WiFi and cellular for smartphones. In this context, a user

ay want to leverage these different interfaces into using concur-

ently several paths to achieve the following goals: 

1. Seamless mobility: with legacy TCP, losing an IP address

means losing active TCP sessions, which in a mobility sce-

nario translates into a communication delay necessary to

setup a new connection. With multipath transport, one

device can establish several connections in advance and

(re)transmit data on alternate paths when there is a partial

or total failure on one path (see [1] ). Bandwidth aggrega-

tion: The ability to aggregate the bandwidth of several links

is also very appealing and appears as the most anticipated

feature.

2. Higher confidentiality: if a flow of data is split over several

paths, it may become harder for an attacker to reconstitute

the whole connection flow.

3. Lower response time: sending duplicated packets on several

paths can increase the probability for the data to follow un-

congested paths.

More elaborate features can emerge from combining some of

hese techniques. For instance, a smartphone user may enable both
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TE and WiFi interfaces to benefit from the mobility advantage,

nd at the same time to limit the cellular throughput to save some

attery or money. Or one may choose to trade some of the aggre-

ation benefit in exchange for higher confidentiality. 

Yet a multipath protocol needs to address several problems to

each the previous goals and deliver better than singlepath perfor-

ance. Multipath communications lead to an increased occurrence

f out-of-order packet deliveries, which may generate worse per-

ormance than single path protocols [2] , besides questioning the

air usage of the network. Information such as the Round Trip Time

RTT) or the packet sequence number are critical to mitigate these

roblems, and are already available at the transport layer. While

he application layer could provide a similar or even better service,

aving a standard multipath transport protocol allows to spread

uch knowledge and should ease multipath communications de-

loyment. 

MPTCP is such a multipath transport protocol that attempts to

ddress these issues in a backward compatible way. As any new

nternet protocol, MPTCP has to face an ossified Internet whose

any middleboxes are typically configured to block any unknown

rotocol extension or any new protocol. MPTCP must also address

he fairness issue, i.e., it should not get too much more bandwidth

ompared to legacy users, otherwise the protocol could be blocked

y Internet providers. At the same time MPTCP ambitions to be as

east as good as TCP in terms of throughput, which can prove chal-

enging in some environments. 

In the following, in Section 2 we describe MPTCP, present-

ng its main components, and describing its state machine. In

ection 3 we motivate our effort, det ailing our implement ation

http://dx.doi.org/10.1016/j.comnet.2017.02.002
http://www.ScienceDirect.com
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Fig. 1. MPTCP: a shim layer in the stack. Subflows can share the IP address (using 

a different port) or have different IPs. 
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characteristics, and describing our design methodology and com-

paring it with existing implementations. Section 4 reports an ex-

perimental evaluation of the simulator. We open source the code

of the simulator in [18] . 

2. Multipath TCP 

MPTCP is a TCP extension formalized in RFC 6824 [3] ; the

MPTCP working group at the Internet Engineering Task Force (IETF)

was formed in October 2009; since the beginning, it emphasizes

backwards compatibility with the network and the applications.

This is an aspect to keep in mind when looking at some design

decisions that may appear counter-intuitive at first (for instance

the creation of an additional sequence number space or the re-

quirement to wait for two levels of acknowledgements before be-

ing authorized to free the buffers). As a result, TCP applications

can run unmodified with MPTCP. This differs from the Stream Con-

trol Transmission Protocol (SCTP) [4] , a previous IETF effort, that

provides more features but whose deployment is impeded by the

many middleboxes on the Internet,blocking unknown protocols. 1 

MPTCP should be pareto optimal, i.e., it should not harm any

TCP user while improving the situation for MPTCP users. Achiev-

ing pareto optimality is still a problem for MPTCP [2] though im-

provements have been made [6] . Several techniques exist in the

literature, such as watching the loss correlation between subflows

to infer if they shared a bottleneck, but such methods make as-

sumptions about the network that prevent them from being holis-

tic. The conservative approach is to consider that all subflows share

the same bottleneck: this is the so-called resource pooling princi-

ple [7] . Fairness violation and out-of-order packet delivery are two

problems that any multipath protocol shall to solve. 

2.1. High level design of MPTCP 

MPTCP consists in a shim layer, as represented in Fig. 1 . It is

built between the application and the TCP stack that unifies sev-

eral TCP connections, called “subflows” in the MPTCP context. A

subflow is a TCP connection characterized by a tuple (IP source , TCP

port source , IP destination , TCP port destination ) and is assigned a unique

subflow id generated by the MPTCP stack. MPTCP uses such a

subflow identifier to convey subflow related advertisements; it

does not use the IP addresses as identifiers because they can be

rewritten by external middleboxes. One can alternatively define an

MPTCP connection as a set of one or many subflows aggregated to

feature at least the same set of services as a singlepath TCP com-

munication. 
1 SCTP is now deployed mainly thanks to the WebRTC protocol but is tunneled 

over UDP packets [5] . SCTP proposed to opt-out some TCP services on a per con- 

nection basis such as in-order delivery. Ordering is indeed unnecessary when down- 

loading an archive, because head-of-line blocking may slow down the connection. 

s  

s  

s

MPTCP signals information with its peer through the use of

CP options. To reorder traffic striped on several subflows, MPTCP

dds a global Data Sequence Number (DSN) namespace shared

mong subflows and exchanged through TCP options. The DSN are

hen mapped to relative Subflow Sequence Number (SSN), i.e., the

CP subflow sequence numbers, through the Data Sequence Sig-

al (DSS) (Data Sequence Signaling), and are acknowledged with

hat we refer to as Data Ack in the rest of this paper, exchanged

hrough the same DSS option. 

The RFC 6182 [8] lists a few functional goals that are deemed

andatory for a wide deployment of the protocol: 

1. MPTCP must support the concurrent use of multiple paths.

The resulting throughput should be no worse than the

throughput of a single TCP connection over the best among

these paths. 

2. MPTCP must allow to (re)send unacknowledged segments on

any path to provide resiliency in case of failure. It is advised

to support “break-before-make” scenarii, e.g., buffer the data

when a (mobile) user loses temporarily all connectivity, to

allow resuming the communication as soon as a new sub-

flow gets available. 

[8] also lists three compatibility goals: 

• The applications must be able to work with MPTCP without be-

ing changed, for instance via an operating system upgrade. It

also implies that MPTCP keeps the in-order, reliable, and byte-

oriented delivery. 2 

• MPTCP should work with the Internet as it is composed today,

that is with middleboxes blocking unusual payloads or even

modifying the payload such as internet accelerators, Network

Address Translator (NAT) etc. The best way to achieve this is

to appear as a singlepath TCP flow to the middleboxes. Hence

MPTCP relies on TCP options for signaling. TCP option space is

scarce (40 bytes maximum per packet). 

• MPTCP should be fair to single path TCP flows at shared bottle-

necks, i.e., not be greedier. At the same time, MPTCP still shall

perform better. 

As part of the network compatibility goal, MPTCP should pro-

ide an automatic way to negotiate its use, and upon failure of

uch a negotiation, fall back to legacy TCP. This fall back is also

ossible even after successful completion of the MPTCP handshake,

n case no data ack is received during a certain time, or checksums

re invalid. 

.2. Connection process 

nitiation. Supposing that the MPTCP extension is not disabled,

nd that the application remained unchanged, the MPTCP connec-

ion is initiated through the TCP socket interface via the connect

ystem call. As per the MPTCP Linux system nomenclature, we call

his first TCP connection the master connection. This call must gen-

rate a random key to be used during the TCP handshake as can be

een in Fig. 2 . This key is later hashed and used by MPTCP to au-

henticate additional subflows. 

Once other subflows are established, the master subflow can be

emoved as any other and holds no specificity. Upon SYN reception,

he server generates also a key which is reflected by the client in

he final TCP handshake ack. This allows the server to operate in a

tateless mode. Indeed an MPTCP stack needs to allocate more data

tructures than a legacy TCP connection to save the key, the list of
2 Nevertheless an extended API is being standardized in [9] for applications to 

queeze more out of MPTCP. 
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Fig. 2. Illustration of used notations for two subflows. 
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ubflows, their identifiers etc. For the sake of efficiency, the alloca-

ion of these data structures can be deferred until the moment the

PTCP negotiation succeeds. 

ddition of other subflows. The host can open a new subflow as

oon as a DSS option with a data ack is received, which requires

t least two RTTs since the very first handshake. Hence the choice

f the initial subflow can have an impact on the throughput, es-

ecially for short connections. Both the client and the server can

reate new subflows. Either the host initiates the new connection,

r it advertises a couple (IP, port) that the peer can choose to con-

ect to. The policies are local; for instance, in the Linux implemen-

ation, the server advertises its ports, but it lets the subflow cre-

tion initiative to the client because of NATs that could invalidate

he client-advertised addresses. It is worth noting that several sub-

ows can be created from the same IP address with different ports.

his may prove worthwhile to exploit the network path diversity,

n case the network runs load-balancing [10] . There is no standard

rocedure and the subflow opening/closing strategy depends on lo-

al policies. It may be wiser to let clients initiating the connection

hough, due to the presence of NATs. Subflow control can also be

elegated to a third party controller [10,11] . 

.3. Congestion control 

TCP fairness can be a controversial topic: a malicious TCP user

ho wants more bandwidth can create additional TCP connections

as many download accelerators do) to increase its share at the

ottleneck. In the following, we consider well-behaved hosts since

his is the usual framework priori to any congestion control rea-

oning. 

Without specific congestion control algorithm, a multipath

ransport protocol would adopt a similar behavior at the bottle-

eck since being an end-to-end technology, it has no information

ver the topology. TCP users would see their bandwidth decrease

nd MPTCP deployment hindered. Under these conditions, how to

chieve both fairness and higher throughput? Knowing if two sub-

ows share a same resource (e.g., a link or a router) would allow to

un a congestion control on sets of subflows. Clustering techniques,

.g., [12] and [13] , have been developed to detect bottlenecks based

n delay and loss patterns. Such techniques need to be foolproof as

alse negatives generate bandwidth stealing. This is a difficult task

ithout the help from the network, as the heuristics need to work
cross a wide range of configurations, such as the router buffering

olicies. Their efficiency is also difficult to evaluate for the same

easons but even if a perfect scheme existed, relying on it depends

n the fairness notion. 

MPTCP embraces the resource pooling principle, which makes

 collection of resources behave like a single pooled resource. This

onservative approach considers that all subflows share a bottle-

eck and that their additive component should be coupled. 

MPTCP congestion control algorithms modify the congestion

voidance phase of the TCP congestion control only: the decrease

hase remains the same as in TCP. Several congestion control al-

orithms have been proposed such as Linked-Increase Algorithm

LIA [14] ) or Opportunistic LIA [6] (OLIA). They couple the increase

PTCP congestion window with the congestion window of its sub-

ows: 

• w i = w i + min ( a 
w i 

, 1 
w r 

) per acknowledgement on path i . 

• w i = 

w i 
2 per congestion event on path i . 

ith a being an aggressiveness factor updated once in a while (per

indow a priori) and equal to: 

 = 

max r ( 
w i 

rt t 2 
i 

) 

∑ w i 

rtt i 

2 
∗

∑ 

i 

w i 

ith : 

w i the window size on path i 
rtt i the round trip time on path i 

(1) 

The min in the first equation ensures that MPTCP is never more

ggressive than TCP on a single path. It is important to remember

hat the advertised receive window is shared between subflows.

s such, there may be cases where a subflow is capable of send-

ng data, i.e., it has a free transmission window but there is no

ore space in the receive window - phenomenon known as Head-

f-Line (HoL) blocking. This may happen when a feature called

pportunistic retransmission is implemented [15] , which in such

ases retransmits data hoping to solve the HoL issue. Opportunistic

etransmission can be used in conjunction with slow subflow pe-

alization: if a subflow holds up the advancement of the window,

PTCP can reduce forcefully its congestion window along with its

low start threshold. 

.4. Scheduling 

The scheduler chooses when and on which subflow to send

hich packets. A good scheduler should attempt to reduce the

robability of HoL blocking. For instance, opportunistic retransmis-

ion and penalization are reactive mechanisms that waste band-

idth. The Linux implementation currently includes two sched-

lers: 

• The ‘default’ scheduler sorts subflows according to their RTT

and sends packets on the first subflow with free window. 

• A round robin scheduler that forwards packets in a cyclic man-

ner on the first subflow with free window available. 

Retransmission timeouts (RTO and delayed acks) need to be

hosen with great care since a subflow RTO or out of order ar-

ivals can provoke HoL blocking faster than in the single path case,

s also explained in [16] . For instance, some of the state of the art

chedulers propose to send packets out of order so that they can

rrive in order [17] . 

.5. MPTCP state machine 

As a preliminary step before implementing MPTCP in ns3, we

eeded to formalize the current status of the standard to have a

recise specification. 
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Fig. 3. MPTCP state machine. 
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In particular, we had to extend the connection closure Finite

State Machine (SM) described in [3] to cover the whole protocol,

i.e., while the active and passive close are presented as a diagram

in [3] , we extended the visual description to our interpretation

of the standard. The result is depicted in Fig. 3 , which represents

what appears to be the single full representation of the finite state

machine of MPTCP. 

While being similar to TCP, we chose to split the ESTABLISHED

state into the M_ESTA_WAIT and M_ESTA_MP states to distinguish

between a state where MPTCP waits for a first Data acknowledge-

ment (DACK) and a state where MPTCP can create additional sub-

flows. We also mapped for each MPTCP state the states in which

TCP subflows can be, as well as which MPTCP options could possi-

bly be sent. The tabulated study report is available online [18] . 
.6. Associated challenges 

We already mentioned a few challenges in the previous sec-

ions. Our stance is that MPTCP is already robust enough by design

o fulfill the network and application compatibility goals (as con-

rmed by the commercialization of successful MPTCP-based prod-

cts developed by several large corporations such as OVH, Apple,

itrix). 

About the requirements described in Section 2.1 , the current

pecification and implementations adequately meet the resiliency

equirement; when one link fails, retransmission of the packets is

traightforwardly done on another subflow as per the basic sched-

ler behavior. The main obstacle to MPTCP deployment today re-

ains the throughput and fairness goals. While there are examples
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f increased throughput through the use of MPTCP (e.g., the fastest

CP connection was done with MPTCP [19] ), this requires specific

onditions such as enough buffer and homogeneous paths; there

re also cases, as in [2] , where MPTCP performs worse than TCP on

he best available path. This does not comply with the objective of

oing always better than TCP. MPTCP must acquire the intelligence

o distinguish when and which subflows to use to perform well.

eaching this goal is made even harder with the throughput goal

ince MPTCP is less aggressive than TCP on every subflow. 

Path management is also a problem - though less studied -

ince creating many subflows with the hope of exploiting path

iversity can hurt the performance (due to competition between

ubflows [10] ). The problem is two-fold: 

1. transport protocols being end-to-end, hosts do not know the

topology; 

2. even if the hosts knew the topology, they cannot enforce a

forwarding path. Segmented routing may provide a partial

solution in this regard. 

As for wide area networks topologies, there usually is more

han one path between source and destination. It can be because

f intra-domain redundancy or because several ISPs compete on

he same path. In this direction, there is ongoing work to ex-

hange topology information between nodes that could solve point

) above, for instance Path Computation Elements or at the ALTO

Application Layer Traffic Optimization) working group [20] . 

Topology is a critical information that operators may not be

ond of leaking, hence some approaches look at how to provide an

verview of the topology through abstraction techniques [21] . From

he previous technologies, a host can deduce an optimal number of

ubflows, but this may prove pointless if the forwarding problem

point 2) above) is not solved. As such, solutions in locally con-

rolled environments such as an SDN (Software Defined Network)

atacenter seem appropriate. 

Thus it is advised to use the correct number of subflows

MPTCP can create more subflows but mark them as backup sub-

ows), no more no less, to reach the optimal throughput. The path

anagement problem also explains why many of the commercial

roducts embed MPTCP into proxy middleboxes (Gigapath, 3 OVH, 4 

essares 5 ); certainly they grant the benefits of MPTCP to legacy

lients, but the middleboxes can also be better informed of the

vailable path diversity thanks to their topological position. 

Multipath transport incentives are not limited to throughput

ggregation or reliability goals, and as such one could imagine

odes where the cost of an interface can affect packet schedul-

ng over interfaces as suggested in [22] . The cost could be given by

he energy consumption of the interface or depending on its fare

ate. The user could even set trade-off levels such as losing 30% of

he optimal throughput if it allows for a fairer distribution between

ubflows. LEDBAT-multipath [23] is one of such alternative modes.

nformation that used to be of little interest with one path are now

elpful in a multipath context. For instance, if the MPTCP layer is

ware of the data emission profile, it can adapt the scheduling to

avor throughput (bulk transfer) or schedule packets so that they

rrive early at the receiver (at the end of a burst). 

. An MPTCP implementation in ns3 

A few MPTCP implementations already exist, some of which

lready used in production environments such as Apple’s voice

ecognition system Siri. Among the implementations, the Linux
3 https://www.ietf.org/proceedings/91/slides/slides-91-mptcp-5.pdf . 
4 https://www.ovhtelecom.fr/overthebox/ . 
5 http://www.tessares.net . 
ne 6 is the oldest one with some impressive achievements (Fastest

CP connection [19] ) and likely used in all the commercial prod-

cts presented in Section 2.6 . Work is also done to improve the

PTCP support on other operating systems such as Solaris 7 and

reeBSD. 8 Hence asking why developing a MPTCP simulator is a le-

itimate question. In this section we describe our motivations and

he technical aspects of our implementation. We also present a few

ools we developed to ease testing and analysis of related MPTCP

races. 

.1. Presentation of ns3 and direct code execution 

Ns3 [24] is a popular network simulator in the networking re-

earch community as is confirmed by the two previous implemen-

ations. Its success is likely due to its General Public License and

lso because the technical base as well and the support team are

rustworthy. It is best described as a C++ discrete time simulator,

.e., events are scheduled in the simulator time and once all events

t the specific time are processed, the simulator updates the cur-

ent time with the time of the next scheduled events. It allows the

imulator clock to be independent from the wall clock, most of the

imes faster. 

Direct-Code Execution (DCE) is an ns3 extension that allows to

oad applications compiled with specific options (as well as a fork

f the Linux kernel [25] ) within the ns3 environment. The advan-

age is that the simulation runs in discrete time and thus provides

esults independently of the host CPU. As a comparison, the fidelity

f mininet, 9 a container-based simulator, decreases inversely with

he processing load [26] . 

.2. Why an MPTCP simulator? 

Simulation traditionally comes handy to (i) run experiments

aster, and to (ii) focus the research effort s on the algorithmic part

ather than implementation complexity. 

Experimenting with MPTCP in the real world can be complex

epending on the scenario. Mobility is a major use case and usu-

lly requires access to cellular (4G) and WiFi interfaces. Not only

oes it have a cost but 4G is not ubiquitous and experiments in-

olving wireless channels are time consuming because of the vari-

bility and care their setup require. Other experiments may want

o assess the behavior under realistic circumstances in terms of

ubflow latencies, and one way to do so is to rely on accurate path

ime and latency measurements (e.g., to measure one-way delays

s in [27] ). Exploiting such traces can prove very challenging in

eal setups, but are straightforward in discrete time simulators. 

Besides the obvious huge time gain in both experiments de-

ign and execution time, focusing the research effort on the algo-

ithmic details, e.g., the congestion control algorithm, the sched-

ler, the buffer dimensioning, is also an important factor when de-

iding whether using a simulator or a real operating system im-

lementation, especially when looking back at the number of use

ases described in Section 2.6 . Implementing such solutions into

urrent operating systems usually means adding the features into

he kernel. While simulation results may lose fidelity compared to

 reasonable kernel implementation, we argue that kernel devel-

pment complexity can generate bad implementations that cannot

e easily verified and may not be representative of expected re-

ults/analytical models. In those cases, using a simulator model be-

orehand is reasonably faster. The usage of an MPTCP simulator can

ase reproducibility and can help realize problems ahead of time. 
6 http://multipath-tcp.org . 
7 https://mailarchive.ietf.org/arch/msg/multipathtcp/ugMIu566McQMn8YCju-CTjW9beY . 
8 http://caia.swin.edu.au/urp/newtcp/mptcp . 
9 http://mininet.org/ . 

https://www.ietf.org/proceedings/91/slides/slides-91-mptcp-5.pdf
https://www.ovhtelecom.fr/overthebox/
http://www.tessares.net
http://multipath-tcp.org
https://mailarchive.ietf.org/arch/msg/multipathtcp/ugMIu566McQMn8YCju-CTjW9beY
http://caia.swin.edu.au/urp/newtcp/mptcp
http://mininet.org/
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Fig. 4. Implementation structure in ns3 code. 

Table 1 

Comparison between ns3 MPTCP simulators 

Features Chihani Kheirkhah Our 

et al. [28] et al. [29] implementation 

Option Partial Partial Full 

serialization 

Standard Connection Connection Full 

compliance phase phase 

Backward No No Yes 

Compatibility 

Ack-aware No No Yes 

buffer mgnt 

Comparison No No Yes 

to OS implem. 
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Last but not least, we also think the implementation can serve

for education purposes since the model only deals with MPTCP es-

sentials, thus reducing the learning complexity. 

3.3. Related work 

We have been able to access two previous MPTCP implementa-

tions, [28] and [29] , both done using ns3 as well. These two im-

plementations are similar in many aspects and are compared with

ours in Table 1 . 

Recent developments in ns3 such as TCP option support and

generic packet serialization in a wire format made it possible for

ns3 to communicate with real stacks. Contrary to previous ns3 im-

plementations that support a subset of the options, ours support

full (de)serialization of MPTCP options, which means it can handle

a higher variety in options (e.g., 32 and 64 bits encoding for DSNs).

To allow the communication with an external stack such as

the linux one, we also implemented standard compliant connec-

tion and closing phases, which is another differentiating point from

[28] and [29] . Thus our implementation is capable of generating

valid tokens based on the (sha1) hash of a random key, and clos-

ing a connection requires the sending and acknowledgement of a

DSS with the data FIN bit. While the implementation is not robust

enough yet to handle all cases, it managed to exchange a file with

an external linux MPTCP stack with the use of DCE as reported

hereafter. 

Contrary to [28] and [29] , our implementation is backward

compatible with existing ns-3 TCP scripts, following the MPTCP

standardization spirit. Thus in our implementation, the connection

phase starts with a legacy TCP socket (more precisely a ’TcpSock-
tBase’ see Fig. 4 ) and only once an MPTCP option is received it

volves into an MPTCP socket (see ’MPTCPTcpSocketBase’ in Fig. 4 ).

his allows for better integration with the general framework, and

dds the additional benefit of allowing the MPTCP connection to

all back to TCP. Our hope is to be able to upstream this imple-

entation so that improvements can then be added incrementally.

We also respected an aspect of the specification that could

ffect the simulation fidelity, i.e., data cannot be removed from

he subflow sockets until it is acknowledged at both the TCP and

PTCP levels. 

Finally, our implementation is also the first to our knowledge

o be evaluated against an operating system stack in comparable

onditions as described later in Section 4 . 

.4. Supported and missing features 

It is worth noting that Table 1 does compare the three imple-

entations with respect to high-level aspects, without delving in

 precise list of features. It is however worth mentioning the lack

f support in [28,29] of many key features needed to draw realistic

ettings, such as asymmetric routing, subflow-level buffer manage-

ent, the possibility to select single-path TCP congestion control

lgorithms, and the existence of an interface for the scheduler. All

hese features are supported by our implementation. 

The implementation was developed in ns-3.23 while giving care

o performance and algorithmic aspects. As such, the fallback ca-

abilities (MP_FAIL option, infinite mapping and checksums) of

he protocol have not been implemented with the exception of

he initial fallback, when the server does not answer with an

P_CAPABLE option, i.e., it does not support MPTCP and the client

alls back to legacy TCP. This was made possible by extending the

xisting ns3 code infrastructure; for instance in Fig. 4 , only the

tructures starting with “MpTcp” were added. It also spares some

esources during the simulation. Indeed the ability to enable dy-

amically MPTCP on a per connection basis means that our im-

lementation works with all the other TCP scripts. This obviously

mplies that we inherit the legacy behavior of TCP in ns3, includ-

ng desirable features such as the possibility to configure asym-

etric link and routing properties. Moreover, one can infer from

ig. 4 that new schedulers can be easily interfaced to the simula-

or and that MPTCP-level buffers can be reconfigured too. 

We focused our work on implementing the aspects that could

ave an impact on the performance such as how data is freed from

he buffers: MPTCP requires the full mapping to be received before
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Table 2 

List of supported and missing features 

SHA1 support We added an optional SHA1 support in ns3 to generate valid MPTCP tokens and initial DSNs. This allows to communicate with a real 

stack and also proved necessary for wireshark to be able to analyze the communication. 

Scheduling The fastest RTT and round robin schedulers are available. 

Congestion control Subflows can be configured to run TCP ones such as NewReno or LIA. 

Mappings As in the standard, data is kept in-buffer as long as the full mapping is received. This is necessary when checksums are used, 

otherwise this can be disabled to forward the data faster. 

Subflow handling It is done directly by the application that can choose to advertise/remove/initiate/close a subflow at anytime if it is permitted by the 

protocol. 

Packet (de)serialization Packets generated along with MPTCP options can be read/written to a wire, allowing an ns3 MPTCP stack to interact with other 

MPTCP stacks, such as a linux one. 

Fallback If the server does not answer with an MP_CAPABLE option, the client falls back to legacy TCP. Other failures are not handled, e.g., 

infinite mapping or MP_FAIL handling as simulating these features is of little interest. 

Buffer space Buffer space is not shared between subflows, data is replicated between the subflow and the meta send/receive buffers rather than 

moved. 

Path management We drifted away from the specifications in order to be able to identify a subflow specifically, i.e., we associate a subflow id to the 

combination of the IP and the TCP port. Nevertheless the implementation is modular so it is possible to replace the subflow id 

allocation with a standard scheme. 

Fig. 5. The wireshark MPTCP analysis section. Framed in red some of our additions. 
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eing able to free the buffer. We detail and describe a list of sup-

orted key features of our implementation in Table 2 . 

Compared to the linux implementation, a major shortcoming of

he Network Simulator 3 (NS-3) MPTCP implementation is the lack

f the penalization mechanism, which reduces the window of a

ubflow that blocks the MPTCP window and the opportunistic re-

ransmission feature. 

Also contrary to the linux implementation that generates DSS

appings just in time to be able to adapt to network conditions,

e designed the scheduler to be able to delay the decision until

he last minute or to create mappings in advance. Creating map-

ings in advance has the advantage of being able to generate map-

ings that cover several packets. While the throughput gain is neg-

igible, it can spare some of the scarce TCP option space. 
. Evaluation 

We present a simple use case where we compare the linux

PTCP implementation to our NS-3 stack. We chose not to run

uantitative tests with the previous NS-3 implementations since

hey are based on NS-3 versions that date back from late 2009 for

28] (ns-3.6) to late 2013 for [29] (ns-3.19). This gap in versions

akes the practical evaluation a challenge as well as the inter-

retation of results, because the ns-3 TCP implementation signif-

cantly evolved in the meantime. Hence we tried to choose tools

hat would allow for seamless testing and analysis between the

ernel and ns3 stacks to lighten the burden analysis. We had to

o some more development to unify the linux and ns3 evaluation,

everaging on the standardized “pcap” format. 
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Fig. 6. The topology used for the simulations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. MPTCP linux kernel and ns3 throughput comparison using iperf2 . Each box- 

plot indicates the min, 1st quartile, median, 3rd quartile and maximum. The x-label 

indicates the system used and the window size in KB. 
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4.1. Used tools 

As far as MPTCP signaling and data analysis is concerned, there

is currently little choice, with only one tool we are aware of:

mptcptrace [30] . Mptcptrace is interesting for bulk analysis but

we wanted to be able to look at the packet level to ease debug-

ging. Thus we chose to improve the MPTCP support of wireshark

[18] , which specializes in packet-level network protocol analysis. A

capture is on Fig. 5 . We mainly added the following features: 

• MPTCP connection identification: ability to map TCP subflows

together based on the key and tokens respectively sent in the

MP_CAPABLE and MP_JOIN options. 

• Verification of the initial DSN based on the MPTCP key. 

• Display relative DSN, i.e., the first MPTCP sequence number sent

being considered as 0. 

• Computation of the latency between the arrival of new data

throughout all subflows. 

• Detection of DSS mappings spanning several packets. 

• Detected retransmissions across subflows. 

We wrote a tool called mptcpanalyzer [18,31] that leverages

these results to produce the plots presented in the next section. 

We present in the following a few simulations to compare the

linux kernel implementation to our NS-3 implementation. In or-

der to minimize the differences due to the environment and for

the ease of reproducibility, we chose to compare the linux and

ns3 MPTCP implementations within the DCE 1.7 framework. This

means that nodes, routers and links are created by ns3. Every node

can be configured with a specific network stack. We always install

linux stacks in the routers. 

4.2. Comparison with linux MPTCP implementation on a 2-link 

topology 

The BDP refers to the number of unacknowledged bytes that

can be inflight. It is generally advised to set the BDP higher than

RTT ∗bottleneck capacity to account for queuing delays in both the

networks and the hosts. Note that in this case, as DCE runs in dis-

crete time, kernel operations are virtually instantaneous if not pro-

grammed otherwise, so only the network latency impacts the RTT.

On one path with a bottleneck of 2 Mbps and a RTT of 60 ms,

the BDP is about 120 kbits. We run the experiments with libos

[25] applied against the linux MPTCP kernel v0.89. 

Moreover: 

• The scheduler is set to the round robin one. 

• The number of paths is set to one ( Fig. 7 a), then two ( Fig. 7 b). 

• The forward and backward one-way delays are set to 30 ms on

each path. 

• We execute using different receiver windows. 

We ran 5-second iperf2 10 sessions between the two hosts with-

out any background traffic on the topology of Fig. 6 . The size of the
router buffers is the default linux one. 

10 http://iperf.sourceforge.net . 

F  

a  
In Fig. 7 a, we notice that both stacks make the maximum use

f the paths except when it is window limited as for the 10 KB

ase. We can also notice that the throughput is a little more than

he maximum throughput, which is likely due to iperf2 . Compared

o the one path case, in the two paths case in Fig. 7 b we get the

xpected doubling in throughput when the window is big enough.

t also seems that the ns3 version is greedier, namely in the 30 KB

indow case. 

In order to check the behavior of the scheduler and thanks to

ptcpanalyzer , we were able to plot the relative MPTCP sequence

umbers transmitted on every subflow for a 40 KB setup. We es-

ablish that DSNs are indeed sent in a round robin manner in both

oth the linux ( Fig. 8 b) and the ns3 cases ( Fig. 8 a). There are more

equence number for the ns3 case because the throughput was

igher for that setup. 

.3. Open problems 

imitations of the current simulations. The current buffer handling

n ns3 currently copies data back and forth between the sub-

ows and the meta socket instead of sharing a pool of memory.

his is the main difference with other implementations, which

ould impact the simulation fidelity in tight buffer simulations.

ne promising solution is Non-Renegotiable Selective Acknowl-

dgements (NR-SACK) [32] ; but sadly the source is not available

nd this would require ns3 to implement SACK first. 

uture work. Authors of [33] made an important contribution in

pplying experimental design to test the Linux stack over a large

http://iperf.sourceforge.net


M. Coudron, S. Secci / Computer Networks 116 (2017) 1–11 9 

Fig. 8. Repartition of sequence numbers across two subflows with the round robin 

scheduler. 
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ombination of configurations (buffer size, delay, loss, etc): we

ope the experiment could be ported to work with DCE, which

ould remove CPU bias for high loads. 

Moreover, another interesting usage of our simulator may be on

etwork coding usage within MPTCP. Network coding is an active

rea of research, which could improve MPTCP characteristics [34] .

hile operating system seem to remain oblivious to network cod-

ng, there exists a detailed library for ns3. 11 

. Conclusion 

We presented the MPTCP protocol and its new implementa-

ion we developed in the network simulator ns3. We described the

PTCP state machine we implemented and how our implemen-

ation conforms to many of the features described by the stan-

ard. We qualitatively compared our implementation to previous

s3 available implementations. We quantitatively compared it to

he linux kernel implementation. 

We hope our effort will allow to develop and experiment new

chemes and features in an easier way, in order to improve or find

ew ways of using a multipath transport communication. Indeed

PTCP represents a subset of how multipath protocols could im-

rove our future communications; it may represent a turning point

etween TCP and SCTP for instance. Relaxing some constraints

uch as the ordered delivery makes sense for bulk transfers and
11 http://kodo- ns3- examples.readthedocs.org . 

[
[  
opefully network programming interfaces will evolve to provide a

mooth transition to multipath protocols. 

We open source the code of the simulator in [18] . 
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