informatics 47 mathematics

zlta—

VCE v4 Tutorial

INRIA Sophia-Antipolis

July 2015

oleksandra.kulankhina@inria.fr

VCE version 4.0.2

Contents

1 Introduction
1.1 VCEv4 Overview o
1.2 Properties view

2 Architecture and Behavior graphical specification
2.1 Example Overview
2.2 VCE project creation Lo
2.3 Using an existing VCE Project
2.4 Building the component Architecture in VCE Component diagrams . . .
2.5 Types specification
2.6 UML Classes and Interfaces
2.7 UML Operations
2.8 Attach a UML Interface to a GCM Interface
2.9 Attach a UML Class to a GCM Component
2.10 Component attributes Lo
2.11 Create and attach a State Machine to a UML Operation
2.12 Edit Local variables of a State Machine
2.13 Edit State Machines

3 Diagram Validation
3.1 Generating executable GCM /ProActive files

4 Generation of input for CADP

1 Introduction

VerCors is a platform for the specification, analysis, verification and validation of the
GCM- based applications architecture and behavior. It contains a set of tools including
VCE v.4. VCE v.4 is a graphical designer for the GCM architecture and Components
behavior specification. It is distributed as a set of Eclipse plugins.

This guide explains the basic functionality of VCE v.4. It provides step by step in-
structions for creating a simple example of a Component model using the VCE editors,
including all facets of this model: classes and interfaces, types, architecture, and behav-
iors. It also explains how to validate the static semantics properties of the Component
models, how to produce (partial) executable code in GCM /ProActive and how to produce
models that can be verified be CADP! model-checker.

Additional information:

VCE v.4 is based on Sirius® technology and on the functionality of the standard
editors created with Sirius. Hence, if one wants to get more specific/advanced information
that would not be found in this tutorial, it is recommended to read some of the Sirius
documentations. In particular:

e Getting started for End-users: https://wiki.eclipse.org/Sirius/Tutorials/4MinTutorial

e Sirius user manual: http://www.eclipse.org/sirius/doc/user/Sirius%20User%20Manual.html

1.1 VCEv4 Overview

As in all Eclipse-based environments, all models and diagrams related to a given appli-
cation are grouped in a Project.

A VCE Modeling project contains models (VCE models for the architecture de-
scription, UML classes and interfaces, UML State Machines for behavior description, and
VceTypes models for types definition). A VCE Modeling project also includes diagrams
(VCE Components diagrams, UML classes, interfaces, and state-machine diagrams and
a VCE Types diagram) which illustrate the elements of the models. A VCE model has
links to UML models. In particular, a GCM interface refers to a UML Interface, a GCM
Primitive component refers to a UML Class. The UML Operations and State Machines
use VCE Types for the typing of the arguments and return values.

VCEv4 mainly contains three modules:

e Graphical editors for architecture and behavior design;
e A module translating graphical models into Executable Java/Proactive code;

e A module translating graphical models into input for CADP model-checker.

thttp://cadp/
2http:/ /www.eclipse.org/sirius/

1.2 Properties view

You will often need to edit some parameters of your model in Eclipse Properties view.
If you do not see it in your workspace, in order to open it you should:

1. Click on Window on the top-bar menu of Eclipse (Obeo) and select Show view
— Properties.

2 Architecture and Behavior graphical specification

In this section we explain how to:
e create a new VCE Project or import it from an existing source;
e cdit GCM Component diagrams; specify types;
e create and edit UML classes, interfaces, operations and attributes;
e connect the operations of UML classes and interfaces;
e attach a UML interface to a GCM interface;
e attach a UML class to a GCM primitive component;
e specify default values of UML attributes;
e create and edit a State Machine and attach it to a UML operation.

We will illustrate the use of graphical editors with an example described in the section
below.

2.1 Example Overview

A figure below illustrates the example. This is a very simple VCE Component diagram
containing one primitive component Prim1 with one server and one client GCM interface
(S1 and C1). Each GCM interface is connected to a UML interface (Interfacel and
Interface2 correspondingly). Interfacel has an operation sumUp that can be served
by the component, Interface2 has the list of the operations that can be called by the
component. A UML class Classl is attached to the component. It has one method
implementing the operation of the server interface (sumUp()), one attribute last _sum
and two methods get last sum() and set last sum() to access the value of the
attribute. The behavior of the sumUp method is illustrated on a UML State Machine
sumUp. The default value of attribute last sum is given in a green box and is equal
to 0.

Priml

E Classl

sumUp(x ; argType, v ; argType) : resType[1]

st @ {redefines sumlp} €1
@ s £ get_last_sum() : resType[1]

Interfacel -ﬁ- set_last_sum(value : resType)

ﬁ sumlp(x ;argType, v ¢ = last_sum : resType [1] 'ﬁ' saveSum{value :

@ Interface2

argType) : resType[1] resType)
Attributes
last_sum =0
(C sumup)
(3] region 0
@ =
' g
sum := x+y; Cl.saveSum(sum) fthis.set_last_sum{sum)
A d%'j

Prim1 implements the following business logic. Method sumUp can be called on the
server interface S1. It takes two arguments: x and y, computes their sum, saves the sum
to its local attribute last sum, sends the sum to another component through its client
interface C1 and returns the sum to the caller.

2.2 VCE project creation

1. Go to Sirius perspective (see a figure below). You can change the perspective
using a button in top-right corner of your Obeo (Eclipse) or in the top-bar menu.

Quick Access 121 !
Open Perspective [

*¥ Debug
&C 5 W Bookmarks

core
@ Git
&’ Java
& Java Browsing view of the

Te! Java Type Hierarchy
¥ Modeling (default)
<= Plug-in Development
5 Resource
& Sirius
Ba SVN Repository Exploring

&0 Team Synchronizing

2. Create a new VCE project: right-click in the Model Explorer and select New—
Other... (see a figure below). Then, select VCE Wizard— VCE Project and

hit Next.

Show In ShiftHALEEW 0 Modeling Project
Copy Example...
Paste Ctrl+V
Delete
Import...
Export...
Refresh F5
|}
B Model Explorer 52 & ¥ =0

| type filter text f’ |

L2 Example

=i Project Dependencies
- @7 default.uml
- (= <Model>
& Dashboard
~ M default.vce

v 4 Architecture

& Vce diagram
~ I default.vcetypes

- <4 WCE Types Container
& VceTypes diagram
4+ Bool Type BoolType
4 Int Type IntType
4 Nat Type NatType
4 Void Type VoidType

b representations.aird

3. Give a name to the project and press on Finish,;

4. Right-click on the created project in Model explorer and select Viewpoint selec-
tion.

5. Check all the viewpoints and press Ok.

Viewpoints Selaction
Selected viewpoints

Change viewpoints selection status (see tooltip for details about each viewpoint)

M <f= Capture

[<f* Dashboard
M & Design

o < Extend

M <f* Review

M 4 Types_Editor
@ 4 VCE Editor

@ | Cancel ‘ ‘ oK ‘

As a result, a new VCE project is created. Its structure is illustrated at the figure
below.

|
& Model Explorer &3 2 ¥ = 0

|type filtter text] |

=l Project Dependencies
~ @7 default.uml
- = <Model>
& Dashboard
- w default.vce

T 4 Architecture

sz Vce diagram
+ [default.vcetypes

¥ 4 VCE Types Container
sz VceTypes diagram
4 Bool Type BoolType
4 Int Type IntType
4 Nat Type MNatType
4 Void Type VoidType

g representations.aird

A VCE project has the following elements:
e default.uml — a UML model;

e Dashboard — can be used to create diagrams;

default.vce — a VCE model,

VCE diagram — a diagram illustrating elements of default.vce;

default.vcetypes — a model containing the types specification;

VeeTypes diagram — a diagram illustrating elements of default.vcetypes.

2.3 Using an existing VCE Project

When working in collaborative environments, you will often have to share projects with
your colleagues. You may also have to download an existing project. Importing such a
project in your VCE workspace works as for any other Eclipse project:

1. import the archive file (e.g. zip file), and save it somewhere on your file system;
2. from the File menu, select Import;

3. select General — Existing project in workspace then hit Next;

4. browse to find your project, hit Ok;

5. then hit Finish.

The corresponding project will appear in the Model explorer panel, with a structure
similar to the structure created by the VCE wizard, though of course there will usually
many be more elements in there.

2.4 Building the component Architecture in VCE Component
diagrams

This section describes how to edit GCM-based application architecture in VCE Compo-
nent diagrams.

1. Normally, a Component diagram should be created in a VCE project by default.
In order to create a new diagram right-click on Architecture and chose New
Representation — new Component Diagram.

2. You can edit it using tools on the Palette. You can also use a toolbar on the top
of a diagram editor. You can change the properties of your model elements using
Properties View.

For our first example pick the tool called Primitive and draw a primitive component.
Then, add to the component two interfaces using Server and Client tools. You can edit
the names either directly on the diagram of in the Properties view. The resulting diagram
is illustrated at the figure below.

Priml

51 [§

2.5 Types specification

This section describes how to specify types. VCE has 4 predefined type: VoidType,
BoolType, IntType and NatType. However, one can construct its own types: enumera-
tions, records and specify integer intervals to abstract the data domains. Our example
has two integer intervals: argType = 0..2 and resType = 0..4.

In order to specify the types, you need to:

1. Open an existing VceTypes diagram or create a new one. In order to create a new
diagram right-click on VCE Types Container in Model explorer and choose new
Representation — new Types Diagram.

2. You can edit it using tools on the Palette.

Note: in the current version of VCE most of the types features can be edited in
Properties view but not directly.

For our first example pick the tool called Intervals Container and draw a container
where you will specify the intervals. Then, using Int Interval tool add two intervals.
Use Properties view to set their names, lower and upper bounds. The result is illustrated
below.

Intervals of integers

arglype : 0..2
resType : 0.4

2.6 UML Classes and Interfaces

The UML Classes, Interfaces and Operations that will be used to specify GCM interfaces
and primitive component implementation class must be described at UML Class diagram.
In order to create it, right-click on <Model> in the Model explorer and select New
Representation — Class diagram. The new diagram will be created and opened
automatically. Another way is to double-click on Dashboard and there one can find
Class diagram.

[Hint: choose meaningful, but reasonably short names. Long names make graphical
diagrams difficult to manage]

A figure below illustrates Class diagram of our example.

; Classl

=1 last_sum : resType [1]
{ﬁ sumUp(x : argType, v . argType) : resType[l}{redefines sumUp}
{ﬁ' get_last_sum{) : resType[1]

& set_last_sumivalue : resType) &3
_E Interfacel ‘ ‘ E Interface2
& sumUp(x © argType, v © argType) : & saveSumivalue :
resType[l] resType)

It has two UML Interfaces: Interfacel and Interface2, and one UML Class Classl1.
In order to create them, Interface (resp. Class) tools are used. The tool Operation is
used in order to add an Operation to a Class or an Interface (pick-up the tool and click
on the bottom part of a the Class or an Interface where you want to add the Operation).
You can modify the Operation in its Properties view. The name can be set in General
tab. The specification of the arguments and return type is a little bit more tricky. In
order to modify them, you need to:

1. Go to the Parameters tab of an Operation Properties view.

2. Click on the green plus button in the top-right corner of the Properties view; this
will open a window to create a parameter as illustrated on the figure below.

Parameter
Parameter

Editing of the properties of an object Parameter

Mame:

Visibility: public v

Type: <UNDEFINED> + | %

Direction: | in v
(?;' Cancel Finish

3. The window includes fields for specification of the name, type and direction of the
parameter. You parameter can be either an argument of an operation, or its return
type. Enter the name if you are specifying an argument; select the direction: in for
the arguments or return for the return type. You should also select the parameter
type among the ones declared in the VceTypes model. In order to specify type,
click on green plus button next to the field Type, go to All Resources tab and
select the needed VceType from your .vcetypes model. See an example below.

Select Type

Model Resource |All Resources

type filter text

»] platform:/resource/TutorialExample/default.uml
~ @ platform:/resource/TutorialExample/defaul t.vcetypes
~ < VCE Types Container
< Bool Type BoolType

Int Type IntType

4 Nat Type NatType
4 Void Type VoidType
b 4 Int Intervals
> &) pathmap://UML_LIBRARIES/UMLPrimitiveTypes.library.uml

b] nathman://LIM_PROFI FS/Fcaore.nrofile.uml

Cancel OK

An example of x argument of sumUp operation is given on the figure below.

Parameter

Parameter

Editing of the properties of an object Parameter

Name: X

Visibility: public v
Type: Int Interval argType IR
Direction: | in W

® Cancel Finish

An attribute (or property) of a class can be specified using a tool Property. Among
the properties of an attribute the most important ones are its name, type and default
value.

2.7 UML Operations
We should distinguish three kinds of UML Class Operations:

e Server operations. These are the operations that will be accessed from outside
of a component. They implement the behavior of server interfaces operations.

10

In order to establish the relation between a server operation of a class and the
implemented method of an interface you need to do the following. (1) go to the
Properties view of your class operation and open Semantic tab. (2) in the field
Redefined operation select the implemented operation of an interface.

e Local operations. These are class operations that are used for local computations
and are not accessible from outside of the component.

e Get and set operations. This is a special kind of local operations that are
used inside a component to get or set value of its attributes. One get and one set
operation should be manually declared for every attribute of a Class. The signature
of a get operation is get attrName():attrType; the signature of a set operation is
set_attrName(value:attrType).

2.8 Attach a UML Interface to a GCM Interface

In our example, a UML Interface Interfacel is attached to a GCM Interface S1 and
Interface2 is attached to C1. Which means that operations of Interfacel can be called
on S1 and operations of Interface2 can be called from C1. In order to attach a UML
Interface to a GCM Interface you need to:

1. Open the VCE Components Diagram.

2. Right-click on the GCM interface to which you want to attach a UML Interface
(S1 or C1 in our example).

3. Select Attach UML Interface option.

4. Select the required UML interface from the given list (Interfacel or Interface2 in
our example)

In the case of our example if you specify everything correctly, you should get the
diagram illustrated below.

Priml
58 G0
= Interfacel ¢ = Interface2
{i; sumUp(x : argType, v : e ® e @ sav_?Sum(value :
argType) : resType[1] 51 C1l resType)

2.9 Attach a UML Class to a GCM Component

UML classes illustrate the lists of the operations that can be processed by GCM primitive
components and the lists of possessed attributes. In our example, Classl contains the
methods of a component Priml. In order to specify the relation between a primitive
and its implementation class, right-click on the primitive component and select Attach
UML Class option. Then, select the required class from the given list. The result is
illustrated on the figure below.

11

sl
N
£ Interfacel

‘ﬁ' sumblp(x : argType, v :
argType) : resType[l]

Prim1l

- Classl

@ sumU_p(x cargType, v @ argType) © resType[l]
{redefines sumUp}

{aﬁ get_last_sum() : resType[l]
46 set_last_sum(value : resType)
= last_sum : resType [1]

2.10 Component attributes

Cl
N
£ Interface2

‘ﬁ savesSum(value :
resType)

A UML class attached to a primitive component defines the list of the component’s at-
tributes. The default value of an attribute can be always set on the UML Class Diagram.
However, it is often needed to set the default value of an attribute in the context of a a

concrete primitive component. In order to do so you should:

1. Open VCE Component Diagram.

2. Pick Attributes specification tool and add a box for attributes specification to
the primitive component.

3. Use tool Attribute value to add attributes that have specific default value to the
attributes specification box.

4. You can set the name and the value of an attribute in Properties view. Note: the
name of the attribute should strictly correspond to the one on a Class diagram.

An example of the resulting diagram is given on the figure below.

51

£ Interfacel

& sumUp(x : argType, v
argType) : resType[l]

2.11

Priml

= Classl
& sumUp(x : argType, y © argType) : resType[l]
{redefines sumlp}
{Jﬂ get_last_sum() : resType[l]
{ﬁ set_last_sumivalue : resType)
[last_sum : resType [1]

Attributes

last_sum =10

C1l
S
£ Interface2

& saveSumvalue :
resType)

Create and attach a State Machine to a UML Operation

State Machines define the behavior of operations of UML classes. In order to specify a
State Machine of an operation you need to:

12

1. Open a .uml file (UML model) in a standard EMF editor and go to the UML Class
which operation behavior you want to specify. Right-click on the class and select
New Child — Classifier Behavior — State Machine. This will create an
instance of the State Machine. You can specify its name in the Properties view.
An example is given below.

- &) platform:/resource/TutorialExample/default.uml
~ B2 <Model>

b B <Class> Classl
b B <int New Child » Classifier Behavior >

Activity

b & opt New Sibling > Collaboration Use ld Function Behavior
& Vari; EAnnotations > Interaction
4 @ platform Element Import > Opaque Behavior
Generalization * Protocol State Machine
cut Interface Realization > State Machine
Copy Name Expression >

2. Add a region to the State Machine in a similar way. Right-click on the created
state machine and select New Region — Region.

3. Save the model. Now you can create a diagram of your State Machine.

4. Right-click on the created State Machine in Model Explorer and select New Rep-
resentation — State Machine diagram. Specify the name of the diagram and
hit Ok.

- @1 default.uml » & <Interface> Interfacel

~ B3 <Model> b & <Interface> Interface2

& Dashboard 4 Variables Declaration

& null Class Diagram » W platform:/resource/Tutorial Example/defaul
- E <Class> Classl

» & <Property> last_sum : resType

» & <State Machine> sumUp
New Representation

sumUp Composite Structure Diagram

» & <Operation> sul

¥ § <Operation> g8 Control... sumUp State Machine Diagram

b g <Operation> se
Export representations as images
» [<Interface> Interf P P 9

b & <Interface> Interf Delete

Note! Set/get methods should NOT have State Machines attached. Their imple-

mentation is default in the current version of VerCors.

2.12 Edit Local variables of a State Machine

If you want to use local variables on your State Machine, you should declare them in a
specific section on a State Machine Diagram called Local variables. You should add
one box for the local variables declaration to you state machine diagram using a tool
VDCreation. Then, you can add local variables to the box using Variable tool. To
add a variable click on the tool and then click on bottom part of the box for variables.
You should set the names and types of variables in the Properties view. Figure below
illustrates local variables of our example.

13

Local variables

X . argType
y targlype

sum : resType

2.13 Edit State Machines

You can use Palette of the State Machine Diagrams to add transitions and states. You
can also directly edit labels of states and transitions. To follow our example you can first

add states and transitions to your State Machine Diagram as illustrated below.
Ve N\

(# sumUp

N

J

The behavior of is specified on state machine transition labels. In order to edit a
label you need to click on it once in order to select it. Then, you can click on it second
time to edit it. From a state machine you have access to the local methods of the class
owning the state machine , to the methods of client interfaces and to the local variables
of the state machine. The attributes of the class can be accessed only through get and
set methods. The labels text should correspond to the grammar given below.

(Transition_label) = '[" (Guard_Expr) |’
| 7/ (Stms)
| [(Guard_Ezpr)’)
| /7 (Stms)

(Stm) ’;” (Stms)
(MCall)

(Stms) = (Stm) '}

|

|
| (Return)

(Stm) = (Assign)

(Assign) ::== (Variable) *:=" (Expr)
| (Variable) *:=" (MCall)

(Expr) = (Variable)
| (Constant)
| (Eapr) (Bop) (Eupr)
| ((Ezpr)’)

14

(MCall) ::= 1D’ID *()’

ID’ID (" (Args))’
"this.’ID *()’
"this.’ID (" (Args))’

(Args) ::== (Constant)

(Co
|

(Bo
|

<l|90p>
|
|
|
|
|
|
|
|
|

i, (Variable)
(Args)) (Args)

nstant) := NUM
(Boolean__constant)

— 7&&’

7||7

7_|_7

olean_ constant) ::= ’true’
"false’

(Guard_Expr) ::= (Expr)

(Return)

The final version of sumUp state machine of our example is given on the figure below.

‘return’ (Constant)
‘return’

= return’ (Variable)

15

* sumUp

- N

(%) region

/sum := x+y; C1.saveSum(sum)

[this.set_Last_sum(sum)

/return sum

w
=
w
et
m
%)

3 Diagram Validation

Before using the diagrams, and in particular before generating ADL files, it is mandatory
to check the structural coherency of the semantics. In order to do this open a VCE
Component Diagram and select Diagram — Validate in the menu.

The elements of the diagram which did not pass the validation should be marked with
red signs. You will also see the validation errors/warnings description in the Problems
view, and in the Model explorer.

A figure below illustrates an example of a non-valid model. The interfaces of Com-
positel did not pass the validation because they have the same names. The binding did
not pass the validation because it goes from a server interface to a server interface.

16

& *new Components Diagram 2 =8

ol] il M -] # = (100% i s < Palette I
k& -
= Interfaces
® Server
Comgo it 1 Frmtive 7 Y Client
|m.ae 1 o Interfage 1] - Cathercast)
|= Companants
O Compaosite
Ietprace 1 (mf:® mikive
=
L= Cenmections
I = =2 Bind ngs
T Properties |7 Problems &2 T =0
3 errors, ¥ warnings, 3 others
Description Resource Fath Location Type
< @ Errors (3 items) ;
@ The are several interfaces with the name Interface 1 in the same container |'<-p'|-f.<-nr.1tiun§ [Example < .'1-‘\n.u|yf.|f.>::<; Viewpoint diag
@ The are several interfaces with the name Interface 1 in the same container |'o|1'|-f.onr.\.tir.n; [Example < _'j-‘m.)lyr.nr.:’::cé Viewpoint diag
@ The interfaces of the hinding de not have compatible roles rep*psentzrinn; [Example < .'Jf-‘\n.:lys.ss:m; Viewpaint diag

P i Infos (3 items)

The violation of the following constraints are considered to be an error:

e Bindings do not cross a component border;

e The interfaces connected by a binding have compatible types;

e The interfaces connected by a binding have compatible roles;

e The interfaces connected by a binding have compatible natures;

e All the interfaces in the same container have different names;

e All the components in the same container have different names;

e The violation of the following constraints are considered to be a warning:
e The interfaces connected with a binding should have different containers;

e The violation of the following constraints are considered to have the information
level:

e Fach GCM interface should have a reference to a UML interface.

3.1 Generating executable GCM /ProActive files

Once a component diagram has been checked valid, it is possible to generate automatically
some of the files necessary for building a GCM /ProActive executable application. More
precisely the generated files are:

e one ADL file, in XML format respecting the ADL DTD?3. It represents an applica-
tion component architecture (components, interfaces, bindings),

3classpath://org/objectweb/proactive/core/component /adl/xml/proactive.dtd

17

e one Java interface for each UML interface in the application;
e one Java class per UML class specified on Class diagram,;

e one Java interface for every UML class attached to a primitive component with
attributes specification (such component becomes an attribute controller in terms
of GCM/ProActive and needs an interface to be implemented);

e one Java class per each Enumeration and Record type from the VceTypes model;
e a Java enumeration State used for methods implementation

VerCors partially generates executable code of class operations. For those operations
that have State Machines attached it translate State Machines into Java code. It also
generates the code of set/get methods to access attributes of the Java classes.

In order to generate code you need to:

1. Right-click on .vce file of your project. Select Export....
2. Select VCE Export — ADL Export. This will open a wizard.

3. Select all the models of your project that should participate in the generation (i.e.
vee, .uml, .veetypes). Then, hit Next. An example is given below.

Choose the Component Models to Export

-| 4 > Peterson_01 [VCEv4 master] 5 .project
lgg > VCEv4 [VCEv4 master] v] default.uml
v ¢} > default.vce

v] default.vcetypes

4. Give the name to the .fractal file that will be generated and to the package of the
generated Java classes. Note! those names are mandatory and must be different
from each other!

5. Hit Next.

18

4 Generation of input for CADP

Graphically specified models are translated by VerCors into low-level models encoding
the behavior of a GCM applications. PNets and pLTS are used to encode the behavior
as described here?.

In order to assist model-checking of the specified models, VerCors generates the fol-
lowing files:

e a .for file per each pLTS;

e a .exp file per each pNet;

e .svl script that optimizes models and calls script transforming .exp files into .bcg
e run.sh script that calls .svl scripts and flac-and-minimize script on all .fer files.

Note! The current version of VerCors generates data only from a composite that
contains several primitives in its content. Membrane, group interfaces, non-functional
interfaces and composite components inside a content are not supported in the current
version.

To generate a pNet of a composite you need to:

1. Right-click on the representation of the Composite component on VCE Components
Diagram and select Generate pNet — Generate pNet. This will open the
wizard where you can step-by-step specify the parameters of the verified system.

2. Select the State Machine of the environment scenario. This state machine should
not be attached to any operation and should be stored in the root (Model) of .uml
model.

3. Specify the queue size of the root component as well as its sub-components.

4. Specify the communications that you do not want to observe during the model-
checking.

Node! In current version does not perform any type-checking of your model.

4https://hal.inria.fr /hal-00761073

19

