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ABSTRACT
AS-Index is a new index structure for exact string search in disk res-
ident databases. It uses hashing, unlike known alternatives, whether
baesd on trees or tries. It typically indexes every n-gram in the
database, though non-dense indexing is possible. The hash function
uses the algebraic signatures of n-grams. Use of hashing provides
for constant index access time for arbitrarily long patterns, unlike
other structures whose search cost is at best logarithmic. The stor-
age overhead of AS-Index is basically 500 - 600%, similar to that
of alternatives or smaller.

We show the index structure, our use of algebraic signatures and
the search algorithm. We present the theoretical and experimental
performance analysis. We compare the AS-Index to main alterna-
tives. We conclude that AS-Index is an attractive structure and we
indicate directions for future work.

1. INTRODUCTION
Databases increasingly store data of various kinds such as text,

DNA records, and images. This data is at least partly unstructured,
which creates the need for full text searches (or pattern match-
ing) [17]. In main memory, matching a pattern P against a string
S runs in O(|S|/|P |) at best [4]. Searching very large data sets
requires an index, despite the storage overhead and possibly long
index construction time.

We address the problem of searching arbitrarily long strings in
external memory. We assume a database D = {R1, R2, · · · , Rn}
of records, viewed as strings over an alphabet Σ. The database
supports record insertion, deletion and updates, as well a search
on any substring of the records’ contents. We call the input to the
string the pattern.

Currently deployed systems for documents use almost exclusively
inverted files indexing words for keyword search. However, our
need for full pattern matching in records where the concept of word
may not exist rules out this solution. Suffix trees and arrays form a
class of indexes for pattern matching. Suffix trees work best when
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they fit into RAM. Attempts to create versions that work from disks
are recent, experimental, and focus typically on specific applica-
tions [7, 20]. The literature attributes this to bad locality of refer-
ence, a necessarily complex paging scheme, and structural deteri-
oration caused by inserts into the structure. A suffix array stores
pointers on a list of suffixes sorted in lexicographic order, and uses
binary search for pattern matching. However, a standard database
architecture stores records in blocks and supports dynamic inser-
tions and deletions that make difficult the maintenance of sequen-
tial storage. A suffix array search needsO(log2N) block accesses,
where N is the size (number of characters) of D. We are not aware
of a generic solution to these difficulties in the literature, and with-
out one, these costs disqualify suffix arrays for our needs.

Two approaches that explicitly address disk-based indexing for
full pattern-matching searches are the String B-Tree [7] and n-gram
inverted index [18, 11]. The String B-Tree is basically a combina-
tion of B+-Tree and Patricia Tries. The global structure is that of a
B+-Tree, where keys are pointers to suffixes in the database. Each
node is organized as a Patricia Trie, which helps guiding the search
and insert operations. A String B-Tree finds all occurrences of a
pattern P in O(|P |+ logB N) disk accesses, where B is the block
size. Another direction for text search needs are indexes inverting
n-grams (n consecutive symbols) instead of entire words. They are
“disk friendly” in that they rely on fast sequential scans, provide
a good locality of reference, and easily adapt to paging and parti-
tioning. However, the search cost is linear, both in the size of the
database and the size of the pattern.

In the present paper, we introduce a new data structure for index-
based full-text search called Algebraic Signature Index (AS-Index).
It follows the path of an inverted file based on n-grams. Its novel
attractive property, unique at present to our knowledge, is constant
disk search time, independent of the size of the database and of the
length of the pattern. This results from its standard database ap-
proach for large-scale indexing (namely hashing). AS-Index hash
calculus is however specific. As the name suggests, it relies on al-
gebraic signatures, (ASs) [15], whose algebraic properties we can
exploit.

Our experiments show AS-Index to be a very fast solution to
pattern searches in a database. AS-Index search only needs two
disk lookups when the hash directory fits in main memory. In our
experiments, it proved itself to be up to one order of magnitude
faster than n-gram indexes and twice faster that String B-Trees.
The basic variant of AS-Index has a storage overhead of about 5
to 6. A variant of our scheme only indexes selective n-grams and
has lower storage overhead at the costs of slower search times. All



these properties should make AS-Index a practical solution for text
indexing.

The paper is organized as follows. Section 2 gives a bird’s eye
view of the AS-Index basic principles. We recall the theory of alge-
braic signatures (Section 3). We then discuss the AS-Index struc-
ture in Section 4 and the search algorithm in Section 5. Section 6
analyses the scheme’s behavior, especially collision and false pos-
itive probability, as well as performance. Section 8 explains the
details of our implementation of String B-Trees, n-gram index and
AS-Index and experiments. We review related work in Section 9.
Finally, we summarize and give future research directions in Sec-
tion 10.

2. AS-INDEX OVERVIEW
AS-Index is a classical hash file with variable length disk-resident

buckets, (Fig. 1). Buckets are pointed to by the hash directory.
Simplicity and performance of such files attracted countless appli-
cations. The main advantage is constant access time, independent
of file and pattern size. Constant time is not possible for a tree/trie
access method.

Each bucket stores a list of entries, each indexing some n-gram
in the database. The basic AS-Index is dense, indexing every n-
gram. The hash function providing the bucket for an entry uses
the n-gram value as the hash key. The hash function is particu-
lar: it relies on algebraic signatures of n-grams, to be described
in the next section. In what follows, we only deal with the static
AS-Index, but the hash structure may use standard mechanisms for
dynamicity, scalabilty and distribution.
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Figure 1: A matching attempt with AS-Index

In overview, a search for a pattern P proceeds as follows (Fig. 1):
First, we preprocess P for three signatures: (i) of the initial n-
gram S1, (ii) of the final n-gram S2 and (iii) of the suffix Sp of
P after S1. Hashing on S1 locates the bucket with every entry
e1 indexing an n-gram in the database with the signature of S1.
Likewise, hashing on S2 locates the bucket with every entry e2
indexing an n-gram with the signature of S2. We only consider
pairs of entries that are in the same record and at the right distance
among them. We thus locate any string S matching P on its initial
and terminal n-gram, at least by signature. An algebraic calculation
AS(e1, e2, Sp) determines whether Sp may match the suffix of S
as well. The method is probabilistic in nature, with low chances of
false positives. We can avoid even a minute possibility of a false
match by a symbol for symbol comparison between pattern and the
relevant part of the record.

By limiting disk accesses to the two buckets associated to the
first and last n-grams of the P , AS-Index search runs indepen-

String B-Trees n-Gram AS-Index
Constr. O(|D| × logB |D|) O(|D|) O(|D|)
Storage O(|D|) O(|D|) O(|D|)
(ratio) (∼6-7) (∼6) (∼5-6)
Preproc. none O(|P |) O(|P |)
Search O(|P |+ logB |D|) O(|D| × |P |) O(1)

Table 1: Disk-based index structures for searching a pattern P
in a database D. B is the block size.

dently from P ’s size. The cost of the search procedure outlined
above is reduced to that of reading two buckets. The hash directory
itself can often be cached in RAM, or needs at most two additional
disk accesses, as we will show. With an appropriate dynamic hash-
ing mechanism that evenly distributes the entries in the structure
and scales gracefully, the bucket size is expected to remain uniform
enough to let the AS-Index run in constant time, independently of
the database size.

Table 1 compares the analytical behavior of AS-Index with those
of two competitors (String B-Trees and n-gram index) and summa-
rizes its expected advantages. The size of all structures is linear in
the size of the database. The ratio directly depends on the size of
index entries. We mention in Table 1 the ratio obtained in our im-
plementation, before any compression. The asymptotic search time
in the database size is linear for n-index, logarithmic for String B-
Trees and constant for AS-Index. Moreover, once the pattern P
has been pre-processed, AS-Index runs independently from P ’s,
whereas n-gram index cost is linear in |P |.

In summary, AS-Index efficiently identifies matches with only
two lookups, for any pattern length. This efficiency is achieved
through extensive use of properties of algebraic signatures, described
in the next section.

3. ALGEBRAIC SIGNATURES
We use a Galois field GF (2f ) of size 2f . The elements of GF

are bit strings of length f . Selecting f = 8 deals with ASCII
records and f = 16 with Unicode. We recall that a Galois field
is a finite set that supports addition and multiplication. These op-
erations are associative, commutative and distributive, have neu-
tral elements 0 and 1, and there exist additive and multiplicative
inverses. In a Galois field GF (2f ), addition and subtraction are
implemented as the bitwise XOR. Log/antilog tables provide usu-
ally the most practical method for multiplication [15]. We adopt
the usual mathematical notations for the operations in what fol-
lows. We use a primitive element α of GF (2f ). This means that
the powers of α enumerate all the non-zero elements of the Galois
field. It is well known that there always exist primitive elements.

Let R = r0r1 · · · rM−1 be a record with M symbols. We inter-
pret R as a sequence of GF elements. Identifying the character set
of the records with a Galois field provides a convenient mathemat-
ical context to perform computations on record contents.

DEFINITION 1. Them-symbols signature (AS) of a recordR is
a vector ASm(R) with m coordinates (s1, s2, . . . sm) defined by8>>><>>>:

s1 = r0 + r1 · α+ r2 · α2 . . .+ rM−1 · αM−1

s2 = r0 + r1 · α2 + r2 · α4 . . .+ rM−1 · α2(M−1)

...
sm = r0 + r1 · αm + r2 · α2m . . .+ rM−1 · αm(M−1)

(1)

We refer the reader to [15] for more details about definitions and
properties of algebraic signatures.



In our examples, we give the m-symbol AS of R as the con-
catenation of the values sm, · · · , s1 in hexadecimal notation. For
instance if s1 = #34 and s2 = #12, then we write the 2-symbol
AS as s2s1 = #1234.

Symbol Interpretation
f Size (in bits) of a GF element in

GF (2f ) (f = 8 or f = 16)
n Size of n-grams
m Size of signature vectors, m ≤

n
M Size of records
K Size of patterns, K > n
L Number of lines in the AS-

Index
r0, r1, · · · rM−1 Record characters/symbols
s1, · · · sm One-symbol signatures
S1, · · ·Sm One-symbol n-gram signatures

Table 2: Table of the symbols used in the paper

We use different partial algebraic signatures of pattern and
database records, as we now explain.

DEFINITION 2. Let l ∈ [0,M − 1] be any position (offset) in
R. The Cumulative Algebraic Signature (CAS) at l, CASm(R, l),
is the algebraic signature of the prefix of R ending at rl, i.e.,
CASm(R, l) = ASm(r0 . . . rl).

The Partial Algebraic Signature (PAS) from l′ to l is the value
PASm(R, l′, l) = ASm(rl′rl′+1 · · · rl), with 0 ≤ l′ ≤ l, Fi-
nally, we most often use the PAS of substrings of length n, i.e., of
n-grams.

DEFINITION 3. The n-gram Algebraic Signature (NAS) ofR at
l is NASm(R, l) = PASm(R, l − n+ 1, l), for l ≥ n− 1. With
other words:

NASm(R, l) = (rl−n+1 + · · ·+ rl · αn−1,

rl−n+1 + . . .+ rl · α2(n−1),

...,

rl−n+1 + . . .+ rl · αm(n−1)) (2)

M

l
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r

0
r

M−1

CAS(l) PAS(l’, l) NAS(l)

Record R
r

Figure 2: Computing CAS(l), PAS(l′, l) and NAS(l) in
record RM

In all the definitions, we may drop R whenever it is implicit for
brevity’s sake. Figure 2 shows the respective parts of the record
that define the CAS, PAS and NAS at offset l. The following
simple properties of algebraic signatures, expressed for coordinate
i, 1 ≤ i ≤ m, are useful for what follows. We note i-th symbol
of a CAS, as CASm(l)i and proceed similarly for NAS and PAS.
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Figure 3: Structure of the AS-index

Properties 3 and 4 let us incrementally calculate next CAS and NAS
while building the file, or preprocessing the pattern, instead of re-
computing the signature entirely. This speeds up the process con-
siderably. Property 5 also speeds up the pattern preprocessing, as it
will appear. Property 6 finally is fundamental for the match attempt
calculus.

CASm(l)i = CASm(l − 1)i + rl · αil (3)

NASm(l)i =
NASm(l − 1)i − rl−n

α
+ rl · αi(n−1) (4)

NASm(l)i =
CASm(l)i − CASm(l − n)i

αi(l−n+1)
(5)

For 0 ≤ l′ < l:

CASm(l)i = CASm(l′)i + αi(l′+1)PASm(l′ + 1, l)i (6)

Table 2 summarizes the symbols used in the paper.

4. STRUCTURE
Our database consists of records that are made up of a Record

IDentifier (RID) and some non-key field. (Extensions to databases
with more than one key and/or non-key field are straight-forward.)
We assume that the non-key field consists of strings of symbols
from our Galois field. Our search finds all occurrences of a pattern
in the non-key field of every record in the database. When we talk
about offsets and algebraic signatures, we refer only to the non-key
field. If R is such a field and ri a character (Galois field element)
inR, then we call i the offset. An n-gramG = rl−n+1 · · · rl is any
sequence of n consecutive symbols in R. By extension, we then
call l the offset of the n-gram.

An AS-Index consists of entries.

DEFINITION 4. Let G be an n-gram at offset o in R. The entry
indexing G, denoted E(G), is a triplet (rid, o′, c) where rid is the
RID of R, c is CAS1(R, o), and o′ is o modulo 2f − 1.

We assure constant size of the entries by taking the remainder. The
choice of the modulus is justified by the identity χ2f−1 = χ for all
Galois field elements χ.

The indexing is “dense”, i.e., every n-gram in the database is in-
dexed, and by a different entry. To construct the index, we process
all n-grams in the database.

AS-Index is a hash file, denoted D[0..L − 1], with directory
length L = 2v being a power of 2 (Fig. 3). Elements of D re-
fer to buckets or lines of variable length, each containing a list of



entries. Lines are of variable length to accommodate a possible un-
even distribution of n-gram values. Each D[i] contains the address
of the i-th bucket.

All together, the AS-Index line structure is similar to a posting
list in an inverted file, except for the presence of the CAS c in each
entry and a specific representation of the offset l. Since we use a
hash file, lines should have a collision resolution method such as
classical separate chaining that uses pointers to an overflow space.
Such a technique accomodates moderate growth, but if we need to
accomodate large growth, then we need a dynamic hashing method
such as linear hashing.

We now describe how to calculate the index i of the line for
an entry E(G) = (rid, o, c). We calculate i from the m-symbol
NAS NASm(G) = (s1, . . . , sm). The coordinates of the NAS
are bit strings. By concatenating them, we obtain a bit string S =
smsm−1 . . . s1 that we interpret as a large, unsigned integer. The
index i is:

i = hL(S) = S mod L

Since L = 2v , this amounts to extracting the last v bits of S. It is
easy to see that m should be such that m ≤ n and m ≥ dv/fe.
The choice of AS-Index parameters m, n and L will be further
discussed in Section 6.

EXAMPLE 1. Consider a 100 GB database with byte-wide sym-
bols (f = 8). For the sake of example, let L = 230, leading to
buckets with d1011/230e = 93 entries on the average. Let n = 5
and m = 4. To calculate line index i of n-gram G we thus con-
catenate s4..s1 of NAS4(G). Then we cut lower 30 bits.

Now, consider the record with RID 73 and non-key
field ’University Paris Dauphine’. Assume that
NAS4(’Unive’, 4) is #3456789a. Since this is the first 5-gram,
CAS1(73, 4) has the same value as the first component, i.e., is
#9a. For subsequent 5-grams, the first coordinate of the NAS and
the CAS usually differ. The entry is E = (73, 4,#9a). Its line
index is #3456789a mod 230 = #3456789a (we remove the
leading 2 bits).

5. PATTERN SEARCH
Let P = p0 . . . pK−1 be the pattern to match. AS-Index search

delivers the RID of every record in the database that contains P .
The search algorithm first prepocesses P by extracting values that
become then entries into AS-Index to locate matches.

5.1 Preprocessing
The preprocessing phase computes three signatures from the

pattern P :
(a) the m-symbols AS of the 1st n-gram in P , called S1;
(b) the 1-symbol PAS of the suffix of P following the 1st n-gram,
Sp = PAS1(P, n,K − 1).
(c) the m-symbols AS of the last n-gram in P , denoted as S2;

There are several ways to compute these signatures. For in-
stance, one may compute S1, then Sp, then extract the m-symbol
value of S2 through property (5).

Figure 4 shows the parts of the pattern that determine the signa-
tures S1, S2 and Sp on our running example. Recall that n = 5 and
m = 4. We preprocess the pattern P =’University Paris
Dauphine’ and obtain
(a) S1 = NAS4(P, 4) (for 5-gram ’Unive’);
(b) S2 = NAS4(P, 24) (for 5-gram ’phine’) and
(c) Sp = PAS1(P, 5, 24).
This information is used to find the occurrences of the pattern in
the database.

l  =2 l +K−n
1

NAS S
1

PAS  S
p

l1

CAS c2CAS c1

Record R

Pattern P

2
NAS S

conference at the University Paris Dauphine

240 5

University Paris Dauphine

Figure 4: The search algorithm

5.2 Processing
Let i = hL(S1) and i′ = hL(S2). Every entry (R, l1, c1) in

bucket D[i] indexes an n-gram G in a record R whose NAS SG is
such that hL(SG) = hL(S1). Likewise, every entry (R′, l2, c2) in
bucket D[i′] indexes an n-gram G′ such that hL(G′) = hL(S2).
Up to possible collisions, G and G′ respectively equal the first and
last n-grams in pattern P.

We search every pair (G,G′) able to characterize a matching
string S = P . We must have R′ = R and l2 = (l1 + K − n)
mod (2f − 1). The last component in G′, c2 should match the
value implied by c1 and Sp (see Figure 4). Algebraic property 6
implies that c2 should be

c2 = c1 + αl1+1 · Sp. (7)
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Figure 5: Using AS-Index for a search

Figure 5 illustrates the process. By hashing on S1 =′ Unive′,
we retrieve the bucket D[i] which contains, among others, the
entries indexing all occurrences of ’Unive’ in the database.
Similarly we retrieve the bucket D[i′] which contains entries for
all the occurrences of the n-gram ’phine’. A pair of entries
[ei(r1, l1, c1), e′i(r1, l4, c4)] in (D[i], D[i′]) represents a substring
s of r1 that begins with ’Unive’ and ends with ’phine’.
Checking whether s matches P involves two tests: (i) we com-
pute c1 + αl1+1.Sp and compare it with c4 to check whether the
signatures of the middle parts match, and (ii) we verify as discussed
whether l1 matches l2 givenK, i.e., S and P have the same length.
If both tests are succesful, we report a probable match. The next
attempt will consider (r3, l2, c2) in D[i] and (r3, l6, c6) in D[i′].
Note that (r2, l5, c5) in D[i′] is skipped because there is no possi-
ble match on r2 in D[i]. The pseudo-code of the algorithm is given
below.

Algorithm AS-SEARCH
Input: a pattern P = p0 . . . pK−1, the n-gram size n
Output: the list of records that contain P
begin

// Preprocessing phase
S1 := NASm(P, n− 1)
S2 := NASm(P,K − 1)



Nr. Collisions Taken Expected
0 16,568,642 16 568 642.3
1 207,274 207272
2 1,293 1 296.47
3 7 5.40624

> 3 0 0.0169079

Table 3: Actual and expected number of collisions using a 3B
signature on a dictionary of 209881 moderately sized English
words.

Sp := PAS1(P, n,K − 1)
i := hL(S1) // i is the first line index
i′ := hL(S2) // i′ is the second line index
// Processing phase
for each entry E(R, l1, c1) in D[i]
c2 = c1 + αl1+1 · Sp

l2 = (l1 +K − n)mod (2f − 1)
if (there exists an entry E′(R, l2, c2) in D[i′]) then

Report success for R
endif

endfor
end

The selectivity of the process relies on its ability to manipulate
three distinct signatures, S1, S2 and Sp. Therefore the pattern
length must be at least n+ 1.

5.3 Collision Handling
As hashing in general, our method is subject to collisions deliv-

ering false positives. To eliminate any collisions, it is necessary to
post-process AS-Search by attempting to actually find P in every
R identified as a match. This requires a symbol by symbol com-
parison between P and its presumed match location. It will appear
however that AS-Search should typically have a negligible proba-
bility of a collision. Hence post-processing may be left to presum-
ably rare applications needing full assurance. Also, it should be
RAM-based and therefore typically negligible with respect to the
disk search time. We thus do not detail it here.

6. ANALYSIS
We now present a short, theoretical analysis of the expected per-

formance of AS-Index.

6.1 Hash uniformity
Algebraic signature values tend to have a more uniform distri-

bution than the distribution of character values due to the multi-
plications by powers of α in their calculations. However, the total
number of strings or n-grams in a dataset gives an upper bound for
the number of algebraic signatures calculated from them. Biolog-
ical databases often store DNA strings in an ASCII file. Only the
four characters ’A’, ’C’, ’G’, and ’T’ appear as characters in such
a file. There are only 46 = 4K different 6-grams in the file and
the number of different NAS of these signatures cannot exceed this
value. Increasing the number of coordinates in the NAS beyond
5 symbols is not going to achieve better uniformity. This caution
applies only to files using a small alphabet.

For a different experiment, we chose a list of English words
(209881 words - 2.25MB) six or more characters longer taken from
a world list used to perform a dictionary attack on a password file
(by an administrator trying to weed out weak passwords). We cal-
culated the 3B three component signature of all words with more
than five characters (65536 words) and calculated the number of

signatures attained by i words as well as this number for a per-
fect hash function (Table 3). The χ2 value of 0.479166 shows very
close agreement. When repeating the test using 2B two compo-
nent signatures, we obtained χ2 = 0.21. A much smaller set had
χ2 = 4.79742, but there were less signatures attained by a high
number (≥ 5) of words. These results give experimental verifica-
tion for the “flatness” of signatures.

6.2 Storage and Performance
Index construction time. The properties (2) - (6) of algebraic

signatures allow us to calculate all entries with a linear sweep of
all records. We need to keep a pointer to the symbol just beyond
the current n-gram and to the first symbol of the current n-gram.
Using equations (3) and (4), we can then calculate the NAS of the
next n-gram from the old one and update the running CAS of the
record. Since creating the entry for an n-gram and inserting it into
the index take constant time, building the index takes time linear to
the size of the database.

Storage costs. The storage complexity of AS-Index is O(N)
for N indexed n-grams. The actual size of a RID should be 3-4
bytes since 3 bytes already allow a database with 16M records. The
actual storage per entry should be about 5-6 bytes, which results in
a storage overhead of about (5 − 6)N . We can lower this storage
overhead, e.g. to 125%, by non-dense indexing, that we do not
present here due to space limitation, at the expense of a proportional
increase in search time.

EXAMPLE 2. We still consider a 100 GB database with 8b sym-
bols. Assuming an average record size of 100 symbols, we have 1G
records and our record identifier needs to be 4B long. We pre-
viously set the size of the CAS to 1B. With the 1B offset into the
record, the entry is 6B. AS-Index should use about 6 times more
space than the original database.

Now assume records of 10KB each. The record identifiers can be
3B long. This gives a total entry size of 5B or a storage factor of 5.

Each element of the hash directory stores a bucket address with at
least dlog2(L)e bits. In the case of our large 100GB database, with
L = 230, choosing 4 bytes for the address leads to the required
storage of 4.1GB, smaller than the current data servers standard
capacity. In most cases, D is expected to fit in main memory.

Pattern preprocessing. To preprocess the pattern, we need to
calculate a PAS and two NAS. We calculate both in a similar man-
ner as above and obtain preprocessing times linear in the size of the
pattern. Since the result depends on all symbols in the pattern, we
cannot do better.

Search speed. We assume that entries are close to uniformly
distributed. The search algorithm picks up two cells in the hash
directory, in order to obtain the number of entries and the bucket
references of, respectively, D[i] and D[i′]. Then the buckets them-
selves must be read. Each of these accesses may incur a random
disk access, hence a (constant) cost of at most four disk reads. If
the hash directory resides in main memory, the cost reduces to load-
ing the two buckets.

The main memory cost is an in-RAM join of the two buckets.
With l denoting the expected line length, and assuming the lines
are ordered, the average complexity of this phase should be (un-
der our uniformity assumption) 2l. The worst case is O(l2). This
case is highly unlikely, as all the entries on both lines should fit
into the same record. The optional collision resolution (symbol-to-
symbol) test adds O(|P |). This test is typically performed in RAM
and makes only a negligible contribution to the otherwise constant
costs. Altogether, the search cost is

S = Chash + Cbuck + Cram + Cpost (8)



Device Access time
Processor speed 2 - 3 Gz per core
RAM speed 100ns
Flash disk access 0.4 - 0.5 ms
Magnetic disk 5 - 7 ms
Disk transfert rate 300 MB/s.

Table 4: Hardware characteristics

where Chash represents the Hash Directory access cost, Cbuck the
bucket access cost, Cram the RAM processing cost and Cpost the
post-processing.

We now evaluate the actual search time that may result from the
above complexity figures. We take as basis the characteristics of
the current popular hardware shown in Table 4 (see also [8] for a
recent analysis).
Chash is the cost of fetching 2 elements in the hash directory.

The transfer overhead is negligible, and the (worst case) cost is
therefore in the range [10, 14] ms for magnetic disks. The bucket
access cost Cbuck is similar to Chash regarding random disk ac-
cesses, but we fetch far more bytes per access. We need to transfer
2l entries. Table 4 suggests that we can transfer up to 300 KB per
ms (Flash transfer rate are similar.) Since the size of an entry is
typically 5-6 bytes, each search loads 10 − 12l. It follows that for
l = 1K, the line transfer cost is negligible. For l = 16K, 160 to
200 KB must be transferred. The cost is about 0.5 to 0.7 ms. This is
still negligible with respect to disk accesses for AS-Index on mag-
netic disk, but not on solid one. In the latter case, the transfer cost
is equivalent to an additional disk access.

The basic formula (average cost) for Cram, the in-RAM join of
the two lines, is 2l. In practice it is l ∗ E, where E is a couple of
visited entries processing cost. In detail, we have 2 RAM accesses
to Rids. In this test is successful, we need 2 additional accesses
to CASs, 2 to offsets o and 1 access to the log table for algebraic
computations. A conservative evaluation of E = 500ns seems
fair. The cost of the in-RAM join can thus be estimated as 100µs
for l = 200, 500µs for l = 1, 000, and 8ms for l = 16K. The
first cost is negligible whatever the storage media; next one is so
for disk, but not for flash, the latter is not for either.

Finally, the postprocessing cost P can be estimated based on a
unit cost of 100ns per symbol. Even for a 1,000 symbols long pat-
tern, the postprocessing costs 100µs, which remains negligible for
both magnetic disk or flash memories. Its importance also depends
on the number of matches, of course.

6.3 Choice of file parameters
The previous analysis leads to the following conclusions regard-

ing the choice of AS-Index parameters. As a general rule of thumb,
one must choose parameter L so as to maintain the hash directory
D in RAM. CachingD in RAM, whenever possible, saves two disk
access on four. Setting a limit on L may lead to increase the aver-
age line length l, but our analysis shows that this remains beneficial
even when l reaches hundreds or even thousands of entries. Under
our assumptions, l should reach 16K to add the equivalent of 1
random access to the search cost, at which point one may consider
enlarging the hash directory beyond the RAM limits.

Large values for l may also be beneficial with respect to other
factors. First, larger lines accommodate a larger database for a fixed
n. Second, we may choose a smaller n, with a smaller minimal size
of n+ 1 for patterns.

Let us illustrate this latter impact. We continue with our running
example of a 100 GB database with byte-wide symbols (f = 8),

L is 230, and an average load of l = d1011/230e = 93 entries
per line. This implies the choice of m, which must be such that
2mf ≥ L, i.e., m ≥ (log2 L)/f . In our example, the line index i
needs to consist of at least 30 bits. Correspondingly, NASm needs
to be at least that long. Since each coordinate ofNASm consists of
8b, the value for m needs to be at least 4. Each NAS then contains
at least 32 bits.

The n-grams used need to contain at least m symbols. Other-
wise, the range of n-gram values is smaller than L and certain lines
will not contain any entries. If the n-grams are reasonably close
to uniformly distributed, the range of values is 256n and we can
pick n = m. Still referring to our example with L = 230, we can
choose n = 4.

However, the actual character set used is most often smaller than
256, or only a fraction of the characters appear frequently. This
requires a larger n, since the range of possible n-grams must con-
tain at least L values. Let v be the number of values we expect per
symbol. In a simple ASCII text, the number of printable character
codes is v = 96. DNA encoding represents an extreme case with
v = 4. The n-gram size must be such that vn ≥ L. With v = 96
(simple ASCII text) and L = 230, n must be set to 5, the small-
est value such that 96n ≥ L, to generate all required NAS values.
These parameter values were actually used for Example 1.

Consider now the case of a DNA database where only 4 of the
possible 256 ASCII characters appear in records. We need to set
n = 15 in order to obtain the 230 possible signatures. n+ 1 is the
minimal pattern length we allow to search for. Such limit should
not be nevertheless a practical constraint for a search over a small
alphabet. The need there is rather for long patterns [3]. If never-
theless it was a concern, one may choose a smaller n at the price
of fewer, hence longer, lines. For instance choosing n = 10 and
L = 220 for our DNA database results in the average of 95K en-
tries in each line. The minimal pattern size decreases by five, i.e.,
to n+ 1 = 11 symbols.

7. NON-DENSE INDEXING
While our basic scheme performs well, the storage overhead of

about 500% might be too high for some applications. We now de-
scribe a variant that addresses this issue.

7.1 Skewed n-gram signature distribution
As previously observed, a skewed distribution can lead to many

entries in a single AS-Index line. We now modify our search proce-
dure as follows. In our pre-processing phase, we choose q n-grams,
q ≥ 2, among them the starting and final n-gram of the pattern. The
simplest choice is to have the n-grams evenly distributed over the
pattern.

The search first determines the shortest line length of all lines
indexed by any of the q n-grams. If any of these lines is empty,
then we are done: the pattern is not found in the database. If the
shortest line happens to be the one indexed by the initial n-gram in
the pattern, nothing changes. If it is the one indexed by the final n-
gram in the pattern, the calculation of the PAS still uses formula (7)
unchanged because subtraction and addition are the same in the
Galois field. Now c1 is the CAS in the line indexed by the last
n-gram and c2 the one in the first line, while l does not change.

Otherwise, let a be the offset of the n-gram with minimal count
of entries and Sa its NAS. For each entry in line D[hL(Sa)], we
search for a matching entry in the line of the first or of the last n-
gram in the pattern, depending on which one has the smaller count.
This amounts to matching the part of the pattern between the se-
lected n-gram and either the beginning or the end of the pattern. If
this succeeds, we continue to use our calculus to match the other



part of the pattern. Since we eliminate most mismatches in the first
step, AS-Index will now come more quickly to a decision on aver-
age.
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Figure 6: Non-dense AS indexing: (a) overlapping n-grams, (b)
tiling, (c) lossy

Our next variant lowers the storage overhead by indexing only
some instead of all n-grams. The disadvantages are higher search
costs and a larger minimal size for the patterns that we can search
for. Figure 6 shows the idea. Starting with the first n-gram in a
record, we only index the n-grams that are t > 1 symbols apart,
where parameter t is the indexing rate. We thus index only n-grams
starting at the offsets 0, t, 2t, · · · . The size of the index is now
reduced by a factor of about 1/t.

We can distinguish three cases, lossless indexing if n = t, lossy
indexing if n < t, and overlapping indexing if n > t (Figure 6).
In all cases, trailing characters of the pattern might not contribute
to any indexed NAS.

The search procedure is the same in all three cases. It needs to
be modified from the base procedure because the occurrence of a
pattern in a string might not match the tiling of the records by the
indexed n-grams. Assume that the pattern is P = p0p1, . . . pK−1.
We define substrings Pi, i = 0, 1, . . . t − 1 of the pattern as Pi

= pi, pi+1, . . . pi+lt+n−1 with l = b(K − n)/tc. Thus, P0 is the
substring of the pattern that begins with the first n-gram in P , ends
with the last n-gram in P starting at offset lt − 1, and contains
all symbols of P in between. P1 starts at the second character and
finishes with the last n-gram starting a multiple of t characters after
the first one, etc. Our search procedure now first tries to match P0

in the database. More precisely, we process the line indexed by the
first n-gram. For an occurrence, the last n-gram in the substring
matching the sub-pattern is also in AS-Index and our matching will
succeed. We then successively search for sub-patterns P1, P2, . . .
Pt−1. This is guaranteed to find any occurrence of the pattern in the
database. Since we actually match various subpatterns, a diagnosed
match is not based on all symbols in the pattern and we might need
to verify that the pattern actually occurred.

Consider the search for our P = ’University Paris
Dauphine’, Figure 6. Let n = 4 and t = 4. Suppose the use
of a nondense tiling AS-Index (Figure 6.b). The search begins, as
with the dense index, by attempting to match S1 = ’Univ’. The
last n-gram S2 for the dense index would be S2 = ’hine’. Now,
S2 = ’phin’, in subpattern P0. The matching n-gram ’hine’ in
the visited record cannot be indexed if ’Univ’ is. Provided the
match of P0 succeeds, we read the record and attempt to match ’e’

to the symbol following P0 in the record (provided it exists). Next,
we attempt matching with P1, using thus S1 = ’nive’ and S2 =
’hine’. If this attempt succeeds, we attempt to mach ’U’ as above.
The matching attempts continue with P2 having S1 = ’ive’ and S2

= ’auph’. The completion requires finding ’Un’ and ’ine’ in the
record before and after the P2 match in the record. The final round
attempts to match P3 with S1 = ’vers’ and S2 = ’uphi’ followed
by direct testing of ’Uni’ and of ’ne’. The final result is the union
of all the successful matches.

Compared with dense indexing, the storage space of this (tiling)
AS-Index is reduced by factor of four, e.g., falls to (only) 125%
of the database size. Likewise, this is at least four times less than
any alternative method we discussed. In contrast, we need four
times more disk accesses, i.e., 16 or 8 at best usually. Finally, the
minimal indexed pattern is in turn n = 8 symbols, instead of five.
Clearly, many applications may gladly accept the discussed trade-
offs. In particular, since smaller AS-Index may then fit onto a flash
disk. As this one is about ten times faster than a magnetic one,
all together the AS-indexing gets actually about 2.5 times faster. In
the running example of our 100 GB database, the reduced AS-Index
size would be about 125 MB, already fitting current mass-produced
flash disks.

7.2 Scalable Distributed AS-Index
This variant targets the maintenance of an AS-Index of a grow-

ing database that might ultimately reach a very large size. An AS-
Index with static length and width will eventually see many and
large overflows. We propose to deal with this problem by convert-
ing AS-Index into a Scalable Distributed Data Structure (SDDS).
Appropriate choices are LH∗LH [14] or its high-availability vari-
ants LH∗RS [13]. These schemes target especially the distributed
RAM (or flash) for storage as they are orders of magnitude faster
than disks. In a nutshell, an SDDS variant of AS-Index, let us call
it SDAS-Index, would work as follows.

We create the SDAS-Index as AS-Index at some node (site),
called node 0, or LH∗-bucket 0. Hashing of n-grams into lines
in SDAS is dynamic using the linear hash addressing. The number
of lines grows through splits. These are triggered by inserts that
result in an overflow of an AS-Index line. If the number of lines
exceeds the capacity of a node, then LH∗ will split the content of
a node, moving about half to a new node. During this split, every
other line remains at the current node and the remaining ones are
sent to the new node.

A search in SDAS-Index is essentially the same as in AS-Index,
except that access to a line involves messaging. Network latency
becomes the dominant part of the search cost if the contents of a
node are stored in memory. Also, processing line entries is now
done in parallel. If we apply performance results from implemen-
tations of LH∗ systems, then SDAS-Index searches should com-
plete in a few milli seconds. The precise analysis and experimental
confirmation remain to be done.

An SDAS-Index implemented in distributed RAM can easily
grow to thousands of nodes, each with a capacity of easily 1GB.
This gives a total capacity of about 1TB. Depending on whether
we use non-dense indexing or not, we could index a database of
200 GB to 1TB with expected search times in the order of a 0.1
msec to a few milli-seconds. Using disks, we can target PB-scale
databases with search times somewhere between 0.1 sec to 1 sec.

8. EXPERIMENTAL EVALUATION
We describe in this section our experimental setting and results.

We implemented our AS structure as well as a String B-Tree [7]
and an n-gram index, based on inverted lists [24]. The rationale



for String B-Tree, discussed more in what follows, is that it ap-
pears attractive for disk-based use and is among most recent pro-
posals. As Section 9 discusses, the inverted list was the common
basis for many variants, e.g., n-gram/2L [11]. Notice that all the
discussed structures are tree/trie based. Hence, none offers the
constant search performance of AS-Index. In other words, their
search speed must deteriorate beyond the one of AS-Index for a
sufficiently large database.

All structures are coded in C++, and we run the experiment un-
der Linux on a 2.40 GHz duo-core processor with 2GB in main
memory and two 80GB disks.

We conduct our experiments on a database of records identified
by a unique ID and with content consisting of a sequence of one-
byte characters. We treat each character as an element in the Galois
field GF (28). The design of the database is meant to represent
a large spectrum of situations ranging from many small records to
large-size protein descriptions. We also consider databases of DNA
sequences. All records are stored on disk.

8.1 Settings
We implemented a String B-Tree structure [7], making our best

efforts to minimize the storage overhead. Each node contains a
compact representation of a Patricia Trie [19]. In our implementa-
tion a disk block occupies 4K, and we can store at most 550 entries
in each leaf.

We build the n-gram index in two steps. First, we scan all record
contents in order to extract all n-grams with their position. For each
n-gram, we obtain a triple <ngram, rid, offset> which we insert in
a temporary file. The second step sorts all triples and creates lists
of 6-bytes entries. The final step builds the B+-tree which allows to
access quickly to a list given an n-gram. Our simple construction
in bulk is fast and creates a compact structure.

Our implementation of AS-Index is static as well. First, the n-
grams are collected. For each n-gram at offset l in a record R the
hash key k = hL(NASm(R, l)) and the CAS c = CAS1(R, l)
are computed. The quadruplet < k, c, rid, l > is inserted in a
temporary file. Second, the temporary file is sorted on the hash
key k. This groups together entries which must be inserted into the
same bucket. An entry consists of a CAS (1 byte), a record id (2
bytes) and an offset. The latter is a 1B integer obtained by taking
the actual offset of the n-gram in the record, modulo 255. Using
the CAS as a secondary sort key, one places the entries into the
required order for insertion into the bucket.

We use three types of datasets with quite distinct characteristics:
alpha, dna and text. The alpha(Σ) type consists of syn-
thetic ASCII records, with uniform distribution, ranging over an
alphabet Σ which is a subset of the extended ASCII characters. We
consider two alphabets: Σ26, with only 26 characters, and Σfull

with all the 256 symbols that can be encoded with f = 8 bits. We
call the resulting datasets alpha(26) and alpha(full). They
allow us to compare the behavior of our structure to the theoretical
analysis in Section 6.

The second type, dna, consists of real DNA records ex-
tracted from the UCSC database1. For the types alpha(full),
alpha(26) and dna, we composed datasets ranging from 10MB
to 100MB. The last type, text, consists of real text records cre-
ated from ASCII files of large English books. The typical size of a
text record is 1-2 MB, and we created a 100MB database of text
files. The n-gram size is set to 8 for DNA files, and to 4 for the
other datasets.

8.2 Space occupancy and build time
1http://hgdownload.cse.ucsc.edu/

File AS-index n-gram index Str. B-Tree
5 MB 23.1 (20+3.1) 35 (30+5) 36.9

10 MB 43.1 (40+3.1) 65 (60+5) 73.8
30 MB 123.1 (120+3.1) 185 (180+5) 221.2
60 MB 243.1 (240+3.1) 365 (360+5) 442.5

100 MB 403.1 (400+3.1) 605 (600+5) 737.6

Table 5: Index sizes in MB for alpha(26) files

File AS-index n-gram index Str. B-Tree
5 MB 20.4 (20+0.4) 31 (30+1) 36.9

10 MB 40.4 (40+0.4) 61 (60+1) 73.8
30 MB 120.4 (120+0.4) 181 (180+1) 221.2
60 MB 240.4 (240+0.4) 361 (360+1) 442.5

100 MB 400.4 (400+0.4) 601 (600+1) 737.6

Table 6: Index sizes in MB for DNA files

The size of the AS-index is the sum of the size of cells and the
directory which stores the number of entries for each bucket. The
size of the n-gram index is the sum of the size of inverted lists and
the size of the B+tree. The size of the String B-Tree is the size of
the B+tree where each node is a serialized Patricia Trie. Tables 5, 6,
and 7 give respectively the index sizes for alpha, DNA and text
files.

The sizes of indexes are comparable. The size of AS-Index ben-
efits from its smaller entries (4 bytes), mostly due to the 1B size of
the offset. Sophisticated compression techniques [24] would ben-
efit all structures. n-gram index offsets could be limited to 3B or
even 2B, which would still allow the size of records to grow to up
to 224 or 216 symbols. If the database has a few long records with
many occurrences of the same n-gram, then we can save space by
storing each rid only once in the list, followed by a possibly com-
pressed list of offsets. If, on the contrary, the database consists of
many, relatively small records, compression based on delta-coding
can be envisaged. Both implementations use space better. The
String B-Tree requires more space with 7B entries in the leaves
and 11B entries for internal nodes.

For real datasets, either dna or text files, the distribution is far
from being uniform. Table 8 shows the distribution of the number
of entries from two real 100MB databases. The average number
of entries is 1,534 for the DNA database, and 372 for the text
database, with an important variance. In the worst case (text
files), the largest list has 1,480,008 entries. This fully justify our
choice of storing the number of entries in the directory, and of using
this information to scan the smallest list during a search operation.

The building time is proportional to the size of the index. Our
structures are built in bulk after sorting all n-gram entries in a tem-
porary file. This leads to comparable performances. On our ma-
chine, the building time for a 100 MB file is about 1,000 s, and the
bulding rate is about 120 KB/s. A comparison of dynamic builds
remains for future work. For AS-Index, this would reduce mostly
to the standard technique of maintaining a dynamic hash file.

8.3 Search time

File AS-index n-gram index Str. B-Tree
100 MB 402.7 (400+2.7) 602.8 (600+2.8) 843.0

Table 7: Index sizes in MB for text files



File Average Min Max Std. dev.
DNA 1,534 1 145,599 1,953
text 372 1 1,480,008 5,543

Table 8: Distribution of entries for the real datasets (100 MB
files)

K 10 50 100 200 300 400 500
AS 18.3 15.6 14.9 18.7 15.4 17.8 16.4
ngram 73.0 173.7 321.2 586.9 835.5 1076.6 1367.7
Spd-up 3.99 11.13 21.56 31.39 54.25 60.49 83.4
Str BT 43.6 43.7 43.6 43.9 43.2 43.7 43.5
Spd-up 2.38 2.80 2.93 2.35 2.81 2.46 2.65

Table 9: Search time in ms for 100 MB alpha(full) files

We performed extensively pattern searches in our databases. We
extracted the patterns from the files to guarantee that at least one
result is found. Pattern sizes range from 10 symbols to 500 sym-
bols. To avoid initialization costs and side effects such as CPU or
memory contention from other OS processes, we performed each
search repeatedly until the search times stabilized. We report the
average search time over a run of one hundred search operations.

We report the results on search time, in ms, in Tables 9, 10, 11
and 12, for 100MB files.

As expected, the String B-Tree and AS-Index behavior is con-
stant regardless of the length of the pattern, while n-gram index
performance degrades linearly with this length. For our 100MB
files, the height of the String B-Tree is 3 independently of the al-
phabet size, for 106 indexed substrings (recall that the fanout if 550,
and that our bulk insertion creates full nodes). The root is always
in the cache, as well as a significant part of the level below the root,
depending on the indexed file size. The String B-Tree traversal is
generally reduced to a single disk access for loading a leaf node. In
addition, each lookup in a node requires an additional random disk
access to the database in order to fetch the full string. This leads
to a final cost of 4-5 physical disk accesses. The search time with
String B-Tree is independent of the size of the pattern and of the
size of the alphabet.

Searching with the AS-Index takes about 17 ms for
alpha(full), 30 ms for alpha(26) files, 30 ms for dna
files and 18 ms for text files (real data). This is consistent with
the analytical cost discussed in Section 6. The alpha datasets
are uniformly generated, and this results in an almost constant
number of entries per bucket. Accordingly, the search is done
in few operations. The difference between alpha(full) and
alpha(26) is explained by the size of the buckets which are
larger for alpha(26) since the n-gram values range over the set
of 264 possibilities compare to 2564 for alpha(full).

For real data (DNA and text), buckets are likely to be larger, ei-
ther because the alphabet is so small that the set of existing n-gram
values is bounded and cannot fully benefit from the hash function
(see Subsection 6.1 for a discussion), or because of non unifor-
mity. The former case corresponds to the DNA, the latter to our
real text files. Table 8 shows that, on average, the number of en-
tries in a bucket is larger for DNA (1,534 entries) than for text
(372). The cost of DNA search is accordingly slightly higher (≈
30 ms, against ≈ 20 ms). Recall that our algorithm chooses the
smallest bucket for driving the search, which limits the impact of
skewed datasets and the variance of search times.

Figure 7 summarizes the results discussed above, and illustrates
the linearity of search times for ngram-index and the constant

K 10 50 100 200 300 400 500
AS 34.7 28.8 31.6 29.2 28.3 32.6 30.4
ngram 69.1 130.7 227.3 418.6 597.2 758.8 908.1
Spd-up 1.99 4.54 7.19 14.34 21.10 23.28 29.87
Str BT 44.1 43.3 44.0 43.6 43.7 43.7 43.6
Spd-up 1.27 1.50 1.39 1.49 1.54 1.34 1.43

Table 10: Search time for 100 MB for alpha(26) files
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Figure 7: Search result on 100MB files, for varying pattern size

search times for AS-Index and String B-Tree.
Figure 8 shows the evolution of search times as the size of the

database increases from 10 MB to 100 MB. Each curve represents
the results for a given dataset, with patterns consisting of 10 to 200
symbols. As before, the AS-Index exhibits an almost constant be-
havior (appr. 20-30ms), even for very large patterns (200 symbols)
searched in large files (100 MB). The search time with the String
B-Tree slightly increases with the size of the file (but remains con-
stant with the pattern size). The tree height remains equals to 3,
however the number of nodes increases with the file size. This ac-
counts for a lower probability of a buffer hit during tree traversal.
The logarithmic behavior of the String B-Tree is almost blurred
here, because of the large node fanout (550). It would appear with
larger files. Given a file size greater than 167MB for instance (i.e.,
corresponding to more than 5503 strings), its height would increase
to 4, with two (2) additional disk accesses on average for a search.

The search time evolves (sub)linearly for n-gram index, both in
the size of the pattern, and in the size of the database. The slope
is steeper for large files. This is explained by the necessity to scan
a number of inverted lists which is proportional to the size of the
pattern. In addition, larger files imply larger lists, hence the behav-
ior illustrated by Figure 8. However the cost remains sublinear (the
cost for 100MB is only 3 times higher than the cost for 5MB). This
is due to the merge process which stops when the smallest list has
been fully scanned, thereby avoiding a complete access to all lists.

Figure 9 and Figure 10 summarize the ratio of search times, giv-
ing the speed-up of AS-Index over respectively the n-gram index
and the String B-Tree. The alpha(full) dataset family is a spe-
cial case. Because of the uniform distribution that produces a large
number of n-grams ranging over all the possible values, finding the

K 10 50 100 200 300 400 500
AS 31.1 32.7 28.0 29.4 31.7 31.5 31.8
ngram 38.7 72.6 123.8 218.3 312.0 381.3 464.7
Spd-up 1.24 2.22 4.42 7.43 9.84 12.1 14.61
Str BT 43.7 43.6 43.4 43.8 44.0 43.8 43.7
Spd-up 1.41 1.33 1.55 1.49 1.39 1.39 1.37

Table 11: Search time for 100 MB dna files



K 10 50 100 200 300 400 500
AS 19.9 17.8 15.5 20.3 16.6 17.0 19.1
ngram 33.1 78.8 114.1 161.0 173.8 187.0 207.0
Spdup 1.66 4.43 6.92 7.93 10.47 11.0 10.84
ST-BT 43.9 43.6 43.2 44.0 43.3 43.4 43.8
SpdUp 2.21 2.45 2.79 2.17 2.61 2.55 2.29

Table 12: Search time for 100 MB text files
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Figure 8: Search result, for varying pattern and file size

reference to a list through a traversal of the B+tree takes time. The
number of traversals increases linearly with the pattern size, which
explains the large cost with respect to the other datasets. For these
datasets our algorithm clocked in as twice as fast than n-gram based
search for small patterns (10 symbols) and about 30 times faster for
large patterns (with hundreds of symbols). Figure 10 shows a con-
stant gain of AS-Index over String B-Tree, about 1.5 with DNA and
alpha(26) files and about 2.5 for text and alpha(full)
files. This difference is due to the higher selectivity of n-grams
for text and alpha(full) what implies smaller buckets. The
String B-Tree is not affected by the selectivity of n-grams, i.e., the
alphabet size.

8.4 False positives
Table 13 shows the false-positives (F/P) retrieved when search-

ing for patterns of 50 symbols in a set of files with a total size
of 10MB, with respect to the alphabet and the n-gram size. As
expected (see Section 6) the number of F/P highly depends on the
choice of n. While 4 or 6-grams (resp 2-3 grams) generate a signifi-
cant number of F/P for DNA (resp. alpha(26)), this number quickly
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Figure 9: Ratio of search times AS-Index/ngram-index with re-
spect to pattern size
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Figure 10: Ratio of search times AS-Index/String B-Tree with
respect to pattern size

alphabet n ratio f/p

DNA

4 0.999
5 0.986
6 0.798
7 0.019
8 0.001

alpha(26)

2 0.994
3 0.31
4 0.001

Table 13: False-positives ratio for various alphabets and ngram
size

drops to less than one on a thousand with 8-grams (resp. 4-grams).
The behavior for small-size alphabets can be explained by the low
number of possible n-grams (e.g. 44 for DNA with n = 4) and
thus by the low number of NAS possible signatures (see Section 6).
Since AS-Index does not store the n-grams but their signature, the
choice of the n has no impact on index size and performance.

9. RELATED WORK
Finding patterns in a large database of sets is a fundamental

problem in Computer Science and its applications such as bioin-
formatics. The theoretically best algorithms and data structures
allow linear construction of the index in the database, have low
storage overhead, and allow searches that are processed in time lin-
ear on the size of the pattern. Among the many algorithms, those
based on suffix trees [9] have received much attention. Recent work
by Kurtz [12], Tata, Hankins, and Patel [22] among others tries to
make the theoretically optimal behavior of suffix trees practical. A
great part of the problem is caused by the blow-up of the index size
over the database size, typically ten to twenty times [12]. Related
data structures such as Manber’s suffix arrays [16], Kärkkäinen’s
suffix cacti [10], or Anderson and Nilsson [1] suffix tries lower
storage overhead at the prize of an increase in search time. Demen-
tiev, Kärkkäinen, Mehnert, and Sanders [5] give methods to make
suffix arrays effective and efficient for truly large files

Suffix arrays and suffix trees are static indexes, designed to index
a single file content. If we create such an index for every record,
then search times will depend on the size of the database. If we
however create the index for a collection of records – as we ob-
viously should – then deleting and inserting records becomes very
difficult, and it is unclear how we can adapt the binary search of
suffix arrays to the indirection mechanism used by the storage en-



gine. Life is much simpler if the database consists of words and
we restrict ourselves to word indexes that can be stored much more
compactly [24].

Signatures files were proposed in [6] and shown to be inferior
to inverted indexing in [25]. Some other attempts for indexing
sequences are the ed-tree [21] for DNA files, and the q-gram in-
dex [2]. Both focus on the specific problem of homology search in
genomic databases.

Our method is predominantly based on previous work on n-gram
based inverted file indexing. The technique has been advocated for
string search in larger, hence naturally disk based, partly or totally
unstructured files or databases (full-text, hypertext, protein, DNA).
In bioinformatics, CAFE prototype uses n = 3 for protein and n =
9 for DNA string search, and is reported several times faster than
previous systems [23]. All these systems used the basic n-gram
index for many GB disk-resident datasets.

The latest attempt of using n-grams for a large, (hence diskbased)
database, is reported in [11]. Like us, it improves storage overhead
and, especially, search time, over the basic n-gram scheme. The
n-Gram/2L uses a “normalized” representation with two indexes:
(i) one n-gram index on the subsequences of size m indexing the
n-grams found in each subsequences, and (ii) one n- gram-index
indexing the subsequences found in the files. The two indexes are
smaller than the original index and though a search needs to use
both indexes, it can use less look-up. If AS-Index saved storage for
larger alphabets it appears to be slightly less efficient for small ones
compared to n-Gram/2L However like n-gram index this structure
offers a search proportional to the database size and to the query
size oppositely to our constant time claim.

10. CONCLUSION AND FUTURE WORK
We have presented a novel approach to string search in databases,

based on Algebraic Signatures and algebraic computations. The
contribution of our paper is a simple and fast search algorithm
which finds a pattern of arbitrary length in a database of arbitrary
size in constant time. We showed through analysis and experiments
that our technique outperforms other disk-based approaches. To
our knowledge, our work is a new approach to indexing, which
takes advantage of the interpretation of character as symbols in a
mathematical structure to develop new computational techniques.

Future works include more complete performance studies in-
cluding the study of a non-dense indexing variant and a variant that
deals with skewed distribution by considering the most selective
ngrams of the searched pattern. Scalable and distributed AS-Index
constitute other promising research directions that we plan to in-
vestigate.
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