
Publish By Example∗

Sonia Guéhis David Gross-Amblard Philippe Rigaux
Univ. Paris-Dauphine Univ. Bourgogne Univ. Paris-Dauphine

& INRIA-Orsay
sonia.guehis@dauphine.fr david.gross-amblard@u-bourgogne.fr philippe.rigaux@dauphine.fr

ABSTRACT
We propose an approach for producing database publish-
ing programs by example. The main idea is to interactively
build an example document, representative of the program
output. The system infers from this document, without am-
biguity, the publishing program. The end-user does not need
to know a programming language, a query language or the
database schema.
Our model relies on several components. First we propose

a simple formalization of database publishing languages,
called DocQL. Second we base our method on the concepts
of canonical documents and canonical instances. A canon-
ical document is an example from which one can derive a
unique DocQL publishing program. A canonical instance
of a relational schema is an instance that supports the con-
struction of all the possible canonical documents over this
schema. We �nally describe and comment a visual editor
that shows how a user can rely on these concepts for intu-
itively producing publishing programs.

1. INTRODUCTION
This paper considers the problem of producing �dynamic

documents� that contain data retrieved from a relational
database. We impose no restriction on our concept of doc-
ument: it can be non-structured character data (e.g., an
email), an XML document (for data exchange purposes), an
HTML document (web site publishing), a LATEX �le or an
Excel spreadsheet, etc. Their common characteristic is to
consist both of static parts and dynamic parts, the latter
being values extracted from the database when the docu-
ment is produced. We call relational database publishing the
process of creating dynamic documents from a relational
instance. The most typical example is the production of
(X)HTML pages in dynamic web sites. This is arguably one
of the most widespread type of database application nowa-
days. We use it for illustration purposes in this paper.

∗Work supported by the Wisdom project
(http://wisdom.lip6.fr).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Relational database publishing is technically simple, but
requires in practice the association of programming tools
and database concepts which often make the production te-
dious and error-prone. It constitutes in particular an intri-
cate practical aspect of web site engineering [5]. Specialized
languages, such as Servlets/JSP, PHP or ColdFusion [6],
bring partially satisfying solutions. However, in all cases,
writing a database publishing program requires heteroge-
neous technical skills, including: (i) the basics of a program-
ming language (say, Java/JSP); (ii) a query language (say,
SQL); (iii) the database schema.
In the present paper we propose a simple mechanism to

produce database publishing programs. The main idea is to
interactively construct a sample dynamic document which
can then be used to infer without ambiguity the publish-
ing program. What makes such an approach e�ective is the
inherent simplicity of relational publishing. In most cases
� if not in all � the program structure reduces to a mere
imbrication of SQL cursors, each instantiating an HTML
fragment. The combination of fragments constitutes the �-
nal document. Our conviction is that these programs can be
conveniently produced without using the heavy machinery
of programming and querying languages whose power and
complexity goes far beyond what is necessary for this simple
task.
The bene�ts are twofold. First the proposed mechanism

does not require any technical expertise. As such if o�ers to
non-expert users an opportunity to create rich documents
with minimal e�orts. Second it constitutes a generic ap-
proach which holds independently from a speci�c environ-
ment, does not require any preliminary decision regarding
programming practices and conventions, and avoids the te-
dious and repetitive programming tasks. One obtains a
high-level speci�cation of publishing programs, with poten-
tial support for software engineering tasks (e.g., veri�cation)
as well as database optimization.
Our approach consists of several components, each cov-

ered by a dedicated section in the following. After Section 2
which gives a bird eye's view of our approach, we �rst pro-
pose (Section 3) a simple formalization of relational database
publishing as a �document query language�, called DocQL,
already proposed in preliminary form in [11]. A DocQL
query can be seen as a syntax-neutral (declarative) speci�-
cation of a publishing program written in Java/JSP or in
any other programming framework. Producing a DocQL
query constitutes the target of the publish-by-example pro-
cess. Moreover, our goal, given a database schema S, is to
be able to create by example all the possible DocQL queries

Canonical

document D

Canonical

Publishing program

Java/JSP

PHP

ColdFusion

DocQL

query result

query q

S

instance I

Database

instance

Actual

...

schema

Generator

WYSIWYG

editor

PBE

Analyzer

DocQL engine

DocQL
translator

C

Figure 1: Overview of the publish by example process

(called publishing queries in the following) over S.
We then describe (Section 4) our publication model. It

relies on the concepts of canonical documents and canoni-
cal instances. A canonical document characterizes uniquely
a DocQL query q, and therefore the publishing program
which can be derived from q. Intuitively, a document d is
�canonical� for a query q and an instance I of S if d = q(I),
and there does not exist a query q′ �simpler� than q with
d = q′(I). Next we introduce the complementary concept
of a canonical instance IC of S as an instance such that, for
any DocQL query q, there exists a canonical document over
IC that characterizes q. Proposing a canonical instance to a
user is tantamount to the ability of producing, by example,
all the possible DocQL queries that can be expressed over
S.
Finally our last contribution is an online document ed-

itor which demonstrates how, in practice, our publish-by-
example mechanism can be implemented (Section 5). We
show and comment a short interactive session, discuss the
role of the main concepts that support our model, as well as
some speci�c design choices, and point out possible alterna-
tives. Section 6 positions our proposal with respect to the
state of the art, and Section 7 concludes the paper.

2. OVERWIEW
Figure 1 presents the main components of our system.

The user interacts with a WYSIWYG graphical editor which
lets him construct a canonical document D from a canoni-
cal instance IC . The canonical instance is a predetermined
instance of the schema S, generated by the system adminis-
trator either from synthetic data, or from an actual database
instance of S, using an instance generator. The canonical
instance enjoys some speci�c properties which allow a non-
ambiguous interpretation of the canonical document.
Essentially, the editor enables the navigation in the canon-

ical instance, seen as a graph of tuples and values. The user
can position himself on a node in the graph and merge the
values associated to the node with character data in order to
form so-called blocks. At the end of the navigation process,
the set of blocks thereby created is organized as a hierarchy

that constitutes the canonical document.
Next, the DocQL query is generated by the analyzer

which takes as input the canonical document and the canon-
ical instance. The query q is inferred without ambiguity by
determining the (unique) node from IC associated to each
block of q, and the values that form the dynamic part of the
block. The user can then

1. either run the query over the actual instance, through
the DocQL engine which directly evaluates q;

2. or translate q to a traditional publishing program, writ-
ten in any convenient language.

Note that a publishing program can reversely be inter-
preted as a query q, and then manipulated through the
WYSIWYG tool which actually shows the query/program
as q(IC), i.e., as the result on the evaluation of q over the
canonical instance. With respect to software engineering
purposes, our approach can be viewed as a programming-
by-example framework, dedicated to the speci�c area of dy-
namic document production.

In the rest of this paper we illustrate our approach over a
sample movie database with the following schema:

• Movie (title, year, id_director, genre)

• Artist (id, last_name, �rst_name)

• Cast (title, id_actor , character)

The schema represents movies with their (unique) director
and their (many) actors. Primary keys are in bold, and
foreign keys in italic. Figure 2 shows a database instance.

3. THE PUBLISHING LANGUAGE DocQL

We give the main features of the publishing query lan-
guage DocQL. Due to space limitations, we limit the pre-
sentation to the de�nitions which are useful to the publica-
tion model presented in the next section. Details on opti-
mization and evaluation techniques can be found in [11].

title year id_director genre
Unforgiven 1992 20 Western
Van Gogh 1990 29 Drama
Kagemusha 1980 68 Drama
Absolute Power 1997 20 Crime

Movie

id last_name �rst_name
20 Eastwood Clint
21 Hackman Gene
29 Pialat Maurice
30 Dutronc Jacques
68 Kurosawa Akira

Artist

title id_actor character
Unforgiven 20 William Munny
Unforgiven 21 Little Bill Dagget
Van Gogh 30 Van Gogh
Absolute Power 21 President Allen Richmond

Cast

Figure 2: An instance of the Movies database

3.1 Data model
DocQL aims at a concise speci�cation of publishing pro-

grams. Here concise means that the language captures with
a uniform and simple syntax the queries and programming
instructions used to build dynamic documents. More specif-
ically any DocQL query q is equivalent to a publishing pro-
gram built with the following operators:

• fragment construction of the form block(t);

• loops of the form while (t := fetch C) block(t);

• conditional statements of the form
if (cond(t)) block1(t); else block2(t);

Here, C is a cursor over the result of a conjunctive SQL
query, t is a tuple variable and blocki(t) constructs a tex-
tual fragment, from static text, values from t or other frag-
ments produced by embedded loops or conditional state-
ments. The intuition is that the loops and tests in such pro-
grams depend only on the database instance, and that the
basic operation is the creation of fragments from database
values. The structure of the program dictates the assem-
bling of the fragments that form the �nal document. Our
experience and practice is that this simple, �data-driven�,
model covers the majority of publishing requirements.
DocQL relies on a navigation mechanism in an instance

I modeled as a labeled directed graph GI . Tuples are seen
as internal nodes, values as leaf nodes, and edges represent
either tuple-to-tuple relationships or tuple-to-attribute de-
pendencies.
Formally, let T ,R,A be sets of symbols pairwise disjoint,

T �nite, and R,A countably in�nite. Elements of T are
called atomic types, those in R relation names, and those in
A attribute names.

Definition 1 (Schema). A (graph database) schema
is a directed labeled graph (V, E, λ, µ) with the following struc-
ture:

multiplicity 1 multiplicity *

(Artist)
title

string

integer

(Cast)

character

Cast Movie

string

string

year genre

(Movie)

Director

Direct string

Actor

string

integer

id

first_name

last_name

Cast

Figure 3: The graph schema

1. V ⊆ T ∪R is a set of vertex, and E ⊆ (V ∩R)× V is
a set of edges;

2. λ is a labeling function from E to R∪A such that, if
e and e′ are two edges with same initial vertex r, then
λ(e) 6= λ(e′);

3. µ is multiplicity function from E to {1, ∗};

4. if e ∈ E is of the form r
λ(e)→ s, with r, s ∈ R, there

exists an edge e′ ∈ E of the form s
λ(e′)→ r, called the

reverse edge of e.

Figure 3 shows the graph schema of our Movies database.
The mapping that transforms a relational schema to an
equivalent graph schema is based, by default, on the nam-
ing of tables and attributes and on the (primary key, foreign
key) correspondence. This default choice can be re�ned or
extended in the mapping �le that declares the conversion
from I to GI . For instance the link from Movie to Artist
which represents the association between id_director (for-
eign key in Movie) and id (primary key in Artist) is labeled
Director in Figure 3 for clarity purposes.
Now let I be a countably in�nite set of tuple identi�ers,

and for each atomic type τ ∈ T let be given the set of values
of this type, denoted [τ].

Definition 2 (Instance). Let S = (V, E, λ, µ) be a
schema. An instance GI = (VI , EI) of S is a mapping from
S to rooted labeled graphs de�ned as follows:

1. for each v ∈ V

{
VI(v) ⊂ I if v ∈ R (tuple to tuple)
VI(v) ⊂ [v] if v ∈ T (tuple to value)

2. if e ∈ E, then each instance of e is of the form x
a→ y,

with x ∈ VI(initial(e)), y ∈ VI(terminal(e)), and a =
λ(e); moreover, if µ(e) = 1, there does not exist two
instances of e with the same initial vertex.

If N1 and N2 are two nodes in the data graph, we note

N1
p→ N2 if there exists a path p from N1 to N2 such that,

for each edge of p instance of e, µ(e) = 1. We say that p is an
instance of a unique path, or that N2 functionally depends
on N1. If there is at least one edge of p instance of e with
µ(e) = ∗, then p is an instance of a multiple path, and we

note N1

p
� N2.

(Cast)

Unforgiven
1992

Western

20

Clint

Eastwood

first_name

last_name

William Munny

character

character

Little Bill Dagget

Hackman

21

Gene

first_name

last_name

title
year

genre

id

(Movie)

Direct

Director

Cast

Movie

Actor

Cast

Movie

Cast

(Cast)
(Artist)

(Artist)

id

Actor

Cast

Figure 4: The data graph of our sample instance

Vocabulary. In the following, the context of a node N is
the set of leaf nodes that functionally depend on N . The
neighborhood of N is the set of nodes N ′ such that there
exists an elementary multiple path (i.e., with only one edge)

N
p
� N ′.
Figure 4 shows the graph of the instance of Figure 2. Con-

sider the node (of type Movie) in the rectangle. Its context
consists of the values Unforgiven (title of the movie), 1992
(year), Western (genre), 20, Clint, and Eastwood (resp. the
id, �rst name and last name of the director who is uniquely
determined by the movie). The neighborhood consists of the
two nodes Cast.

3.2 Query language
DocQL combines navigation in the data graph with in-

stantiation of the textual fragments that contribute to the
�nal document. A DocQL query is essentially a tree of
path expressions which denote the part of the graph that
must be visited in order to retrieve the data to include in
the �nal document. Path expressions use an XPath-like syn-
tax. An expression p is interpreted with respect to an initial
node Ni (unless it begins with db which plays the role of /
in XPath), and delivers a set of nodes, called the terminal
nodes of p (with respect to Ni). Each path is associated
to a fragment which is instantiated for each terminal node.
Path and fragments are syntactically organized in rules of
the form @path{fragment}, where path is a path expression
and fragment is the fragment instantiated for each instance
of path.
The following example shows a DocQL query over our

Movies database. It produces a (rough) document showing
the movie Unforgiven along with its director and actors.

Example 1.

@db.Movie[title='Unforgiven']{
@title{}, @year{}, directed by

@director.first_name{} @director.last_name{}
Featuring:
@Cast{

- @artist.first_name{} @artist.last_name{}
as @character{}

}
}

The semantics of the language corresponds to nested loops
that explore the data graph, one loop per rule1. This navi-
gation produces the trace of a query q, which is a �nite un-
folding of the graph GI representing the nodes visited during
the evaluation of q. Formally:

Definition 3 (Trace of a query). Let q be a DocQL
query, represented as a tree of rules, and GI be a data graph.
The trace Tq(GI) of q with respect to GI is a tree of pairs
(N, r), where N is a node of GI and r is a rule from q,
de�ned inductively as follows:

1. if q is the empty query @db{}, then Tq(GI) = (root, db),
where root is the pseudo-root of GI ;

2. if q is of the form q′ ⊕ (r′, r), where ⊕ denotes the
extension of the tree q′ with a rule r child of r′ in
q′, then Tq(GI) is obtained from Tq′(GI) by adding as
children of each node (N ′, r′) in Tq(GI) the nodes N ∈
GI such that N ′ r→ N .

The result of a query is obtained by �decorating� the nodes
of its trace with the (static) character data of their associ-
ated rules. Looking at the previous example, we �rst search
for the node Movie with title Unforgiven. Taking this node
as an initial one, the value of each (unique) path title,
year, etc., is evaluated. The multiple path Cast leads to
all the nodes that represent one of the characters of Unfor-
given. Applied to the data graph of Figure 4, one obtains
the following document:

Unforgiven, 1992, directed by Clint Eastwood
Featuring:
- Clint Eastwood as William Munny
- Gene Hackman as Little Bill Dagget

4. THE PUBLISH BY EXAMPLE MODEL
We now develop our model by de�ning our two key con-

cepts: canonical documents and canonical instances.

4.1 Structure of canonical documents
A canonical document has a hierarchical structure. Each

node of the document's structure is called a block. A block is
a character string with (optional) references to other blocks.
The textual part of a block consists of �xed text and values
from the active domain (i.e., leaves) of the graph GI .
Let Σ be an alphabet. F ⊂ Σ∗ denotes the set of static

fragments, and dom ⊂ Σ∗ denotes the active domain of GI .
For the sake of simplicity, we suppose that F ∩ dom = ∅,
in order to distinguish elements from theses two sets. In
practice, the distinction may rely on syntactical convention
(for instance, a tag: see Section 5). We also assume a set B,
distinct from the previous ones, of block identi�ers.

Definition 4 (Block). A block B is a pair (i, b), where
i ∈ B is the block identi�er and b ∈ (F|dom|B)∗ is the block
body. We denote by components(B) the set of blocks recur-
sively referenced by the body of B.

We are interested in blocks that can be unambiguously
interpreted with respect to GI . We �rst de�ne the notion of
representative node of a block.
1A complete description would also include tests which allow
to express negation [11]. We are omitting them for the sake
of simplicity.

Definition 5 (Representative node of a block).
A node N ∈ GI is representative of a block (i, b) if and only
if each value v ∈ dom in b belongs to the context of N .

Recall that the context of a node N is the set of values
v that functionally depend of N . Consider for example the
block B with body �Unforgiven, published in 1992 and di-
rected byClint Eastwood�, where values from dom appear
in bold. The node N corresponding to the movie Unforgiven
is representative of B, because each value v belongs to the
context of N (see Figure 4).
Let B be a block and N be a representative node of B.

We say that B is valid with respect to N if there exists a
representative node for each component of B, such that the
structure of the subgraph induced by these nodes is homo-
morphic to the structure of B. Formally:

Definition 6 (Block validity). A block B is valid
with respect to a node N if and only if N is a representative
node, and for each child block Bi of B there exists a node Ni

in the neighborhood of N such that Bi is valid with respect
to Ni.
A block B is said to be valid on GI if there exists a node

N in GI , such that B is valid with respect to N .

Consider block B1 with body �Unforgiven, 1992, fea-
turing: #ref(2)�, referencing block B2 with body �Little
Bill Dagget played by Gene Hackman�. B1 is valid
with respect to the node N1 (framed with solid lines in Fig-
ure 4) because we can �nd a node N2 (framed with dotted
lines), representative of B2 in the neighborhood of N1, with

N1

Cast
� N2. Note that Little Bill Dagget, Gene and

Hackman, all belong to the context of N2.

4.2 Interpretation of valid blocks
Given a block B valid on GI , our goal is to de�ne a map-

ping that uniquely determines a query q from B and GI .
A complementary question is to know, given a query q,
whether there exists a block B valid on GI that determines
q. We introduce three constraints on GI : completeness, min-
imality and non-ambiguity, and show that

1. if GI is minimal and non-ambiguous, there exists a
unique interpretation of a valid block B as a publishing
query;

2. if, in addition, GI is complete, then all the publishing
queries over a given schema can be characterized by a
block valid on GI .

An instance is said complete if, for each node N of type
r ∈ R, and each edge type e of the form r

a→ r′, there exists
at least one edge N

a→ N ′. The instance is minimal is there
is at most one such edge. The non-ambiguity condition is
de�ned as follows:

Definition 7 (Non-ambiguous instance). An instance
GI is non-ambiguous if and only if, for all node N , the fol-
lowing conditions hold:

• if N ′ is a node in the context (resp. in the neigh-
borhood) of N , there exists only one path p such that

N
p→ N ′ (resp. N

p
� N ′);

• if N1 and N2 are two nodes of the neighborhood, then
context(N1) ∩ context(N2) = ∅.

Checking this property for a given instance is easily done
by visiting each node and verifying its context and neigh-
borhood.
The �rst condition requires that if N ′ is a node in the

context or in the neighborhood of N , then the path leading
from N to N ′ can be uniquely determined. The instance on
Figure 4 would be ambiguous if, for example, the movie title
and the director's name were both 'Eastwood' (condition on
the context).
The second condition ensures that a node in the neigh-

borhood of N can be uniquely determined by any value
of its context. Still looking at Figure 4, assume that we
add a (multiple) path producer between movies and artists.
The instance becomes ambiguous if the producer's name is
William Munny, since we can no longer determine whether
this value is the character of the neighborhood's node Cast
or the name of the neighborhood's node Producer.
The instance of Figure 4 is non-ambiguous, but not min-

imal nor complete. If we remove the node squared with
dashed lines (and the corresponding Artist subgraph), the
instance becomes also minimal (and complete). Note the
cycle that corresponds to a cyclic relationship in the graph
schema.
If the instance is minimal and non-ambiguous, a unique

tree of representative nodes can be associated to a valid
block B, with one node for each descendant of B and B
itself. Since GI is minimal, this tree can be viewed as the
trace of a query (see Def. 3). Given a valid block B and
a data graph GI , we call generating queries the queries q
such that B = q(GI). In general, two non-equivalent queries
q and q′ may yield the same result on a speci�c instance
GI . However, when GI is a non-ambiguous instance, there
exists a unique minimal element (up to equivalence) in the
generating set of a block B. Minimality is de�ned with
respect to query (and trace) containment:

q ⊆ q′ if and only if Tq(GI) ⊆ Tq′(GI),∀GI

We associate this minimal element to B:

Definition 8 (Minimal generating query). Let B
be a valid block on an instance GI . The minimal generating
query q of B is the smallest element (up to query equiv-
alence) of the set of generating queries of B according to
relation ⊆.

A syntactic expression of the minimal generating query
can be built as follows. First, the tree T of the represen-
tative nodes of B in GI is computed. A general method to
achieve this is to consider values from each block as keywords
and to perform a search of representative nodes according
to these keywords à la Banks [3] or DBDiscover [12]. A sim-
pler approach is to gather information on the representative
nodes visited by the user during the interactive construction
of the block. The latter solution is applied in our prototype
described in Section 5. Second, once the tree of representa-
tive nodes T is obtained, the rules of the DocQL query are
recursively built according to the following procedure:

CreateRule (B, Np, T)
Input: B, a block valid on GI ,

Np the representative node of the parent of B,
T , the tree of representative nodes.

begin
Take into tree T the node N , representative of B.

rule.path := the (unique) path from Np to N
rule.body := � �;
for each syntactic element e of B do
if e ∈ F then // e is a static text
append e to rule.body

if e ∈ dom // e is a value v from the graph
append a rule @p to rule.body, where p is
the (unique) path from N to v

if e ∈ B // e is a block B′, child of B
append the result of the recursive call to
CreateRule (B′, N , T) to rule.body

end for
return rule

end

This procedure is initially called with the root block and
the virtual node corresponding to the graph entry point. It
is noteworthy that the soundness of this procedure is guar-
anteed only on a non-ambiguous instance.
This algorithm builds aDocQL query without predicates.

The structure of a valid block yields only the speci�cation
paths in the database, without the ability to express condi-
tions on the encountered values. In order to complete this
speci�cation, the user (assisted by the system) may provide
a function f binding to each block B a condition (or a con-
junction of conditions). A condition on a block B is de�ned
by aθb, where θ is a relational comparison operator, and
a and b are unique paths or simple values. We can �nally
de�ne canonical documents:

Definition 9 (Canonical document). A canonical
document of a query q is a pair (B, f), where B is a valid
block such that q is (equivalent to) the minimal generating
query of B, and f is a function that binds a conjunction of
conditions to each component of B.

A Publish-By-Example interface must assist the interac-
tive construction of a canonical document representing the
awaited query q, in the most intuitive and simple way. The
prototype described in Section 5 is a proposal in this direc-
tion. Note that, in order to produce a canonical document
characterizing q, all the representative tuples required for
block interpretation must be available in the manipulated
instance. The following section addresses this issue.

4.3 Canonical instances
The construction of a canonical document D assumes that

the instance proposed to the user allows both the construc-
tion and the interpretation of D. There exists two possibil-
ities:

1. either the user provides, along with the construction
of the document, the representative nodes and values
which are (temporarily or not) inserted into the in-
stance and later used to determine the corresponding
publishing query;

2. or the publication system o�ers the user a set of pre-
de�ned nodes and values for the construction of the
canonical document.

The �rst choice reduces to a user interface problem, dis-
cussed in the next section. The second gives rise to the
question of constructing a speci�c instance, called canonical
instance, that allows to build a canonical document for all
the possible queries over the graph schema.

Definition 10 (Canonical instance). An instance GI

of a schema S is a canonical instance if, for any query q over
S, there exists a canonical document of q on GI .

An instance is canonical i� it is complete, minimal and
non-ambiguous. Completeness is required for allowing all
the possible navigations in the graph with respect to the
schema, whereas the minimality and non-ambiguity serve to
a proper interpretation of a canonical document as a query.
Recall that an instance is complete if, during the navigation
in the graph, we can �nd at any moment a choice for each
possible path type.
As an example, consider the relational instance of Fig-

ure 4, and assume that Movie contains only the tuple Kage-
musha. Suppose that a user wants to produce a publishing
query showing a movie with the list of its actors. It is not
possible to build a canonical document for this query on this
instance, since the casting is unkown for Kagemusha. This
instance is not canonical.
If, instead of Kagemusha, Movie contains the tuple Van

Gogh, we can produce the following canonical document that
shows a �lm, its director and its actors:

Van Gogh, 1990, directed by Maurice Pialat
With :

- Jacques Dutronc, born in 1935

By contrast, the instance containing only �lm Van Gogh
is not su�cient to build an example for a publishing query
showing a �lm, its actors, and for each actor, the list of
�lms possibly directed by this actor. Indeed, in this instance
Jacques Dutronc is not a director. Nevertheless the relation-
ship between an artist and a movie as a director exists, and
a user may want to exploit this relationship. Therefore this
instance is still not canonical.
Finally, as a last example, consider the instance of Fig-

ure 4 in which the only represented movie is Unforgiven.
This instance allows the construction of the canonical doc-
ument giving a �lm, its actors, and the �lms directed by
these actors:

Unforgiven, 1992, directed by Clint Eastwood
With :

- Clint Eastwood, born 1930, as William Munny
also director of ``Unforgiven''

This document is possible thanks to a cycle into the data
graph, instance of the cycle Movie → Director → Actor →
Movie in the graph schema. The cycle size in the instance is
proportional to the cycle size in the schema. With the two
nodes Eastwood and Unforgiven, the instance cycle has a
minimal size (two edges). Although satisfying with respect
to the completeness of the canonical instance as a support
for canonical documents, a shortcoming of a small cycle is to
show repeatedly the same node at di�erent places in a doc-
ument, with a possible confusion on the role of each occur-
rence. In the previous example, Eastwood and Unforgiven
both appear twice, each time in a di�erent context. This
may be misleading to the user, and results in an apparent
lack of generality.
The instance can be extended to longer cycles of size k×n,

where n is the cycle size in the graph schema and k ≥ 1.
Figure 5.a shows a minimal cycle in our sample instance,
and Figure 5.b its generalization to a cycle of length k × n.

Cast

Woody Allen

Husbands and Wives

Sidney Pollack Robert Redford

...

b. Cycle of size k*2

Jeremiah Johnson

Unforgiven

Clint Eastwood

Director

a. Minimal cycle (2 edges)

Director
Cast

Figure 5: Cycle in a canonical instance

Observe that the occurrence of a cycle in the graph schema
implies the occurrence of a cycle in the canonical instance,
otherwise the instance would not be complete. In case of a
path without cycle, the two extreme nodes would be left
without �corresponding node�, and the ability to build a
canonical document from these nodes would be compro-
mised.
The production of a canonical instance must ensure that

the required properties are veri�ed. If only cycles of minimal
size are to be constructed, then the construction algorithm is
straightforward: a node is instantiated for each node type of
the schema, and an edge between these nodes is instantiated
for each edge type in E. We describe in the following a more
sophisticated algorithm that takes into account an expansion
factor k for cycle size.
The algorithm maintains a global array nodesr for each

node type r of the schema. nodesr contains the sequence of
instances built by the algorithm, denoted nodesr[1], nodesr[2],
etc. The algorithm returns a path r1.e1.r2.e2. · · · .rn, ri ∈ V
and ei ∈ E, extended at each recursive call, and represent-
ing nodes and edges created during function calls. We use
two auxiliary functions on paths:

1. dist(path, r) returns the number of steps in path since
the �rst occurrence of a node of type r;

2. nb(path, r) returns the number of occurrences of a node
of type r in path;

The algorithm takes as input a node N , the type e of the
edge to create, and the path created since the initial call.
The global variable K denotes the minimal size required for
a cycle.

Construct (N , e, path)
Input: N ∈ VI , a node, e an edge type such that

N is an instance of initial(e), path the path.
begin
// We extract the type of the terminal node of e
r := terminal(e)
// If it is the �rst time we reach r in the path:

// we take the �rst node of r
if (r 6∈ path) then ir := 1
// If the �rst occurrence of r in the path is at distance
// greater than K : the size of the cycle is satisfying, and
// again we take the �rst node of r
else if (dist(path, r) ≥ K) then ir := 1
// Otherwise, we use a new instance of r, that does not occur
// in the path
else ir := nb(r, path) + 1

// Now ir denotes the current instance of nodesr

if (nodesr[ir] exists)

GI+ = N
e→ nodesr[ir] ; GI+ = nodesr[ir]

e−1
→ N

// Stop here: no recursive call needed
else
// Instantiate a new node nodesr[ir], and create the
// corresponding edge
nodesr[ir] := new(r);

GI+ = N
e→ nodesr[ir] ; GI+ = nodesr[ir]

e−1
→ N

// Now, recursive calls are needed, one for each possible
// path from nodesr[ir]
path := path + e.r
for each e in E with initial(e) = r and terminal(e) 6= N
Construct(nodesr[ir], e, path)

end for
end if

end

Algorithm Construct must be called for each connected
component of the graph schema, taking any relation node
type in each component as a starting point for the instance
creation.
This algorithm builds a synthetic canonical instance, with

somehow meaningless node values. In practice, relying on
a real instance would yield more user-friendly node values.
However there is no guarantee to �nd a canonical instance
into a real instance. In that case it is necessary to complete
the instance with synthetic values, or to link arti�cially ex-
isting but unrelated values.

5. EDITING PUBLISHING PROGRAMS
We implemented a web-based editor and query system2 for

our publication model. The system allows to build canoni-
cal documents, derives their associated DocQL queries and
may either immediately evaluate the query on a real in-
stance, or save the query as a named dynamic fragment
which can later on be composed with others.
In this section we �rst comment our objectives and design

choices. We then illustrate the practical aspect of our work
by showing and commenting an interactive session.

5.1 Objectives and design choices
Our main objective is to investigate the ergonomic issues:

how does the user interact with the system, how does he nav-
igate in the structure of the canonical document, what is the
amount of structural information which has to be shown, etc.
The design of our interface is an answer to these questions,
based on attempts to produce signi�cant publishing queries.
We comment our choices in the following, and point out oc-
casionnally possible alternatives. Another objective of this
implementation is to enrich the model with several practical
complements (for instance, taking account of environment

2Publicly accessible on the site
http://www.lamsade.dauphine.fr/rigaux/docql

Figure 6: Initial state of the editor

variables) which make it usable as a real data-centric Web-
site production tool. Due to space limitations we do not
develop this aspect.
As mentioned before, an initial design decision is to choose

among two possibles scenarios. The �rst one relies on a
canonical instance. The user bene�ts from pre-existing paths,
tuples and values, and his only remaining concern is to orga-
nize this information in a document. In the second scenario,
the user creates an ad hoc instance by instantiating rep-
resentative tuples each time a new block is created. Our
system adopts the �rst choice which, in our opinion, leads
to a much more intuitive and easy-to-use tool.
A second important design choice is to acquire and main-

tain, during the course of a session, some structural informa-
tion about the document under production. This informa-
tion is used later on to produce the query without having
to analyse the document's content in order to identify its
block-based organization and distinguish static parts from
dynamic ones. A downside of this choice is that it some-
how burdens the user with navigation constraints (i.e., the
block structure is explicit, and the user edits only one block
at a time). Note that this remains a design choice for this
speci�c implementation, and not a constraint of the model.
The session presented in what follows aims at producing

the query of Example 1, which outputs a document showing
a movie with its director and the list of its actors.

5.2 Overview of the graphical interface
Figure 6 shows the initial state of the interface, before any

user input devoted to the DocQL language. It consists of
three sub-parts of the window entitled Publish By Example.

• The right part (Menu) presents the context, the neigh-
borhood and some advanced options for the production
of the queries, brie�y presented at the end of this sec-
tion;

• the left part (Current Block) is a window that serves
to edit a block of a canonical document;

• �nally the left-bottom part, called View, shows the
canonical document whose creation is in progress.

Initially, both the editing window and the view are empty,
as well as the Context part of the Menu. The neighborhood
proposed to the user consists of all the access paths to the
data graph, each path being referred to by its label. In our
session, three paths are available: Artist, Cast and Movie.
Note that the default label is simply the table name. This
can easily be adapted at the interface level.

5.3 Creating a root block
Initially, choosing a path in the neighborhood is tanta-

mount to de�ning the type of the node associated to the
root block of the canonical document. The system then
picks up a representative node for this block in the canon-
ical instance, and proposes the context values (i.e., those
that functionally depend on the node), both in the Context
part, and in the editing window. Figure 7 shows the editor
once the initial path Movie is chosen.

• In the Menu part. Each value v of the Context
is associated �rst to a label which is, by default, the
(unique) path in the data graph that leads from the
representative node to v, and second to an input �eld
which allows to express selection criteria. The Neigh-
borhood part shows all the paths that lead from a rep-
resentative node to a node in the neighborhood. In
this case the only possible path is Cast. The Option is
context-independent (see the discussion at the end of
the section).

• In the Current block part. The system puts in the
editing window, whenever a block is created, the set

Figure 7: After choosing the initial path Movie

of values of the context. In order to make the DocQL
query generation easier, we chose to mark the context
values with a speci�c syntax which distinguish them
from the free text provided by the user. This is a
debatable choice which is discussed below.

• In the View part. The system shows the current
state of the canonical document which is reduced, at
this point, to the values of the root block's context.

Let us now focus on the markers of the text fragments
that represent �dynamic� values. Two types of markers are
currently used:

1. the marker ?{value}, characterized by the question
mark, denotes an example value which is actually in-
stantiated to the value retrieved from the database
when the DocQL query is evaluated.

2. the marker !{value}, characterized by the exclama-
tion mark, denotes a �xed value: the DocQL query
only retrieves the nodes having this value for the cor-
responding attribute (in other words this denotes a se-
lection, and a mean to express conditional statements).
The �xed value is given by the user in the �eld asso-
ciated to the attribute/path in the Context part.

Several other markers can be envisaged. For instance
${value} which denotes a selection with respect to a vari-
able value, <{value} and >{value} with < and > predi-
cates, etc.
Note also that if we did not choose to rely on a canonical

instance, the user would have to provide the context values
each time a new block is created in the canonical document.
We consider this as an unnecessary invitation to complex
manipulations and decisions.

���� B1

B3B2

move
move

parent

B0 N0

N1

N2 N3

add path3path2

path1

The blocks

path0 @path0{

@path1{

}

}
}

@path3{

@path2{

Block B2

}

Block B3

Block B1

Block B0

The tree of representative nodes The DocQL query

Figure 9: Parallel navigation in blocks and nodes,

and the associated DocQL query.

The user can access the editing window and modify the
block content, adding free (static) text, XHTML tags or
LATEX commands, all mixed with context values. Figure 8
shows the result of organizing the root block content. Fig-
ure 8 also shows a selection: the value 1995 has been associ-
ated to the year path of the context. The marker becomes
accordingly an exclamation mark that indicates a �xed value
in the block.

5.4 Adding child blocks
The user can extend the blocks hierarchy of the canonical

document, and can naviguate in this hierarchy. This can
be done with the three buttons located between the editing
window and the view, which propose respectively (i) a move
from the currently edited block to its parent, (ii) the creation
of a child block of the current block, following a selected path
to the neighborhood, (button Add child, and its associated
select menu), (iii) a move toward one of the existing child
block (button Move to, and select menu of the child blocks).

Figure 8: Block editing: free text intermixed with context values.

Generally, each move from one block to another in the
canonical document corresponds, in parallel, to a position-
ing on a representative node in the data graph of the canon-
ical instance. Figure 9 shows the parallel interpretation of
the three operations Parent, Add child, Move to child with
respect to the document structure on the one hand, and to
the sub-graph of the representative nodes used as context of
each block on the other hand.
Triggering operation Add child from the current block B1

adds for example to the document structure of Figure 9 a
block B4 child of B1, and associates to B4 a representative
node N4 taken from the canonical instance.
Back to our session, Figure 10 shows the editor state after

creation of a child block of the root block, following the only
available path Cast. The system proposes a representative
node, in that case the actor's name (Sidney Pollack) and
character (Jack) from the casting of Husbands and Wives.
The view then shows the canonical document obtained by
combining the two blocks.
The user can further enrich the hierarchy of his document,

adding for instance a child block following the Direct path.
The system chooses in that case as a representative node
a movie directed by Sidney Pollack. The navigation oper-
ators make also possible to move upward the root block in
order to add new child. Once the document is complete
(or, actually, at any step during its construction), the query
can be generated (Save button) and/or executed over a real
instance (Execute button). In the �rst case the document
designer can build progressively a collection of dynamic frag-
ments whose combination constitutes the dynamic site. The
second case corrresponds to a simpler interactive use of the
tool, in the spririt of QBE, where the result consists of a
hierarchical document. Here is the query produced from
the canonical document obtained at the end of our simple
session.

@db.Movie[year=1995]{
The movie <i>@title{}</i>, @genre{}, directed by

@director.first_name{} @director.last_name{}

was released in @year{}.
Casting:

@Cast{
 @artist.first_name{} @artist.last_name{}

as @character{}
}

}

Note �nally that our system produces a DocQL query
which can be directly executed over the database, and takes
place in our publication framework. Depending on the pro-
gramming environment, it would just be as easy to gener-
ate a program based on more traditional technologies (e.g.,
JSP/Java).

5.5 Discussion
The short session presented above shows how one can ob-

tain in practice an implementation of our publication model
that lets the user produce a publication program with min-
imal technical knowledge. We are aware that this remains
a prototype that can be improved in many ways. We now
discuss the following aspects: ergonomy, expressiveness and
integration to the other modules of a publication framework.
The ergonomy of our editor remains (relatively) limited,

although it reaches its goal of hiding most of the technical
concepts to the user. An improvement would be to make
transparent the navigation in the blocks of the document.
This could be achieved by showing the canonical document
as a single editing unit, switching smoothly from one context
to a neighbor one as the user executes editing operations on
the text. Note however that there may be some ambiguity
on the exact border between the occurrences of two blocks,

Figure 10: Editing a child block

in which case some explicit information of the border should
be asked to the user. Another feature of our prototype is
to mark visually the values that come from the database.
These syntactic markers should be made invisible in a more
sophisticated system. Another turnaround would be to give
up the idea of marking database values in the document.
This would necessitate however a non-trivial work to extract
these values at query-production time. We recall that one
of the design choice of our implementation is to enforce the
production of valid blocks and document, and to keep track,
during the production of these blocks and document, of the
necessary structural information that allows to produce the
query with minimal analysis e�ort.
As any model, ours needs to be completed with exten-

sions that strengthen its practical scope. We introduced in
our prototype several options which correspond to extended
functionalities of the DocQL language. A simple example
is the declaration and use of environment variables, such as
the HTTP parameters transmitted by a user request. We do
not elaborate further since none of the extension considered
so far con�icts with the core principles of our model.
This last comment leads to the issue of integrating a publish-

by-example module to a general-purpose software produc-
tion platform. A �rst target of our work is the family of
WYSIWYG web-pages editors (e.g., BlueFish,
http://blue�sh.openo�ce.nl or its many commercial alter-
natives). These softwares are pretty good at producing
complex but static pages. They also support integration
of programming parts when dynamic content is required.
We believe that the proposed mechanism, which associates
the block structure of a document to navigation paths in
a data repository, constitutes a relatively simple extension.
It is likely to enable the production of dynamic document
by non-database designers with limited additional expertise
acquisition.

More generally we advocate the role of a publish-by-example
mechanism in applications that rely on a Model-View-Controler
architecture. In such contexts it is now widely accepted that
the view component consists of a combination (decided at
run-time by the controler) of static and dynamic fragments.
A publish-by-example module allows to produce safe code
(no mistake in SQL queries), quickly and easily, with all
the potential of a declarative approach (i.e., optimization,
veri�cation, security).

6. RELATED WORK
Using graphical interfaces for expressing queries is an old

concerns. The early language Query By Example (QBE) [16]
addresses the main principle of such visual tools: the query
expression is based on an image of the result. QBE gave
rise to several commercial languages such as Paradox or Mi-
crosoft Access [7]. QBE and its variants remain oriented
toward the expression of relational queries, and deliver rela-
tional tables as result.
The �by example� paradigm has been adapted and ex-

tended to semi-structured data and XML document by many
proposals: BBQ [13], QSByE [10], QURSED[14], Xing [8],
and XQBE [4]. QURSED is a web form and report genera-
tor, dedicated to the querying of semi-structured data. It fo-
cuses on the speci�cation of form elements, their association
with conditional statement with respect to an XML schema,
and the generation and evaluation of XQuery queries from
the speci�cations and conditions. XQBE proposes an inter-
face to automatically generate XQuery queries. The workspace
is divided in two zones that correspond respectively to the
source document(s), over which conditional statements are
expressed, and to the result space which describes how the
result is to be constructed from the source. All these tools
help users to construct complex queries over directed la-
belled trees. Queries are displayed with a graph-based rep-

resentation, following a trend initiated by the G-Log lan-
guage [15]. In contrast, in our approach, the user does not
manipulate a query but a query result. This limits the tech-
nical knowledge required from the user, and favors the inte-
gration of our tool with document editors.
An implementation of our model could take advantage

of keyword-search techniques in relational database [3, 1,
12]. All these proposals do not require a knowledge of the
database schema and model the instance as a directed graph.
Applied to a canonical instance, they could probably deliver
a non-ambiguous graph of representative nodes/tuples. This
supports our belief that an interface based on alternative
design principles is possible.
The publishing language which constitutes the target of

our publishing process can be related to XML publishing,
i.e., exporting existing relational data in an XML view (see
[9] for a recent survey and comparison). The speci�cation
of the exported data is usually expressed as a tree of co-
related SQL queries and can be viewed as an abstraction of
nested cursors over result sets. This is quite similar to the
publishing mechanism adopted in the present paper. One
can therefore envisage to adapt our example-based approach
to XML publishing languages.
Finally we note that our data model is closely related to

the �eld of functional dependencies. In particular the con-
cept of canonical instance shares with Armstrong relations
its motivation of building a representative instance to assist
the end-user in his designing tasks (see, in particular, [2]).
Although we could have used this standard framework in a
more direct way, we believe that the tailored approach cho-
sen in the current paper �ts more intuitively to our goals.
In paticular the graph-based representation is much more
intuitive to the non-expert user than the scattering of infor-
mation in relational tables.

7. CONCLUSION
We propose in this paper a simple and intuitive method

for producing publishing programs. Our proposal relies on
two description levels: a formal model which states the main
concepts, and an implementation which follows some prag-
matic guidelines, such as the choice of building all the docu-
ments over a canonical instance which provide, in all circum-
stances, ready-to-use examples to the document designer.
We also choose an approach that imposes the construction
of �valid� documents that can be interpreted directly as pub-
lishing queries.
Our current work focuses on three complementary issues.

First we want to experiment less constrained interaction
where the user can freely edit any part of the document
without having to navigate from one block to another. This
gives rise to some speci�c problems regarding the identi-
�cation of blocks, and the distinction between static and
dynamic values. Second we aim to enrich the considered
data sources, including XML documents, and transient data
dynamically produced by an application. Since our data
representation is close to semi-structured data model, we
believe that this gives us the �exibility to incorporate and
integrate in a consistent repository all the data which needs
to be accessed by a publishing application. Finally we are
currently validating our tool with respect to an actual data-
intensive web application (namely the MyReview system,
http://myreview.lri.fr) to check its ability to produce and
maintain the set of dynamic fragments that constitute the

view (presentation) part.

Acknowledgment. We are grateful to Emmanuel Waller
for his useful comments and advices.

8. REFERENCES
[1] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A

System for Keyword-Based Search over Relational
Databases. Proc. IEEE Intl. Conf. on Data
Engineering (ICDE), 2002.

[2] C. Beeri, M. Dowd, R. Fagin, and R. Statman. On the
Structure of Armstrong Relations for Functional
Dependencies. J. ACM, 31:30�46, 1984.

[3] G. Bhalotia, C. Nakhe, A. Hulgeri, S. Chakrabarti,
and S. Sudarshan. Keyword Searching and Browsing
in databases using BANKS. In Proc. IEEE Intl. Conf.
on Data Engineering (ICDE), 2002.

[4] D. Braga, A. Campi, and S. Ceri. XQBE (XQuery By
Example): A Visual Interface to the Standard XML
Language. ACM Trans. on Database Systems,
30:398�443, 2005.

[5] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla,
S. Comai, and M. Matera. Designing Data-Intensive
Web Applications. Morgan-Kaufmann, 2002.

[6] Macromedia ColdFusion MX 7, 2007.
http://www.adobe.com/fr/products/coldfusion/.

[7] M. corp. Microsoft O�ce Access.
http://o�ce.microsoft.com/fr-fr/access/default.aspx.

[8] M. Erwig. Xing: A Visual XML Query Language.
Journal of Visual Languages and Computing, 14(1),
2003.

[9] W. Fan, F. Geerts, and F. Neven. Expressiveness and
Complexity of XML Publishing Transducers. In Proc.
ACM Symp. on Principles of Database Systems, pages
83�92, 2007.

[10] I. M. R. E. Filha, A. H. F. Laender, and A. S.
da Silva. Querying Semistructured Data By Example:
The QSByE Interface. In Workshop on Information
Integration on the Web, pages 156�163, 2001.

[11] S. Guéhis, P. Rigaux, and E. Waller. Data-driven
Publication of Relational Databases. In Proc. IEEE
Intl. Database Engineering & Applications Symposium
(IDEAS'06), 2006. Also in BDA'06.

[12] V. Hristidis and Y. Papakonstantinou. DISCOVER:
Keyword Search in Relational Databases. In Proc.
Intl. Conf. on Very Large Data Bases (VLDB), 2002.

[13] K. D. Munroe and Y. Papakonstantinou. BBQ: A
Visual Interface for Integrated Browsing and Querying
of XML. In Proc. Intl. Conf. on Visual Database
Systems, 2000.

[14] Y. Papakonstantinou, M. Petropoulos, and
V. Vassalos. QURSED: Querying and Reporting
Semistructured Data. In Proc. ACM SIGMOD Symp.
on the Management of Data, 2002.

[15] J. Paredaens, P. Peelman, and L. Tanca. G-Log: A
Graph-Based Query Language. IEEE Trans. Knowl.
Data Eng., 7(3), 1995.

[16] M. M. Zloof. Query-by-example: A data base
language. IBM Systems Journal, 16(4):324�343, 1977.

