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ABSTRACT

We propose a novel string search algorithm for data stored
once and read many times. Our search method combines
the sublinear traversal of the record (as in Boyer Moore or
Knuth-Morris-Pratt) with the agglomeration of parts of the
record and search pattern into a single character — the alge-
braic signature — in the manner of Karp-Rabin. Our experi-
ments show that our algorithm is up to seventy times faster
for DNA data, up to eleven times faster for ASCII, and up to
a six times faster for XML documents compared with an im-
plementation of Boyer-Moore. To obtain this speed-up, we
store records in encoded form, where each original character
is replaced with an algebraic signature.

Our method applies to records stored in databases in gen-
eral and to distributed implementations of a Database As
Service (DAS) in particular. Clients send records for inser-
tion and search patterns already in encoded form and servers
never operate on records in clear text. No one at a node can
involuntarily discover the content of the stored data.

1. INTRODUCTION

We describe a novel string (pattern) matching principle,
called n-gram search, first proposed in preliminary form
in [10]. We designed our method for databases and files
where records are stored once and searched many times.
Our search algorithm combines the basic sub-linear method
of Boyer Moore, Quick Search et al. [4] with a Karp-Rabin
like agglomeration of several characters into a single signa-
ture of the same size as a character. Our algorithm tra-
verses the record similar to Boyer Moore (BM), but instead
of comparing characters, it compares signatures of n-grams
and thus allows us to compare n characters at once. Com-
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pared with BM, our algorithm performs especially well when
the signature-based comparison is much more discriminative
than that of single characters. We gain this speed advan-
tage because our method tends to use much larger shifts
than BM. In the case of DNA records, stored as usual as an
ASCII file, the characters themselves can be only one of four
values and comparing signatures of 4-grams is much more
effective. As a result, we measured our method to be up to
seventy times faster than BM for DNA data. Our algorithm
showed itself to be at least several times faster than BM also
for ASCII and XML text.

To speed up signature calculation, we store the record in
encoded form, but in place, i.e., without additional storage
overhead. In our scenario, the trade-off between the lowered
costs of searches and the single encoding costs during record
generation and decoding for reads is advantageous.

Our method presents two advantages. First, as we said
above, it is very fast. The second advantage lies in its ap-
plicability for distributed storage. A client locally encodes
the record and sends it to a remote server. For the search,
the client sends an encoding of the pattern to all the servers
in parallel. The servers search for the pattern without de-
coding. No involuntary or accidental data disclosure on the
server or on the way to the client is possible. A determined
adversary with access to the server can decode the stored
data, but if caught, cannot credibly claim unintentional pos-
session. He finds himself in the position of someone in pos-
session of an opened letter not addressed to himself.

These features make the method suitable for Scalable Dis-
tributed Data Structures (SDDS) over a grid or a structured
P2P system. More generally it is suitable for a Database As
Service (DAS) environment.

We present two variants of the algorithm that differ in the
amount of encoding and offer a trade-off between the speed
of searches and the amount of decoding necessary when read-
ing a record.

Below, Section 2 gives a bird eye’s view of our novel
scheme. Section 3 explains our record encoding and re-
views the basic properties of algebraic signatures that we
use. We present the two variants of the algorithm in Sec-
tions 4 and 5, respectively. Section 6 contains analytical
and experimental performance analysis, including a com-
parison to Boyer-Moore. For experimental analysis we use
DNA records, ASCII text and XML documents. We then
discuss possible improvements (Section 7), present related



work (Section 8) and conclude.

2. N-GRAM SEARCH

Boyer’s and Moore’s pattern search algorithm (BM) [2]
tries to match a search pattern against a given position in
a record. It first looks at the character in the record on top
of the last character in the pattern. Chances are that they
do not match. In this case, the occurrence of that char-
acter in the pattern determines how far we can shift the
pattern to the right without missing a potential match. In
Figure 1(a), we are searching for the pattern “Dauphine”.
The first matching attempt places the “e” in “Dauphine”
under an “i”. Since the “i” appears in the pattern two char-
acters to the left, we shift the pattern by two characters to
the right under the record. In this position, the last letter
of pattern and record substring match, but a comparison
with the full pattern shows that this is not a match. Since
there is no further “e¢” in “Dauphine”, we now shift by the
full length of the pattern. In addition to this “bad charac-
ter” shift, BM also has a “good suffix” shift, but this has
no equivalence in our scheme. The BM variant without the
latter is known as Quick Search [4].

(a) Universite de Technologie Paris Dauphine
Dauphine Dauphine Dauphine Dauphine
Dauphine Dauphine Dauphine

(b) Universite de_Technologie Paris Dauphine
Dauphine Dauphine Dauphine
Dauphine Dauphine Dauphine

Figure 1: (a) Boyer-Moore Type Search and (b) n-
gram Search with n =2 .

The efficacy of the “bad character” shift depends on the
size of the character set and the frequency statistics of the
characters in the data set. At the first match attempt in Fig-
ure 1(a) we compare “I” against “e” in the pattern and shift
by 2. Using digrams, Figure 1(b), we compare “si” against
“ne” and since there is no “si” in the pattern, we can shift by
the maximum amount of 7. The following shifts are also by
the maximum amount until we hit the actual match. In con-
trast, the BM variant only once used its maximum shift of 8.
Depending on the data, we can often do better with longer
n-grams. Unfortunately, a naive implementation of this idea
creates a much bigger BM shift table and is not practical.
However, algebraic signatures compress the information of
an n-gram into a single character. Distribution of n-gram
signatures is more even than distribution of characters in
actual data sets and consequentially, n-gram signatures are
more discriminating than single characters. In consequence,
average shift size goes up and the search performs faster.

Calculating n-gram signatures directly from the record
takes time. To optimize search times, we can replace ev-
ery character in the record with an n-gram signature. This
avoids calculating n-gram signatures altogether. We can
still convert an encoded record in linear time to the original.
Alternatively, we can replace a character with the algebraic
signature of the record up to that character. This still allows
us to calculate n-gram signatures quickly, but also enables
other searches such as longest prefix search. We describe an

algorithm based on the latter approach in Section 4 and on
the former in Section 5. The next Section recalls the ba-
sic definitions and properties of Algebraic Signatures. More
details can be found in [12].

3. ALGEBRAIC SIGNATURES

We assume that our records are encoded in a character set
where each character is a bit string of length f. We inter-
pret these characters as elements or symbols of a Galois Field
(GF) of size 27 called GF(27) in the following. We recall
that a Galois field is a finite set that supports addition, de-
noted @, and multiplication, denoted ®. These operations
are associative, commutative and distributive, have neutral
elements, and there exist inverse elements for both. Iden-
tifying the character set of the records with a Galois field
provides a convenient mathematical context to condense the
contents of a substring into a single character, as we will see.

A symbol « is primitive if, for any element 3 # 0 of the
GF there exists some 4, 0 < 7 < 2f — 2, such that B8 =a'
In other words, the powers of o enumerate all the non-zero
elements of the GF. The algebraic signature (AS) of a record
r1 - -1; with respect to primitive « is given by

) )
rma®ra” d...dra

As usual, we implement Galois field addition as the famil-
iar XOR. The implementation of the multiplication is more
involved and we postpone its discussion to Section 3.3. If
the AS of two records of the same length differ, then we
know for sure that the records are different, whereas if they
are the same, (and if the records are not random) then we
conclude probabilistically that they are the same.

3.1 Cumulative Algebraic Signature

Let Ra be a record of M symbols r1---7ry. For each
r; we calculate the AS of the prefix ending in 7;, i.e., the
AS 7l = ria @ --- ® . The record R); with symbols
ry -7 is the (full) Cumulative Algebraic Signature (CAS)
of Rys. Thus, the full CAS replaces each individual symbol
7 in the encoded string with another symbol r’ encoding not
only the knowledge of the current symbol but also additional
knowledge of all the symbols preceding r. Comparison of
the ASs in a CAS yields information about likely equality
or certain inequality of the entire prefixes ending with the
matched symbols. The information contained in a single
character in the CAS encoding includes information about
all preceeding characters in the string. Using it for pattern
matching promises much higher efficiency than using the
original record.

The algebraic properties of AS allow us to quickly cal-
culate the AS of an n-gram from the CAS encoded record.
First

r=ri_y ®ria (1)

We can thus calculate the CAS encoding in linear time from
the original record. Reversely, we have

ri = (r; ©riog)/a’ (2)

This allows us to recover the original record from the CAS
in linear time. We call this process decoding. Note that in a
Galois field GF(2f), addition is the same as substraction.



3.2 Partial CAS and »-grams

An n-gram within Ry is any substring of length n, i.e.,
Tient1Titn—2 - Ti, where ¢ € {n,--- , M}. The partial CAS
of R consists of the record where each symbol, let it be
ry, is either the AS over the n-gram terminating with r;,
for ¢ > n, or over the i-gram terminating with r; for ¢ < n.
Formally, we have:

®3)

= ra®-- - ®ra fori<n
! Ticni1a @ - Dria”™  otherwise

The following algebraic properties allow us to calculate the
AS of any n-gram in Rjs from a full CAS and to convert
between the partial and full CAS of Ry;. First, for any ¢ > n,
we have

i—n+1

G- Bria

PO Ty = Ticng1a
Therefore, the searched n-gram signature is:
AS(Fi—pi 1, Tiemay oy mi) = (rh O 7_0) Ja’ ™" (4)

3.3 Implementing GF Multiplication and Di-
vision

There are several methods for multiplying and dividing
in a GF. In our context, the use of single logarithm and
antilogarithm tables appears to be the most efficient [11].
The tables precalculate the log and antilog values. The log-
arithm of a GF element 8 # 0 is the (unique) integer i,
0 <14 <2 —2 such that o = 3. We define the logarithm
of 0 to be 2f — 1. We implement Equation (4) as

AS(Ficnt1,Timnt2, - ,Ti) =
antiloga[(logalri ® ri_y] — i +n)mod (2" 1)) (5)

Here, the operator @ denotes GF addition and substrac-
tion. The other additions/substractions in the formula are
the usual integer operations. Similarly, we move between
the original record and its full CAS by calculating

r = ri_y @ antiloga[(loga[ri] + i) mod (27 —1)]  (6)
antiloga[(loga[r ® ri_1] — i) mod (2 —1)]  (7)

i

4. PATTERN MATCHING IN FULL CAS

We present now the first variant of our algorithm which
works on records encoded in their (full) CAS form. We recall
that encoding is done in linear time using using property (1)
and that we design for the insert once, search often scenario.
Our search method first pre-processes the pattern, generat-
ing a shift table that is used in the second phase to find all
matches of the pattern in the records. We only discuss the
matching process within a single record in this paper.

4.1 Pattern Pre-processing

We use n for the number of symbols in an n-gram. Typ-
ically n € {1,2,3,4}. Let P = (p1,p2, - ,pK) be the
pattern to match. We only search for patterns of length
K > n. Starting from the beginning, we determine for ev-
ery possible signature in the pattern the shift amount of
P against R. We store this information in an auxiliary
data structure, the shift table, T[0,...,2f —1]. We have
T[h] = s, where h is the logarithm of an n-gram signature (h
=10ga(AS(Pi—n+1,Pi—n+2, - ,pi)) and s is the shift length.
We call h the the Logarithmic Algebraic Signature (LAS) of
the n-gram. Using the LAS instead of the AS of an n-gram

2-gram Shift
da
au
up
ph
hi
in
ne
All other digrams

O RN WR U

Table 1: Shifts for each 2-grams in Dauphine

avoids taking an antilogarithm whenever we calculate the
AS of an n-gram in the matching phase of our algorithm
discussed in the next Section. From Equation (5) we obtain

h = LAS(Pi—n+1,Pi—n+2, " ,Di)
= logalpi ®pi_n] —i+nmod 2" —1)  (8)

We store the LAS of the final n-gram in a variable V', and
the LAS of the full pattern in a variable W. We then set
each T[i] according to the following rules.

1. We preset every entry h to T[h] = K — n + 1. This
represents the maximal value of the shift: if the LAS h
is found in the (encoded) record but not in the pattern,
then the next matching attempt is K — n + 1 position
to the right.

2. We compute the shift for the signatures found in the
pattern. For every LAS h of an n-gram in P other
than the last one, we set T'[h] to the offset to the end
of P of the rightmost n-gram with h as LAS.

The second rule means that if a signature h is found in
both the (encoded) record R and in the (encoded) pattern
P, then the next matching attempt shifts P such that the
positions of h coincide. A special case occurs when h = V.
We set T'[h] to the offset of the previous occurrence in P of
an n-gram with h =V provided there is such occurrence.

ExAMPLE 1. We use the pattern P = Dauphine. We
choose n = 2, i.e., we intend to perform a 2-gram (digram)
based search. We initialize every T[h] to K —n+1 = 7.
We then set T[LAS(da)] = 6, T[LAS(au)] =5, etc. Table 1
illustrates the result. O

Here is the preprocessing algorithm.

Algorithm PREPARESEARCH
Input: a pattern P, the ngram size n
Output: the encoded pattern P’, the shift table T'
begin
// First encode the pattern
for (i := 1 to size(P))
// Apply equation (1)
if (1=1)

P'[i] := P'[i — 1] x0OR o PJi]
endif
endfor
// Compute table T'. First initialize with the maximal shift
for (i = 0 to 27 — 1)
T[i] := size(P) —n+1



Record (1. r

Pattern 7 ol v

Figure 2: n-gram shift, with y = LAS(ri—pt1,-+- ,74)
and V #y

endfor
// For each ngram, add en entry [log(ngram), shift] in T’
for (i = n to size(P))

T[LAS(P[i —n+1]--- P[i])] := size(P) —n—1
endfor

end
4.2 Pattern Matching

We now describe the search for P = (p1,p2, -+ ,pk) in
an encoded record R = (ri,72, -+ ,rn) of length M. Let
R} = (Ti—n+1,Ti—n+2, - ,7i) denote the n-gram in R end-
ing with r;. Similarly, we use P" = (pi—n+1, Di—n+2," " ,Di)

to denote the n-gram in P ending with p;.

We begin by attempting to match R% and Px. We do this
by comparing LAS(R}%) computed according to (8) applied
to the symbols of the record, with LAS(Pg) that is in V.

1. If there is the match, then we compare LAS(RY) and
LAS(Pf) that is in W. If again we have the match,
then we report a likely successful search.

2. If LAS(R%) # LAS(Pg), then we lookup table T with
index ¢ = LAS(R%). We then shift P by j = T[]
positions to the right. We follow with the attempt to
match Ry, ; and Pg. We repeat the whole process
until the shift reaches or attempts to exceed ry;.

Figures 2 and 3 illustrate a matching attempt at position
i. Variable V stores the value of the final n-gram LAS in P.
The encoded record is examined at position ¢ for the values
of the CAS 7;_,, an 7. From Equation (8) we obtain the
LAS of the n-gram of R at i as y = LAS(ri—n+y1,--+ ,7i).
Now assume that V' # y. Then either y is found in the
pattern by looking up table 7', and the shift superposes the
position of y in the pattern with the current position in the
record (Figure 2), or y is not found in the pattern, in which
case the shift found in T is K —n + 1 (Figure 3).

Record (S r
I I [v]
Pattern | | |V|$,
I I Iv]
Figure 3: The n-gram shift, when y =

LAS(ri—n+1,--- ,7i) is not found in the pattern

Using signatures, there is a possibility of collisions, where
two non-equal strings have the same signature. The pattern
matches reported by our algorithm up to now are only likely
matches. We have to make sure that the match is a true
one. The simplest method is to finish our algorithm by a

(a) AGCATATAAAGCGAGTGCGGAGCAT
AGACAGAT AGACAGAT
AGACAGAT AGACAGAT

(b) AGCATATAAAGCGAGTGCGGAGCAT
AGACAGAT AGACAGATAGACAGAT
AGACAGAT AGACAGAT

AGACAGAT
AGACAGAT
AGACAGAT
AGACAGAT
AGACAGAT

AGACAGAT
AGACAGAT
AGACAGAT
AGACAGAT
AGACAGAT
AGACAGAT
AGACAGAT

Figure 4: n-gram search in (encoded) DNA sequence
for (a) n =3, then (b) n =2 and (c) n=1.

character to character comparison after decoding records.
In the distributed case (e.g. DAS), this final verification
occurs at the client. Section 7 gives variants that optimize
this final verification step.

EXAMPLE 2. We now revisit our introductory example of
matching P = ’Dauphine’ in record R = ’Universite de
Technologie Dauphine’. We already pre-processed the pat-
tern in Ezample 1. The value of V is LAS(ne). Figure 1
shows how the pattern traverses the record. In the initial
position, we calculate 1 = LAS(s%), using (8). Since 1 #V
(unless there is a collision,) we consult our shift table and
find T[LAS('st")] = 7. Accordingly, we shift the pattern by 7
characters to the right. Proceeding in this manner, our fifth
attempt leads to the digram ’up’ in the record. In this case,
the shift table has T[LAS('up’)] = 4 and the shift moves the
pattern into the correct position under the string. Our algo-
rithm now tests whether this is a likely match by comparing
further algebraic signatures. Because of collisions (when sig-
natures of different n-grams coincide) there is a small possi-
bility of a false positive. Figure 1 (a) shows the same search
with n = 1. The shifts are the same as for Quick Search, i.e.
BM without the (rare) good suffiz shift. a

EXAMPLE 3. Our next example illustrates our approach
for DNA sequences. It is adapted from one in [4] (Figure 4).
We have the four-letter alphabet of nucleotides: A, C, G, T.
The pattern is "AGACAGAT’. If we use bytes to store our sig-
natures, then we can actually find a collision-free way of
calculating signatures of n-grams with n < 4. In our exam-
ple, choosing n =1 leads to twelve attempts and an average
shift of less than 1.5 symbols. Choosing n = 2 results in four
attempts, but choosing n = 3 only results in three attempts
for an average shift length of 5.6 symbols. a

These and others examples show the impact of the selec-
tion of n on the number of shifts. Usually, the signature
contains more information for larger values of n (such as
n = 3 or n = 4) and yields longer shift, but on the other
hand, the size of the pattern and n limit the maximum shift.
If it happened that n = K, the length of the pattern, then



we would directly look for likely matches, but would also
only be able to shift by one character to the right. It would
thus traverse the record as in Karp’s and Rabin’s method,
but would obtain the signatures directly or more directly
from the encoded record instead of calculating them from
the last signature.

S. PATTERN MATCHING WITH PARTIAL
CAS

The full CAS encoding allows for the dynamic choice of n.
It is also particularly efficient for other useful searches such
as prefix search, longest common prefix search, or longest
common substring search [11]. Our second variant encodes
the record directly into the AS of n-grams and avoids the
LAS calculations of our first variant. However, the search
algorithm can no longer dynamically choose n and other
searches are now much more expensive.

5.1 Encoding and Decoding

We denote the it" symbol of the encoded record with 7.
We define 7} as in Equation (3). As we said in Section 3,
record Ry, = r{ry ---r}; is the partial CAS of record Ryy.
Encoding of Rps can again be computed in linear time. For
2 < i < n, we can calculate recursively

" " 7
T, = ri_1Dar;

= 7'y ®antiloga[i + loga[ri mod2’ —1]  (9)
Otherwise, we observe that 7y’ ®ari’;; = ari—ns1 ®a"riy .
Therefore, our recursion becomes for ¢ > n:
rigr = (aricng1 @ " i+ i)/ a

n -1 n
Ti—nt+1 Do Tip1 +a 1y

Tient1 @ antiloga[n + loga[rit1] mod of _ 1]
@ antiloga[loga[r!] — 1 mod 2’ — 1] (10)

Decoding a partial CAS is more involved than decoding
a complete CAS. First, 1 = o 'r{. For 1 <i <n-—1,
rig1 = o (riyy — ). If i > n, then

a1

1 17
Tid1 = « ri Barii B ari—ny1)

= a "M ea L ®a  imng)
= antiloga[loga[r!] —n — 1mod 2’ — 1]
® antiloga[loga[rii1] — nmod 2’ — 1]
@ antiloga[loga[ri—nt+1] — nmod 2f _ 1] (11)

Unlike for complete CAS, decoding a single symbol in the
record involves decoding all previous ones.

5.2 Pattern Pre-processing and Matching

Pre-processing pattern P proceeds in the same manner as
in the first variant. The search itself proceeds in a similar
manner by attempting to match n-grams. However, now
there is no need to calculate the AS for an n-gram in the
record, since they are already directly encoded in R”. If
matching with V' is successful, we need to confirm whether
this possible match extends to the whole pattern. Since cal-
culating the AS for the current string in R that might match
from R” would be cumbersome, we instead compare the AS
of all n-grams in P” and the possible match in R”. If all

of these comparisons succeed, then we conclude probabilis-
tically that we have a match. (See Section 7.3) If any match
attempt fails during this process, we calculate the shift of
the terminal n-gram signature from 7. We confirm a suc-
cessful match, as in Section 4.2 by a character by character
verification after decoding our record. The verification con-
cerns the first n—1 characters only, for the reasons discussed
in Section 7.3.

6. PERFORMANCE ANALYSIS

We first derive analytically the average shift size in depen-
dence on n before we report on the results of our extensive
experiments.

6.1 Analytical Study

Pattern pre-processing costs O(2Kn + 1), as it involves
(linear) encoding and the creation of 7. Similarly, encoding
or decoding of a record costs O(M). Pattern matching itself
is O(N), where N is the number of attempts to match. We
have N = (M — K)/A, where M is the record size and A
the average amount of a shift. Despite the same O(N) cost
formula, the search speed turns out to be faster when us-
ing n-gram (partial) CAS, since we avoid the XOR calculus
and log/antilog calculus. While obtaining theoretical results
seems to be impractical, our experiments show a speed up
between one and two.

The average shift A is longer when the probability of
matching n-gram signatures is smaller. Our examples il-
lustrated this for some choices of n = 2,3, or 4. For n = 4,
the probability of one 4-gram from a typical record match-
ing another one is already close to the minimal probability of
271 or 1/256 for our favorite GF with 256 elements. In ad-
dition, the average shift is limited by the size of the pattern
and can be at most K —n + 1.

We now calculate A under the assumption that all sig-
natures are equally likely and independent from each other.
Despite these simplifying assumptions, our result seems to
be confirmed by our experimental values. We set p = 277
and ¢ = 1—p. Assume that we have a match on the rightmost
signatures of the pattern and the record. After determining
whether to report this match as a likely match, we shift the
pattern to the left by B characters. With probability p, the
second n-gram from the right in the pattern matches and we
shift by 1. With probability gp, the lead n-gram in the record
is two from the right in the pattern, and so on. With prob-
ability ¢® ", the lead n-gram does not appear elsewhere in
the pattern and we shift by K —n + 1. All together

K—-n-—1

B= Y ((i+ 1)pqi) +(K—n+1)g" "

=0

Using a formula for the derivative of a finite geometric series

(or Mathematica™), this simplifies to
K—-n—1 )
B = p- Z ((i—l—l)qz) —i—(K—n—i—l)qK*"
i=0
) UK = mg" " — (K ot )¢ 4
(¢—1)?
K—n

+(K-n+1)-q
l_qK7n+1

p
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Figure 5: Graph of A depending on pattern length
and of the bound min(K —n + 1,256). n is 4.

In the general case, the rightmost signatures of the pattern
and in the string coincide with probability p leading (after
evaluation) to a shift of B. With probability pg, we shift by
one, with probability pg® by two, etc. Therefore

K—n
A=pB+ Y (ipg") + (K —n+1)g" """

i=1
The second and third addend are equal to ¢B and therefore
A=B

As K — 00, A — 1/p. It is bound from above by min(K —
n + 1,1/p), but, as Figure 5 shows for n = 4, the fit is not
tight.

6.2 Experimental Analysis

We performed extensive experiments in order to evaluate
our method for actual records. We compare the following
algorithms:

1. The Boyer-Moore algorithm, denoted by BM;

2. The NGRAM algorithm based on full algebraic signa-
ture (full CAS), denoted by NGRyu;

3. The NGRAM algorithm based on partial algebraic sig-
nature (partial CAS), denoted by NGRpqr¢-

We recall that the difference between NGR s, and NGRpart
lies in the encoding of the record. In the first case, full CAS,
each symbol in the encoded record is the signature of all
characters in the record up to and including this position.
In the second case, partial CAS, each symbol in the encoded
record is the signature of the n-gram that ends at r.

Experimental Setting

The code for Ngram search can be downloaded from

www.lamsade. dauphine. fr/rigauz/ngram.zip. All the algo-
rithms are written in C. For Boyer Moore we use the C im-
plementation provided by T. Lecroq (www-igm.univ-mlv.fr/
“lecrog). This choice should guarantee that we compare with
a first class, fully optimized, general implementation of BM.
We ran all the experiences under either a mono-processor
machine under Linux, or a bi-core computer 2.2 GHz Turion
64b under Windows XP. We obtained the results reported
below on the latter machine. The data sets consist of ASCII,
DNA and XML files. All files are pre-encoded (calculation of

signatures uses GF(2®%)) and loaded in main memory before
the measurements. This phase does not influence the result.
The search algorithms then execute on the in-memory files.
In order to avoid initialization overhead and any other side
effects such as CPU or memory contention from OS pro-
cesses, each search is performed repeatedly until the search
cost stabilizes. We report the minimal search time for one
search.

In our results, we distinguish the following phases for each
algorithm:

1. Pre-processing: the computation of the bad character
and good suffixes table for BM, and the encoding of
the pattern and the computation of the shift table for
the NGRAM variants.

2. Processing: the search phase itself.

‘We measure both phases independently because — depend-
ing on the context — pre-processing might be performed only
once. This would be the case in an distributed environ-
ment where a client application pre-processes the pattern
and sends it and the shift table to all storage servers. We
used the following data sets:

1. An ASCII text, a plain text version of the Book of
Common Prayer of size 941KB.

2. Human DNA chromosome 17 with 167K characters.

3. A 143KB collection of XML and XSL descriptions of
French government certificates in which fathers recog-
nize out-of-wedlock children.

We can summarize the main conclusions of our experi-
ments as follows. First the outcome fully confirms our ex-
pectation that our method is faster than BM. The gain in-
creases for larger patterns as it should. The NGRpar¢ al-
gorithm based on partial algebraic signature appears par-
ticularly efficient for longer patterns in the context of the
database search. The precise results depend on the data
type.

In the following experiments, the n-gram size is set to 4.
The elapsed time are in us.

Search in DNA records

Table 2 shows the results for a pattern search in a DNA file,
with variable pattern size. Here, “Ngram search” refers to
the NGRpar+ algorithm. The columns “Prepr. Time” and
“Elapsed time” denote respectively the preprocessing and
search time (the latter excluding the preprocessing phase).
Column “Nb shifts” represents the number of matching at-
tempts, whereas the column “Sum shifts” is the sum of the
shift values, for all the shifts performed during a search over
a file. Finally column “Ratio” is the ratio of the elapsed
time of BM with the elapsed time of NGRpar¢.

Note that the elapsed times (and therefore the ratio) are
machine-dependent, while the other figures are not, because
they only depend on the algorithmic features and the input.

We also show in the table the theoretical shift size, ob-
tained analytically from the performance study of Section 6,
and reported in Figure 5.

In our experiment, the number of shifts in NGRpqr+ strongly
decreases as the length of the pattern increases. When a mis-
match occurs, the algorithm searches for a match between



Boyer-Moore search Ngram search

Pattern| Prepr. | Elapsed| Nb Avg. Prepr. | Elapsed| Nb Avg. Theor. | Ratio
size time time shifts shifts time time shifts shifts shift

5 16 7745 44936 3.72 203 5758 84342 1.99 1.996 1.3451
10 12 4128 23223 7.20 194 1702 24312 6.91 6.918 2.4254
20 13 4221 23693 7.06 188 747 10187 16.49 16.47 5.6506
30 15 3943 23499 7.12 189 493 6554 25.62 25.67 7.9980
40 17 5043 29622 5.65 172 388 4874 34.45 34.45 12.9974
50 18 6038 36048 4.64 204 324 3919 42.84 43.01 18.6358
100 28 4907 29403 5.69 189 185 2053 81.74 80.86 26.5243
150 35 4208 25307 6.60 197 125 1483 113.09 111.99 33.6640
200 43 3715 22409 7.46 209 102 1223 137.14 137.59 36.4216
250 53 3343 20166 8.28 270 90 1077 155.58 158.63 37.1444
300 60 3080 18668 8.93 273 77 929 180.17 175.94 40.0000
350 72 3291 18702 8.93 248 72 858 195.05 190.17 45.7083
400 81 3217 18284 9.13 298 67 800 209.35 201.87 48.0149
450 90 3156 17941 9.30 274 62 745 224.51 211.49 50.9032
500 97 3057 17367 9.60 301 57 672 249.07 219.40 53.6316

Table 2: Results for DNA search
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Figure 6: Search time for n-gram searchs and Boyer-
Moore

the signatures of the final n-gram in the record at the cur-
rent position and one of the n-grams in the pattern. When
the pattern is small, it is unlikely to find a match and we
shift by almost the length of the pattern. As the pattern
becomes longer, the chances for a match increase, but on
the other hand, the shift amount increases even more lead-
ing to a quick scan of the file. BM does not exhibit this
behavior. As a result, search time (Figure 6) becomes much
better for our algorithm as the pattern size increases. The
comparison between NGRpqr¢t and NGRyyy; shows clearly the
advantages obtained by the former, due to the direct access
to the m-gram signature in the encoded record (Figure 7).
From now on the n-gram algorithm considered is NGRpart.

Figure 8 shows how the number of shifts evolves with the
size of the pattern. For large patterns, a few attempts suffice
to process the pattern search.

Figure 9 compares the values of the average shift for BM
and NGRpart, algorithms. With NGRpart, the shift is equal
to K — (n — 1), with K the size of the pattern, and n the
size of ngram (we use n = 4). Therefore the shift is N — 3
when the n-gram is not found in the shift table, else the
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Figure 7: Comparison of elapsed time for Ngry.;
and Ngrpa
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Figure 8: Evolution of the number of shifts with the
size of the pattern
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shift is the value found in the shift table which results from
the preprocessing phase. We also plot on the same figure
the theoretical shift results. For smaller pattern length, the
match turns out to be almost perfect. For larger ones, the
experimental values surpass the prediction, mainly because
the n-grams are not evenly distributed.

Figure 10 shows the ratio between NGRpqr+ and BM. This
ratio was about 2 for a pattern of size 6. This ratio is much
higher for long pattern. On a bi-processor machine, the ratio
reaches 72 for a pattern size of 500 symbols. This is directly
related to the difference in the number of shifts, as reported
in our previous figure.

The speed of our algorithm is lower when we use cumula-
tive signatures. The cause are the additional XOR operations
and log table accesses needed to obtain the n-gram from the
CAS stored in the encoded form of the record. However,
the number of shifts necessary is the same and still yields
an advantage over BM. We recall again that the full CAS
method allows other fast searches such as prefix searches. In
addition, the CAS encoding works for all choices of n.

Figure 11 shows pre-processing time. BM preprocessing
appears several times faster, e.g. almost 4 times towards the
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Figure 11: Preprocessing time
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Figure 12: Elapsed time for ASCII search

largest pattern. However, in both cases the pre-processing
cost is negligible with respect to the search cost.

Search in ASCII Records

Table 3 summarizes the results for searching ASCII texts.
Recall that we search a plain text version of the Book of
Common Prayer whose size is approximately 1 MB.

The difference is less impressive than with the DNA file.
Of course, the BM algorithm behaves better with alphabets
of large sizes, since a single character contains much more
discriminative. Still, n-gram search performs at least as fast
as BM for small patterns, and turns out to be almost twice
as fast for large patterns. Figure 12 shows the compared
curves of elapsed time for both algorithms.

The values of the number of shifts and average shift size
for BM and NGRpqart, algorithms respectively are shown in
Figure 13 and 14.

The figures clearly illustrates the good behavior of n-gram
as pattern size increases. As already mentioned for DNA
files, the size of the shift is roughly that of the pattern for



Boyer-Moore search Ngram search

Pattern| Prepr. | Elapsed| Nb Avg. Prepr. | Elapsed| Nb Avg. Ratio
size time time shifts shifts time time shifts shifts

6 14 4560 30168 5.30 211 3697 53868 2.98 1.2334
10 11 3364 21843 7.32 202 1630 23275 6.90 2.0638
15 13 2439 15946 10.03 171 982 13686 11.73 2.4837
20 13 1984 12051 13.27 165 716 9751 16.46 2.7709
30 15 1562 9250 17.28 201 481 6267 25.61 3.2474
50 17 1333 8324 19.20 202 308 3711 43.25 4.3279
100 25 917 5735 27.86 198 178 1976 81.19 5.1517
150 35 763 4458 35.81 233 121 1437 111.58 6.3058
200 43 660 3974 40.18 212 99 1186 135.18 6.6667
250 49 619 3821 41.78 222 83 1000 160.28 7.4578
300 58 628 3774 42.26 243 76 918 174.27 8.2632
350 66 576 3534 45.11 248 68 813 196.88 8.4706
400 75 609 3758 42.44 281 66 792 202.18 9.2273
450 86 591 3505 45.46 282 63 758 211.16 9.3810
498 92 624 3916 40.71 330 62 747 213.71 10.0645

Table 3: Results for ASCII search
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Figure 13: Number of shifts for ASCII search

small pattern size. Indeed the n-gram signature found in the
record is unlikely to match any n-gram from the pattern.
While this probability increases with long patterns, so does
the size of the shift.

Search in XML records

We searched, as for ASCII, for various patterns of different
length in our XML collection. Patterns included tags. Ta-
ble 4 and Figures 15 and 16 show the results for BM and
partial CAS search.

The comparative ratio of search speed is now up to about
six in the favor of the n-gram search. It is thus less than
for ASCII text. In fact both methods sped up compared
to their performance with ASCII records. However, the BM
algorithm gains systematically more. Apparently, the reason
is the repetitive presence of quite similar long XML tags in
our benchmark. The “good suffix” case of BM takes then
over more often, leading to longer shifts. The n-gram takes
lesser advantage of these tags as they are longer than n.
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Figure 14: Average shift size for ASCII search
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Figure 15: Average shift size for XML search



Boyer-Moore search Ngram search
Pattern| Prepr. | Elapsed| Nb Avg. Prepr. | Elapsed| Nb Avg. Ratio
size time time shifts shifts time time shifts shifts
5 11 4577 30748 4.65 195 4924 72109 1.99 0.92
7 11 3430 22759 6.29 169 2500 36234 3.97 1.372
10 11 2441 15691 9.12 203 1461 20834 6,9 1.670
20 14 1702 10840 13.2 194 645 8772 16.38 2.638
30 15 1228 7568 18.9 178 432 5610 25.6 2.842
50 18 853 5214 27.43 170 279 3346 42.92 3.057
100 27 542 3239 44,12 185 165 1762 81.49 3.284
200 42 357 2195 65.04 234 84 1010 141.92 4.25
300 58 318 1517 74.08 258 70 851 168.42 4.55
400 75 269 1699 83.91 314 57 691 207.15 4.719
500 90 233 1654 86.43 270 49 668 214.67 6.423

Table 4: Results for XML search
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7. ELIMINATION OF FALSE POSITIVES

Use of signatures is prone to collisions, which occur when
two different strings have the same signature. We show
in this section how we can avoid collisions for 2-grams for
ASCII records encoded in Unicode and for 4-grams in DNA
records. Even if this is not possible, we show how to elim-
inate almost or completely false positives in our pattern
matching using the encoded form of records only.

7.1 Unicode

We recall a collision occurs if two different n-grams have
the same AS. Collisions obviously slow the search speed as
they decrease shift sizes and lead to additional verification
work. We recall some facts from the theory of the algebraic
signatures in [12] that indicate the relative absence of colli-
sions for two interesting cases. First, if two n-grams differ
by only one symbol, then the probability of the collision is
exactly zero (the algebraic signatures were the first signa-
ture scheme known for this property but we do not deal
with the more general formulation for I-symbol signatures).
Second, if we switch two characters in an n-gram, then the
signatures of the n-gram differ (unless of course the switch
does not change the n-grams ).

We typically choose a GF implementation in which the
primitive element is equal to 0x2. Assume that we have

Maximum number of n-gram signatures
4
16
64
256
4 256

‘v»hcoxw—ns

Table 5: Maximum number of signatures for DN A

ASCII text embedded in Unicode. The Unicode character
code is then equal to the ASCII code with a leading 0-byte.
Since o® = 0x0100 is also a primitive element (because 8 and
216 _1 are co-prime), we can form the signature with 8 = o®.
The signature of two ASCII embedded Unicode characters
0x00rs and 0x00tu (with arbitrary hex-digits r, s, t, and u)
is 3-0200rs @ 320200ty = B(0xturs) which is different for all
possible ASCII characters. Therefore, collision probability
for digrams made up of Unicode-embedded ASCII characters
is zero.

7.2 DNA

In the case of DNA, the character set is the alphabet ¥ =
{A,C,G,T}. Table 5 gives the number of possible n-gram
signatures for GF(2%). Since the possible number of n-grams
is fixed at 4", an encoding that has the maximum n-gram
signatures is one that has the least collisions. In our case,
such a scheme is collision-free for n < 4. The question arises
whether one can find a combination of encoding, GF, and «
that realizes the maximum number of signatures. We now
give a general construction for such an encoding of DNA
records.

Galois field elements are bit strings of length f and we
identify them as polynomials of degree up to f — 1 over
{0,1}. For example, the Galois field element 0110 0001 in
GF(2%) is identified with the polynomial x4 2% 4-1. Under
this identification, Galois field multiplication is polynomial
multiplication modulo a generator polynomial g(x) of degree
f. We typically use 2® +z* 4+ 2® + 2% + 1 for g(z), but other
choices are possible. With this choice of g (and many other
ones), = turns out to be a primitive element and we use it for
our . Then, multiplication by « corresponds to multiplica-
tion by x which shifts the whole bit string by one. If there is
an overflow, we XOR the result with a number derived from
g(z), in our case 0x1d = 0001 1101. For example, multiply-
ing 0101 0101 by e = 0000 0010 turns out to be 1010 1010, if
we multiply again, then we have an overflow and the result



is 0101 0100 & 0001 1101, which is 0100 1001. To repre-
sent our alphabet ¥ = {A,C, G, T}, we use the Galois field
elements 0000 0000, 0000 0001, 0001 0000, and 0001 0001.
In this encoding, the choice of bits 0 and 4 (from the left)
determines the choice of character. Since the signature of a
4-gram (cs3,c2,c1,c0) is afcs ® aca ® o’ci @ a3co), we de-
termine the uniqueness of the second factor. In forming it,
we shift ¢ three times, this is the maximum shift and it
involves no overflow. We can read the bits set in ¢o from
bits 3 and 7, the bits in ¢; from bits 2 and 6, the bits in ¢
from bits 1 and 5 and of course the bits in c3 from bits 0 and
4. Therefore, the signatures of different 4-grams are differ-
ent. With this encoding, we have reduced the probability of
n-gram signature collision for n < 4 to zero.

7.3 Verification of Possible Matches

In the description of our two algorithm variants, we ran
into the problem that our algorithm only yields likely matches
of the pattern in the record. We proposed there to use a final
verification step based on a character by character match of
the decoded record and pattern. For many data sets like
text records, a likely match is almost always a true match
since collisions are much less likely than for random data.
If this is the case, then we might not bother with further
verification using encoded records.

If we still want verification and if we know that there
are no collisions for n-gram signatures, then we can ver-
ify by tiling the pattern (and the corresponding part of the
record) into m-grams and verify these signatures. For in-
stance, for n = 4 and K = 10, we compare the signatures
of p7,ps, P9, P10, P3,P4,P5,P6, and p1,p2,p3,pa in the pat-
tern with the signatures of the corresponding 4-grams in the
record. This involves K/n signature comparisons and works
for Full and Partial CAS Encoding. In the distributed case,
this now happens at the server.

Assume now that we cannot exclude collisions among n-

gram signatures. We show that we can verify a match for
sure if all K —n 4+ 1 n-gram signatures and the last n — 1
characters coincide.
Proof: We denote the pattern by P = p1,p2,...px and as-
sume it matches the substring = a1, a2, ...ax of the record
in this manner. This translates into a system of K —n + 1
linear equations in a;
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Additional n — 1 equations state the equalities px—_pnt1 =
AK-n+1, --- Pk = ax. The K by K coefficient matrix of

this system of equations has the form

a o a” 0 0 0
0 « a™ o™ 0 0
0 0 « a” 0
0 0o o .

0 0 0 a o a”
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 1

This upper-triangular matrix has rank K. Therefore, if a
possible match passes all our K tests, then it has to be a
true match. q.e.d.

In the distributed setting, it is important to limit false
positives as much as possible at the server. Otherwise, a
client might receive a large number of records to verify and
decode. If records are encoded in full CAS form, then we can
perform all of our K tests at the server and avoid sending
false positives altogether. This presupposes that the server
can calculate the characters, which in turn requires that the
server can divide by powers of a. If records are encoded
in partial CAS form, we can only perform the K —n + 1
signature comparisons at the server without decoding the
whole record at the server side. Thus, our observation can
no further improve on the algorithm presented in Section 5.

As a further variant, we state without proof another pos-
sibility of verification using full CAS for encoding records.
For this, the client sends the full CAS form of the pattern.
When verifying a potential match, the server calculates the
full CAS encoding of that portion of the record using the al-
gebraic properties of signatures. If a character by character
comparison of these encodings coincide, then the match is a
true one.

8. RELATED WORK

In the general computer science literature, pattern match-
ing is among the fundamental problems with many promi-
nent contributions [4]. The popular algorithms do not at-
tempt to encode records, because they were not designed
for our “write once read many” database context. BM is ac-
cepted as a very versatile search method that often outper-
forms all other prominent pattern matching methods. For
this reason, we compared our method to BM. Our method
with n = 1 and partial CAS has the same shifts as BM with
only “bad character” shifts or Quick Search [4].

Our method falls into the large class of algorithms for
string search without indexing. Two state-of-the-art index-
ing techniques offer an attractive alternative to our work,
namely suffix trees [9, 13] and n-gram indices [14], both
implementing an inverted file. Both methods require sev-
eral times more space for the index than for the text itself,
namely about 20 times for the basic suffix tree, 4-5 times for
a suffix array and 2-5 times for a compressed or two-level n-
gram index. However, search speed is now O(N), with N the
length of the pattern, for the suffix trees while the storage
optimizations employed in advanced implementations add
to the search time.

Our SDDS-2005 system already manages SDDS files in
distributed RAM, with records encoded into their full CAS
form [11]. SDDS-2005 offers several other string search al-
gorithms over its CAS encoded records. There is the prefix



matching, the longest common prefix or string matching and
an alternative pattern matching, which uses a Karp-Rabin
like sequential traversal [8, 5]. The algorithm avoids pattern
preprocessing other than the calculation of algebraic signa-
tures and the creation of the shift table. For a match, only
the result of pre-processing the pattern, but not the pattern
itself is send by the client to the servers. Sending and storing
data not in the clear can be advantageous to security. Our
efforts fall into the recent general direction of the Database
As Service (DAS) model [7].

Our encoding of records provides a simple social and le-
gal protection of the stored data and of data in transit.
However, a simple frequency attack can determine o and
hence decode both if the attacker has some knowledge about
the data set. Generally, while private and semi-private in-
formation on networks has grown rapidly, mechanisms for
searching for privacy-protected information have failed to
keep pace. One set of solutions explored by Bawa et al. [1]
and by Chang et al. [3] uses keyword indexes to describe
the contents of files. Song et al. [16] give the first practical
solution to the problem of searching encrypted data by key-
word. Golle et al. [6] extends the capabilities to conjunctive
key searches. Common to these approaches is the primary
concern of not compromising the privacy of the data, but
instead restricting the search capability. Schwarz et al. [15]
propose a different method that trades search capability for
much less security.

9. CONCLUSION

We have presented a novel search algorithm that is at-
tractive in any scenario where records are inserted once and
searched often. Our algorithm uses n-gram signatures com-
bined with a sublinear traversal of the record similar to the
algorithm by Boyer and Moore. Signatures contain more
information than single characters and our method tends
to outperform known string search algorithms, in particu-
lar Boyer and Moore, with which we compared our method
experimentally.

Compared to indexing, our method does not have any
storage overhead and the costs of record insertion are very
small, but we cannot rival search times. Compared with
traditional pattern matching algorithms, we have to encode
records, but have almost always better and often much bet-
ter search times.

Future works includes more complete performance stud-
ies including for instance a study of likely match verifica-
tion at the server and collision probabilities in actual data
sets. There is also the possibility of further optimizations
such as implementing the equivalence of the Boyer Moore
“good shift” for partial CAS or a different organization of
the shift table for larger character sets such as Unicode. A
particularly promising direction lies in the implementation
of approximate matches.
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