### CARTES TOPOLOGIQUES

#### 1ère séance

### Introduction

- Modèles à apprentissage non supervisé
  - → Regrouper les patients qui semblent avoir des analyses médicales semblables
  - → Identifier les différents types de consommateurs (comportement d'achats)
- But : analyser des données d'observation par leur structures.
- Kohonen : Représentation de données multidimensionnelles de grande taille.
  - ♦ Projection de partitions
    - $\rightarrow$  selon une structure de voisinage en dimension 1, 2 ou 3
  - ⋄ Ordre topologique
    - $\rightarrow$  les distances entre observations sont directement visibles sur la carte

# Quantification Vectorielle

 $\mathcal{D}$ : espace des données d'observation (notées z) de dimension n.

 $\mathcal{A}$ : ensemble d'apprentissage  $\mathcal{A} = \{\mathbf{z}_i, i = 1, \dots, N\}$ 

On a :  $\mathcal{A} \subset \mathcal{D} \subset \mathcal{R}^n$ 

#### Réduire l'information de $\mathcal{D}$ :

• En la <u>résumant</u> par un ensemble de **p** <u>référents</u>

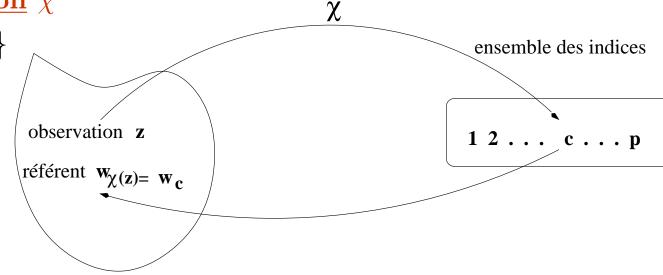
$$\mathcal{W} = \{\mathbf{w}_c; c = 1, ..., p\}$$

 $\bullet$  En <u>réalisant</u> une partition de  $\mathcal D$  en  $\mathbf p$  sous-ensembles par l'intermédiaire

d'une <u>fonction d'affectation</u>  $\chi$   $\chi: \mathcal{D} \to \{1, 2, \dots, p\}$ 

$$P = \{P_1, P_2, \dots, P_p\}$$

$$P_c = \{\mathbf{z} \in \mathcal{D}/\chi(\mathbf{z}) = \mathbf{c}\}$$



espace des observations et des référents

### Différentes Méthode de Quantification Vectorielle



### Différentes détermination de W et $\chi$

- Méthode des K-moyennes
- Cartes topologiques auto-organisatrice de Kohonen (SOM)
- Cartes topologiques probabilistes (PRSOM)

• . . .

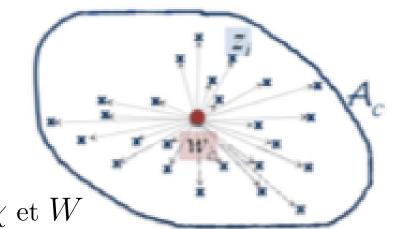
Chaque méthode correspond à la minimisation d'une fonction de coût spécifique

lacktriangle Algorithme en 2 étapes :

- Affectation  $\longrightarrow$  fonction  $\chi$
- Minimisation  $\longrightarrow$  référents W

## Méthode des k-moyennes

• Inertie intra-groupes :  $\mathcal{I}_c = \sum_{\mathbf{z_i} \in \mathcal{A}} \|\mathbf{z_i} - \mathbf{w_c}\|^2$ 



• Minimiser la somme des inerties locales par rapport à  $\chi$  et W

$$\mathcal{I}(\mathcal{W},\chi) = \sum_{c} \mathcal{I}_{c}$$

Soit, pour faire ressortir  $\chi$ :

$$\mathcal{I}(\mathcal{W}, \chi) = \sum_{c} \mathcal{I}_{c} = \sum_{\substack{c \ \chi_{\mathbf{i}} \in \mathcal{A} \\ \chi(\mathbf{z_i}) = \mathbf{c}}} \|\mathbf{z_i} - \mathbf{w_c}\|^2$$

- L'inertie  $\mathcal{I}_c$  représente l'erreur de quantification obtenue si l'on remplace chaque observation de  $P_c$  par son référent  $\mathbf{w_c}$
- Minimisation itérative de l'inertie qui fixe alternativement la partition  $(\chi)$  puis recalcule  $\mathcal W$

# Minimisation de l'inertie $\mathcal{I}(\mathcal{W}, \chi)$

#### • Phase d'affectation

Pour un ensemble  ${\bf W}$  de référents fixe, la minimisation de  ${\bf I}$  par rapport à  $\chi$  s'obtient en affectant chaque observation  ${\bf z}$  au référent  ${\bf w_c}$  selon la nouvelle fonction d'affectation  $\chi$ 

$$\chi(\mathbf{z}) = \arg\min_{\mathbf{r}} \|\mathbf{z} - \mathbf{w_r}\|^2 \tag{1}$$

#### • Phase de minimisation

La fonction  $\chi$  est fixée. La fonction  $\mathbf{I}(\mathbf{W},\chi)$  est quadratique et convexe par rapport à  $\mathbf{W}$ . Le minimum global est atteint pour :

$$\frac{\partial I}{\partial \mathbf{W}} = \left[\frac{\partial I}{\partial \mathbf{w_1}}, \frac{\partial I}{\partial \mathbf{w_2}}, \cdots, \frac{\partial I}{\partial \mathbf{w_p}}\right]^T = 0 \qquad \Rightarrow \qquad \forall c, \ \sum_{\mathbf{z_i} \in \mathcal{P}_c} (\mathbf{z_i} - \mathbf{w_c}) = \mathbf{0}$$

$$\mathbf{w_c} = rac{\mathbf{z_i} \in \mathcal{A_c}}{\mathbf{n_c}}$$

(2)

## Algorithme des k-moyennes

#### 1. Initialisation

- t=0 : indice d'itération
- fixer le nombre maximum d'itérations :  $N_{iter}$
- choisir les p référents initiaux (en général d'une manière aléatoire) :  $\mathcal{W}^t$
- 2. Etape de minimisation itérative t (à partir de 1),
  - (à l'itération t, l'ensemble des référents  $\mathcal{W}^{t-1}$  de l'étape précédente est connu)
  - Phase d'affectation : mise à jour de la fonction d'affectation  $\chi^t$  associée à  $\mathcal{W}^{t-1}$  : on affecte chaque observation  $\mathbf{z}$  au référent le plus proche (1).
  - Phase de minimisation : calcul des nouveaux référents  $W^t$  en appliquant l'équation (2).
- 3. **Répéter** l'étape itérative jusqu'à atteindre  $t > N_{iter}$  itérations ou une stabilisation de **I**.

### Sensibilité aux conditions initiales 8.0 0.8 0.6 0.6 0.4 0.2 0.4 0.2 -1-0.8-0.6-0.4-0.2 0.2 0.4 0.6 (a) (b) -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 8.0 0.8 0.6 0.6 0.4

0.2 L 1

8.0

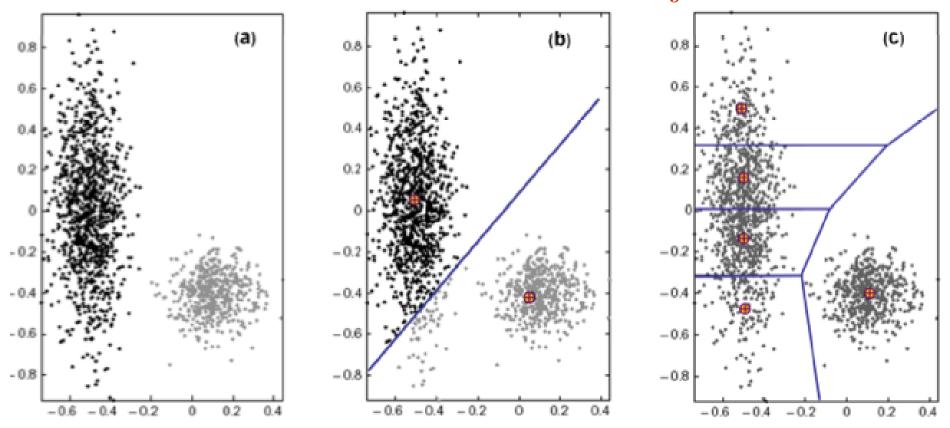
0.6

(c)

0.6

(d)

## Comportement de l'algorithme des k-moyennes en fonctions des densités sous-jacentes



- (a) Données simulées selon deux distributions gaussiennes de matrice de variance-covariance différentes.
- (b) Référents et partition obtenue à la convergence avec 2 référents
- (c) Avec 5 référents

# Carte topologique

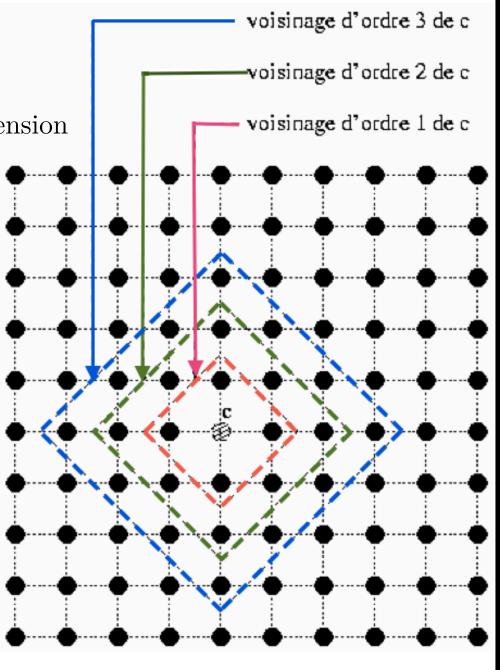
- L'ensemble des indices est maintenant ordonné
- Il s'agit d'un espace discret (**C** ) de faible dimension à des fins de visualisation (**1-D**, **2-D**).
- $\mathcal{C}$  ensemble de **neurones** connectés par une structure de graphe non-orienté muni d'une distance discrète  $\delta$  sur  $\mathcal{C}$  et d'une **structure de voisinage** :

$$V_c(d) = \{ r \in \mathcal{C}, \delta(c, r) \le d \}$$

$$\downarrow$$

Voisinage d'ordre d

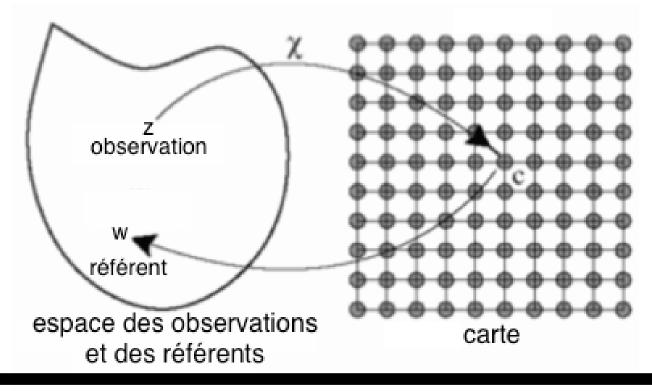
 $\delta(c,r) =$ longueur du plus court chemin entre c et r sur le graphe



## Quantification par la carte

- Chaque neurone c de  $\mathcal{C}$  est associé à un vecteur référent  $\mathbf{w_c}$  de l'espace des données  $\mathcal{D}$
- L'apprentissage approxime la densité sous-jacente des données tout en cherchant à respecter une contrainte de conservation de la topologie de la carte  $\mathcal{C}$
- Deux neurones c et r "voisins" par rapport à la topologie discrète de la carte  $\mathcal{C}$  sont associés à deux vecteurs référents  $\mathbf{w_c}$  et  $\mathbf{w_r}$  "proches" dans l'espace des données  $\mathcal{D}$ .

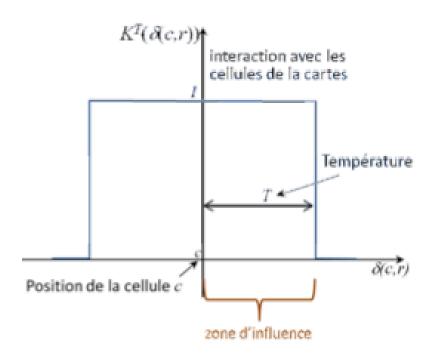
#### NOTION DE CONSERVATION DE LA TOPOLOGIE



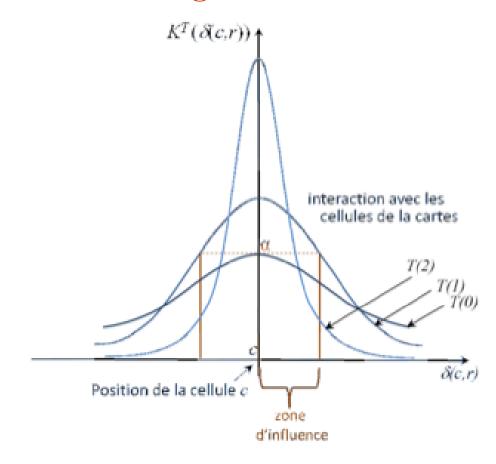
Les indices des référents sont ordonée par la topologie

RCP208 10 2017-2018

## Fonction de Voisinage



• 
$$K^{T}(\delta) = \begin{cases} I & \text{si } \delta \leq T \\ \theta & \text{sinon} \end{cases}$$



• 
$$K^{T}(\delta) = \exp(-|\delta|/T)$$
 •  $K^{T}(\delta) = \exp(\delta^{2}/-T^{2})$ 

Taille du voisinage - zone d'influence - voisinage significatif

$$V_c^T = \{ r \in C \mid \delta(c,r) \leq T \}$$

$$V_c^T = \{ r \in C \mid K^T(\delta(c,r)) > \alpha \}$$

# Apprentissage

Apprentissage de la carte = minimisation d'une fonction de coût

$$J_{som}^{T}(\chi, \mathcal{W}) = \sum_{\mathbf{z_i} \in \mathcal{A}} \sum_{c \in C} K^{T}(\delta(c, \chi(\mathbf{z_i})) \|\mathbf{z_i} - \mathbf{w_c}\|^2$$

La valeur de T détermine la taille du voisinage

$$V_c^T = \{ r \in \mathcal{C}/K^T(\delta(c, r)) > \alpha \}$$

Remarque :  $T=0 \Rightarrow$  fonction de coût des K-moyennes

Le seuil  $\alpha$  gère l'ordre des valeurs significatives prises en compte par le calcul.

Chaque observation  ${\bf z}$  calcul une <u>distance généralisée</u> à l'ensemble des neurones de la carte par l'intermédiaire de la fonction  $K^T$ 

$$d^{T}(\mathbf{z_i}, \mathbf{w}_{\chi(\mathbf{z_i})}) = \sum_{\mathbf{c} \in \mathbf{C}} \mathbf{K^T}(\delta(\mathbf{c}, \chi(\mathbf{z_i})) \|\mathbf{z_i} - \mathbf{w_c}\|^2$$