Response to the UML 2.0
OCL RfP (ad/2000-09-03)

Revised Submission, Version 1.6
January 6, 2003

OMG Document ad/2003-01-07

Submitters

Boldsoft

Rational Software Corporation
IONA

Adaptive Ltd.

Supporters

Klasse Objecten

Borland Software Corporation
Kings College

University of Bremen

Dresden University of Technology
Kabira Technologies, Inc.
International Business Machines Corp.
Telelogic

University of Kent

Project Technology, Inc.
University of York

Compuware

Syntropy Ltd.

Oracle

Softeam

Contents

L 1) 1 11<) 1 15 | |
List of figures .. oottt it ittt tiietteeeeseasoensosnsssnsssnssosnsssnsons vii
0 A 1 1) (<L viii

.
1) o3k 4 1) N . ¢

SUbMISSION CONTACE PEISOM. . . . o ottt ettt ettt e e et et e e e e e e e e e X

SUbMIttEr CONLACESo X

SUPPOTTET COMLACES ottt e ettt e e e e e e e e e e e e e e e et e Xi
Chapter 1

L0 1) o) PP £ §

LI INtrodUCLION oottt et et e e e e e e e e e e e 1-1

1.2 The Authors of the SUbmMISSION.o 1-1

1.3 Acknowledgements oottt e e e 1-1

1.4 Goals of the SUDMISSION oot e e 1-2

1.4.1 Relationship with existing OCL specificationin UML 1.4 i, 1-2

1.42 OCL 2.0 Metamodel.o e 1-2

1.4.3 OCL Expressibility and Usabilityttt e ettt 1-2

144 OCL SCMANTICS. .« . ot ottt ettt et et et et e e e e e e e e e e e 1-3

1.5 Design Rationale oo 1-3

L.5.1 ADSEIaCT SYMEAX . . o vttt ettt ettt e e e e e e e e e e 1-3

1.5.2 CONCTELE SYNTAX . . o\ oot it ettt et et et e e e e e e e e e e e e e e 1-3

.53 Semanticsot e e 1-4

1.5.4 OCL Standard Libraryttt e e et et 1-4

1.6 Compliance to the RfP Requirements o et et 1-4

1.6.1 General ReqUITCMENTSottt ettt e e e e e e e 1-4

1.6.2 Specific Requirements - Mandatory.ttt i e e 1-5

1.6.3 Specific Requirements - Optional e 1-5

1.6.4 Issues to be DISCUSSEd oottt 1-5

1.7 Structure of This SUDMISSIONottt e e e e e et et 1-5

1.8 OCL 2.0 Compliance POINtSot o ettt e e e e et et e e e 1-6

1.9 Alignment Issues with Respect to UML 2.0 Infrastructure and MOF 2.0 Core 1-7

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 I

CONTENTS

Chapter 2

OCL Language Descriptionciitiiiiiiiireirenrenrenrsnssnssnssnssnssasess2l
2.1 Why OCL? . .o e e e e e e e 2-1
2.1.1 Where to Use OCLt e e e e e e e e 2-2

22 TtrodUCtiON oot e e e 2-2
22,0 Legend .. .o e 2-2

2.2.2 Example Class Diagramt 2-2

2.3 Relation to the UML Metamodel e e 2-3
2.3l Sl 2-3

2.3.2 Specifying the UML CONtEXtottt ettt ettt e e e e e e e et e et 2-3

233 IVATIANLS . . . oottt et e e e e e e e e e 2-4

2.3.4 Pre- and Postconditionsttt e 2-4

2.3.5 Package ComteXt. . ..ottt ettt e e e e 2-5

2.3.6 Operation Body EXPressionttt e e e e 2-5

2.3.7 Initial and Derived Valueso 2-5

2.3.8 Other Types of EXPreSSIONS oottt ittt e et e e e e e e e e et ettt 2-6

2.4 Basic Values and TyPesottt et e e e 2-6
2.4.1 Types from the UML Model et 2-6

2.4.2 ENUMETation TyPeS. . o oot ittt ettt e e e e e et e e e 2-6

2.4.3 Let EXPIESSIONS . . . o\ vttt et ettt et e e e et e e e e e e e e 2-7

2.4.4 Additional operations/attributes through «definition» expressions, 2-7

2.4.5 Type CoNfOrmMANCEottt et ettt et e e e e et e e e e e e e e 2-7

2.4.6 Re-typing Or CastiNg.« .ottt ettt et e e e e e 2-8

2.4.7 Precedence RUIESo 2-8

2.4.8 Use of INTIX OPEIatorsottt ettt et e e e ettt et e e 2-9

2.4.9 KeYWOIAS . . . oottt ettt e e 2-9

2410 COMMENE . . .ottt ettt et e e e e e 2-9

2411 Undefined ValUes.ot e e e 2-10

2.5 0bjects and Properties.o v ittt 2-10
2.5.1 Properties: AtriDULES oottt ettt e e e 2-10

2.5.2 Properties: OPerationsttt ettt ettt e e et e 2-11

2.5.3 Properties: AssociationEnds and Navigation, 2-11

2.5.4 Navigation to Association ClasSesottt e e 2-13

2.5.5 Navigation from Association Classes.ttt e et et 2-14

2.5.6 Navigation through Qualified ASSOCIAtIONSottt e 2-14

2.5.7 Using Pathnames for Packages. i e 2-14

2.5.8 Accessing overridden properties of SUPETtYPESo vttt 2-14

2.5.9 Predefined properties on AlL ODJeCtSottt 2-15

2.5.10 Features on Classes Themselves e 2-16

2511 CollECtiONS . . o .o ettt ettt e 2-16

2.5.12 Collections of ColleCtionSottt e e e e e e 2-17

2.5.13 Collection Type Hierarchy and Type Conformance Rules 2-17

2.5.14 Previous Values in Postconditions 2-18

2 S LS TUPLES . v et et 2-19

2.6 Collection OPETationso . vttt et ettt e e e e e e e et e e e e e 2-19

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 I

CONTENTS

2.6.1 Select and Reject OPerationso vttt ettt e e e e e e e e e 2-19

2.6.2 Collect OPerationo\ v e ettt ettt et e e e e 2-21

2.6.3 FOrAIl Operationttt e e e e e e e e e e 2-21

2.6.4 EXIStS OPeTation . . . oot vttt ettt et et e e e e e e e 2-22

2.6.5 Tterate OPEIatiOn. v\ vttt ettt e et et e e e e e e e e 2-22

2.7 Messages N OCLo e 2-23

2.7.1 Calling operations and sending Signalsttt 2-23

2.7.2 Accessing result values. 2-24

2.7.3 An eXamPIC.o 2-24

2.8 ResOlvIng Propertieso ot 2-25
Chapter 3

ADStract SYNtaxoiiutiiittiietenereneeeeesesessosssosnsssossssssosnsssnssonnas 3-1

3 INtrodUCtioN o oo 3-1

32 The Types Packageot e e e e e 3-1

321 Type Conformance. uu ittt e et e et e e e e e e 33

3.2.2 Well-formedness Rules for the Types Package i, 3-6

3.3 The Expressions Package 3-8

331 EXPressions COTE . . .v v vttt ettt e it et et e e e e e e e e e 3-8

3.3.2 Model PropertyCall EXPressionsv. vt vttt et e ettt ettt 3-11

33 3 I X PIOSSIONS . o o v vttt et et e e e e e e e e e e 3-12

3.3.4 Message EXPreSSIONSo oottt et et e e e e e 3-13

3.3.5 Literal EXPresSiOnSo vttt et e e e e e e e e e 3-15

33,0 Lot OXPIESSIONS . .« o o v vttt ettt et e e e e e e e e e e e e e e 3-17

3.3.7 Well-formedness Rules of the Expressions package 3-17

3.3.8 Additional Operations on UML metaclassesot ettt ettt e 3-22

3.3.9 Additional Operations on OCL metaclasses.ottt et et 3-24

3.3.10 Overview of class hierarchy of OCL Abstract Syntax metamodel 3-26
Chapter 4

Conerete SYNtAX . ..o vvetiiueteeeteeereeoseensesosssessosssossssssssssssosnsssnsses 4-1

4.1 Structure of the Concrete SYNtaX.ottt et et e et ettt et et 4-1

4.2 ANote to Tool BUIlderso 4-3

421 ParSing . . . oottt 4-3

422 VISIDILItY . . .ot 4-3

4.3 CONCTEE SYNMEAX . . v vttt ettt e et et e e et e et e e et e e e e e 4-3

431 COMMENLS. . ..ottt ettt e e e 4-24

4.3.2 Operator Precedence. oot 4-24

4.4 Environment definitionot 4-24

441 ENVITONMENL . . o . ottt e ettt e e e e e e e 4-25

442 NamedEICMENtot 4-27

443 INAMESPACE . o o et et et ettt e e e e e e e e e e e e e e 4-27

4.5 Concrete to Abstract Syntax Mappingottt et e et e e e 4-27

4.6 Abstract Syntax to Concrete Syntax Mappingttt e 4-27

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 v

CONTENTS

Chapter 5
Semantics Described using UMLo it iiiiiiiiiiiiiiiiiiiiiiinrenrsnrsnsenseasd1
S INtrodUCtiON oo o 5-1
52 The Values Package o e 5-2
5.2.1 Definitions of concepts for the Values package. i 5-4
5.2.2 Well-formedness rules for the Values Package 5-7
5.2.3 Additional operations for the Values Package 5-8
5.2.4 Overview of the Values package i e 5-9
5.3 The Evaluations Package. 5-11
5.3.1 Definitions of concepts for the Evaluations package 5-11
5.3.2 Model PropertyCall Evaluationsttt ettt 5-14
533 If Expression Evaluations.ot 5-15
5.3.4 Ocl Message Expression Evaluations. i 5-16
5.3.5 Literal Expression Evaluations.ttt 5-17
53,0 Lot OXPIESSIONS . .« + o v vttt ettt et e e e e e e e e e e e e e e e 5-19
5.3.7 Well-formedness Rules of the Evaluations package 5-19
5.3.8 Additional operations of the Evaluations package.......... i, 5-27
5.3.9 Overview of the Values package i e 5-27
5.4 The AS-Domain-Mapping Package 5-29
5.4.1 Well-formedness rules for the AS-Domain-Mapping.type-value Package 5-31
5.4.2 Additional operations for the AS-Domain-Mapping.type-value Package 5-32
5.4.3 Well-formedness rules for the AS-Domain-Mapping.exp-eval Package.......................... 5-32
Chapter 6
The OCL Standard Librarycciitiiiiiiiiiiiitiineeeeetoeosesossssssssnsssnnsns 6-1
6.1 INtrodUCLION oottt e e e 6-1
6.2 The OclAny, OclVoid, and OcIMessage tyPeS oottt et e ettt ettt et et 6-1
6.2.1 Operations and well-formedness rules it 6-3
6.3 MOAEIEICMENE [YPES . o . oottt e e et et et e e e e et e e e e e 6-4
6.3.1 Operations and well-formedness rules it e 6-5
0.4 PriMItIVE Y PO . o v ottt ettt e e e e e 6-5
6.4.1 Operations and well-formedness rules it e 6-6
6.5 Collection-Related TYPeS oot ittt et e e e e e e e e e e e 6-8
6.5.1 Operations and well-formedness rulesttt e 6-9
6.6 Predefined Tterator EXPresSions.ottt ittt e e e e e e 6-16
6.6.1 Mapping rules for predefined iterator eXpresSions.o vttt ettt e 6-16
Chapter 7
The Use of Ocl Expressions in UML Models.iiutiiiiiiiiiiiiriinnersnoscnnnsns 7-1
T L INrOAUCLION ottt ettt e e e e e e e e 7-1
7.2 The ExpressionInOcl TyPeottt e e e e e e e e 7-2
7.2.1 Well-formedness TULESottt 7-2
7.3 Standard placements 0of OCL EXPIesSionsvuv ittt ettt ettt ettt e 7-3
T3 I DEfINItION . . . oottt e 7-3
T32TINVAMIANT . . . o .ottt e 7-4
733 Preconditionot 7-4

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 v

CONTENTS

7.3 4 POStCONAItIONottt e e 7-5
7.3.5 Initial value eXpPresSSIOn. . . .ottt ettt e e e e e 7-6
7.3.6 Derived value eXPreSSiOno v ittt e et e e e e e 7-7
7.3.7 Operation body @XPreSSION. . .. v v v vttt et e e et et e e e 7-7
T 38 GUAN . . o oo 7-8
7.4 Concrete Syntax of Context Declarations.t e e et e e 7-9
Chapter 8
Alignment of OCL, UML and MOF Metamodelscciitiiiiiiirinnrennnnennss 8-1
B L INtrOUCHION . . . o et et e e e 8-1
8.2 Use of the UML Metamodelo e e e ettt et 8-1
8.3 Use of the OCL metamodel in the UML metamodel 8-2
B4 WIShLiSt . . .ot 8-3
Appendix A
T 111110 (- € |
A LT ODJeCt MOARLS . ..ottt e A-1
A.1.1 Syntax of Object Models. o A-1
A.1.2 Interpretation of Object Models i A-7
A.2 OCL Types and OPerationsvt ittt ettt et ettt e et e et e e et ettt e ettt A-9
A2 L BaSIC Ty POS .« o oot o ettt et e e e A-9
A.2.2 Common Operations on all Types.ot e et et e et A-12
A23 Enumeration TYPesottt et e A-12
F N @ o) 1< A 4 o A-13
A.2.5 Collection and Tuple TYPeS. . . . oot ittt e et et e e e e e e e e A-16
A6 SPECIal Ty PCS. . v vttt ettt e e A-21
A2 7T Type HierarChyo e e e A-22
A2.8Data SIZNAtUICottt et e A-23
A.3 OCL Expressions and CONSraINtS u ottt ettt e et et e e ettt et et e et et A-24
A3 T EXPIESSIONS . . o vttt et ettt e e e e e e e A-24
A.3.2 Pre- and Postconditions oottt e A-30
Appendix B
Interchange Format......... ..o iiiiiiiiiiiiiiiiiinrenrenrsnssnssnssnsensessss B-1
B.1 This appendix is intentially left blank. B-1
Appendix C

g RS)) 1 T <1 T 6 |

Appendix

170 1<)) S |

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 Vi

List of figures

Figure 2-1 Class Diagram Example 2-3

Figure 2-2 Navigating recursive association classes 2-13

Figure 2-3 Accessing Overridden Properties Example 2-15

Figure 2-4 OclMessage Example 2-25

Figure 3-1 Abstract syntax kernel metamodel for OCL Types 3-2

Figure 3-2 The basic structure of the abstract syntax kernel metamodel for Expressions 3-8
Figure 3-3 Abstract syntax metamodel for ModelPropertyCallExp in the Expressions package 3-11
Figure 3-4 Abstract syntax metamodel for if expression 3-13

Figure 3-5 The abstract syntax of Ocl messages 3-14

Figure 3-6 Abstract syntax metamodel for Literal expression 3-15

Figure 3-7 Abstract syntax metamodel for let expression ~ 3-17

Figure 3-8 Overview of the abstract syntax metamodel for Expressions 3-26

Figure 4-1 The Environment type 4-2

Figure 5-1 Overview of packages in the UML-based semantics 5-2

Figure 5-2 The kernel values in the semantic domain 5-3

Figure 5-3 The collection and tuple values in the semantic domain 5-3

Figure 5-4 The message values in the semantic domain 5-5

Figure 5-5 The inheritance tree of classes in the Values package 5-10

Figure 5-6 The environment for ocl evaluations 5-11

Figure 5-7 Domain model for ocl evaluations 5-12

Figure 5-8 Domain model for ModelPropertyCallExpEval and subtypes 5-15
Figure 5-9 Domain model for if expression ~ 5-16

Figure 5-10 Domain model for message evaluation 5-16

Figure 5-11 Domain model for literal expressions 5-18

Figure 5-12 Domain model for let expression ~ 5-19

Figure 5-13 The inheritance tree of classes in the Evaluations package 5-28

Figure 5-14 Associations between values and the types defined in the abstract syntax. 5-29
Figure 5-15 Associations between evaluations and abstract syntax concepts 5-30

Figure 6-1 The types defined in the OCL standard library = 6-2

Figure 7-1 Metaclass ExpressionInOcl added to the UML metamodel 7-2

Figure 7-2 Situation of Ocl expression used as definition or invariant 7-3

Figure 7-3 An OCL ExpressionInOcl used as a pre- or post-condition. 7-5

Figure 7-4 Expression used to define the inital value of an attribute 7-7

Figure 7-5 An OCL expression used as a Guard expression 7-8

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 Vil

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.

Overview of OCL compliance points
Basic Types 2-6

Operations on predefined types 2-6
Type conformance rules 2-8

Valid expressions 2-8

Overview of UML 1.4. metaclasses used in this submission 8-2
Overview of places in a model where an OCL expression may be used

1-6

List of tables

OCL 2.0 REVISED SUBMISSION

VERSION 1.6, JANUARY 6, 2003

Vil

Foreword

COPYRIGHT WAIVER

Copyright © 2001, 2002, 2003 BoldSoft, Dresden University of Technology, Kings College, Klasse Objecten,
Rational Software Corporation, Borland Software Corporation, University of Bremen, IONA, Adaptive Ltd.,
International Business Machines, Telelogic, Kabira Technologies Inc., University of Kent, Project Technology
Inc., University of York, Compuware, Syntropy Ltd., Oracle, Softeam.

BoldSoft, Dresden University of Technology, Kings College, Klasse Objecten, Rational Software Corporation,
Borland Software Corporation, IONA, Adaptive Ltd., Kabira Technologies, Inc., International Business Machi-
nes, Telelogic and the University of Bremen, University of Kent, Project Technology Inc., University of York,
Compuware, Syntropy Ltd., Oracle and Softeam hereby grant to the Object Management Group, Inc. a nonexclu-
sive, royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document
and distribute copies of the modified version.

Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copy-
right in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

NOTICE
The information contained in this document is subject to change without notice.

The material in this document details an Object Management Group specification in accordance with the license
and notices set forth on this page. This document does not represent a commitment to implement any portion of
this specification in any companies' products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT
MANAGEMENT GROUP, BOLDSOFT, DRESDEN UNIVERSITY OF TECHNOLOGY, KINGS COL-
LEGE, KLASSE OBJECTEN, RATIONAL SOFTWARE CORPORATION, UNIVERSITY OF BREMEN,
IONA, ADAPTIVE LTD., KABIRA TECHNOLOGIES, INC., INTERNATIONAL BUSINESS MACHINES,
TELELOGIC, UNIVERSITY OF KENT, PROJECT TECHNOLOGYU INC., UNIVERSITY OF YORK,
COMPUWARE, SYNTROPY LTD., ORACLE, SOFTEAM MAKE NO WARRANTY OF ANY KIND WITH
REGARDS TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. The aforementioned copyright
holders shall not be liable for errors contained herein or for incidental or consequential damages in connection
with the furnishing, performance, or use of this material.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 X

FOREWORD

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of com-
puter software to use certification marks, trademarks or other special designations to indicate compliance with
these materials. This document contains information which is protected by copyright. All Rights Reserved. No
part of this work covered by copyright herein may be reproduced or used in any form or by any means-graphic,
electronic or mechanical, including photocopying, recording, taping, or information storage and retrieval sys-
tems-without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set
forth in subdivision (c¢) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS
252.227.7013.

OMBG and Object Management are registered trademarks of the Object Management Group, Inc. Object Request
Broker, UML, Unifed Modeling Language, the UML Cube Logo, MDA, Model Driven Architecture, OMG IDL,
ORB CORBA, CORBAfacilities, and CORBAservices are trademarks of the Object Management Group,

SUBMISSION CONTACT PERSON

Feedback to this submission should preferrably be directed to Jos Warmer (J.Warmer @klasse.nl), but may also be
directed any of the other authors. Their email addresses are given in 1.2 (“The Authors of the Submission”).

SUBMITTER CONTACTS

Anders Ivner (aivner @borland.com)

Jonas Hogstrom (johogstrom @borland.com)
Borland Software Corporation

Drakens Grind 8

111 30 Stockholm

Sweden

Simon Johnston (sjohnsto@rational.com)
Rational Software Corporation

8383 158th Ave NE

Redmond, WA 98052

USA

David Knox

IONA Technologies, PLC

TBI Group, CORBA/J2EE Practice
9145 W. Phillips Drive

Littleton, CO 80128

USA

Pete Rivett (pete.rivett@adaptive.com)
Adaptive Ltd

Dean Park House,

8-10 Dean Park Crescent,
Bournemouth, BHI 1HL, UK

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 X

SUPPORTER CONTACTS

Jos Warmer (J.Warmer@klasse.nl)
Anneke Kleppe (A.Kleppe @klasse.nl)
Klasse Objecten

Postbus 3082

NL-3760 DB Soest

The Netherlands

Tony Clark (anclark@dcs.kcl.ac.uk)
Kings College, London

Software Engineering Research Group,
Department of Computer Science,
King's College Strand, London,

UK, WC2R 2LS

Martin Gogolla (gogolla@ Informatik.Uni-Bremen.DE)
Mark Richters (mr @ Informatik.Uni-Bremen.DE)
University of Bremen

FB3 Mathematics & Computer Science

AG Datenbanksysteme

P.O. Box 330440

D-28334 Bremen

GERMANY

Heinrich Hussmann (Heinrich.Hussmann @inf.tu-dresden.de)
Steffen Zschaler (Steffen.Zschaler @inf.tu-dresden.de)
Dresden University of Technology

Department of Computer Science

01062 Dresden, Germany

Conrad Bock (conrad.bock@kabira.com)
Kabira Technologies, Inc

One MclInnis Parkway

Suite 200

San Rafael, CA 94903-2764

Steve Cook (sj_cook@uk.ibm.com)
International Business Machines

Cris Kobryn (cris.kobryn @telelogic.com)
Telelogic

Stuart Kent (sjhk @uck.ac.uk)
University of Kent, UK.

Steve Mellor (steve @projtech.com)
Project Technology, Inc.

Andy Evans (andye @cs.york.ac.uk)
University of York, UK

FOREWORD

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003

X

FOREWORD

Wim Bast (Wim.Bast@nl.compuware.com)
Compuware

John Daniels (jJd@syntropy.co.uk)
Syntropy Ltd, UK

Guus Ramackers (Guus.Ramackers@oracle.com)
Oracle

Philippe Desfray (philippe.desfray@softeam.fr)
Softeam

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 XIl

Overview

1.1 INTRODUCTION

This document contains a response to the Object Management Group’s UML 2.0 OCL RFP (document reference
ad/2000-09-03) for an updated specification of the Object Constraint Language, version 2.0. This version is based
on the OCL definition as described in the UML 1.4 specification.

In August 2001 an initial submission was published and submitted to the OMG. A revised submission (number
1.5) was published in June 2002. This document is a second revised and extended version of this submission. The
main extensions to this 1.6 revision focus on the alignment with the UML 2.0 Infrastructure and the MOF 2.0
Core submissions.

1.2 THE AUTHORS OF THE SUBMISSION

This submission is written by the following team.

Name Email Organisation

Jos Warmer J.Warmer @klasse.nl Klasse Objecten

Anneke Kleppe A Kleppe @klasse.nl Klasse Objecten

Tony Clark anclark @dcs.kcl.ac.uk Kings College, London

Anders Ivner aivner @borland.com Borland Software Coproration
Jonas Hogstrom johogstrom@borland.com Borland Software Coproration
Martin Gogolla gogolla@Informatik.Uni-Bremen.DE University of Bremen

Mark Richters mr@Informatik.Uni-Bremen.DE University of Bremen

Heinrich Hussmann Heinrich.Hussmann @inf.tu-dresden.de Technical University of Dresden
Steffen Zschaler Steffen.Zschaler @inf.tu-dresden.de Technical University of Dresden
Simon Johnston sjohnsto @rational.com Rational

1.3 ACKNOWLEDGEMENTS

The authoring team would like to thank the many people that have send us their ideas, or reviewed earlier ver-
sions of the specification and who participated in the various OCL Workshops that have been held over the last
years.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 1-1

mailto:J.Warmer@klasse.nl
mailto:A.Kleppe@klasse.nl
mailto:anclark@dcs.kcl.ac.uk
mailto:anders.ivner@boldsoft.com
mailto:jonas.hogstrom@boldsoft.com
mailto:gogolla@Informatik.Uni-Bremen.DE
mailto:mr@Informatik.Uni-Bremen.DE
mailto:Heinrich.Hussmann@inf.tu-dresden.de
mailto:Steffen.Zschaler@inf.tu-dresden.de
mailto:sjohnsto@rational.com

OVERVIEW

We are not able to name all the individuals that have helped us, but we would specifically like to thank the fol-

lowing people: Steven Forgey, Dave Akehurst, Behzad Bordbar, Andy Schuerr, Thomas Baar, Stephan Flake,
Steve Cook, Perdita Stevens, B. Wolff, A. Brucker, Shane Sendall, Frédéric Fondement, Sune Vester Lindhe,
Juliana Kuester-Filipe.

1.4 GOALS OF THE SUBMISSION

Obviously, the major goals of this submission are to meet the requirements outlined in the RFP mentioned above.
However no such undertaking is done without some additional goals in the area of improvement either in func-
tionality, clarity of definition or ease of use. This section attempts to capture all of these goals as the team itself
defined them.

1.4.1 Relationship with existing OCL specification in UML 1.4
This submission supercedes chapter 6 from the OMG adopted UML 1.4 specification.

1.4.2 OCL 2.0 Metamodel

Today, OCL (up to, and including UML 1.4) has no metamodel, which makes it difficult to formally define the
integration with the UML metamodel. As a response to a direct RFP requirement the OCL 2.0 submission will
focus on the following.

1.

Define a MOF 2.0-compliant metamodel for OCL. This metamodel should define the concepts and semantics
of OCL and act as an abstract syntax for the language.

(Re)define the OCL 1.4 syntactical definition, that is done by means of a grammar, as a concrete syntax
expressing the abstract syntax defined above.

To allow for alternative concrete syntaxes (e.g. Java-like syntax or visual constraint diagrams), by defining a
strict separation between the metamodel and the concrete syntax.

1.4.3 OCL Expressibility and Usability

OCL 1.4 lacks expressibility in several areas. In the issues list of the UML 1.4 RTF a number of these issues have
been delayed until UML 2.0. The OCL 2.0 submission will review these issues and define a solution when appro-
priate. The following is the lists of issues resolved by the OCL 2.0.

OCL is currently defined as a language for describing constraints. OCL 2.0 specifies the Object Constraint
Languages as a general object query language that can be used wherever expressions over UML models are
required. This ibcludes the poossibility to define expressions over MOF models.

Additional concepts to express messages sent by components, classes or other constructs that may have
behavior have been added to OCL to allow the specification of behavioral constraints. Specifically the OcIM-
essage concept is added for this purpose.

All concepts defined in OCL, whether they are already in UML 1.4 or newly added to OCL 2.0 will be con-
sistent with the concepts defined in the other two UML 2.0 submissions. This ensures that the three parts of
UML 2.0 will seamlessly fit together.

Because the UML and MOF core are identical in UML and MOF 2.0, OCL is consistent with both the MOF
and the UML. The use of OCL to specify constraints in the UML metamodel is formalized, because the OCL
definition can be used with the MOF 2.0.

The simplicity and usability requirements that the OCL 1.4 definition is built upon remain the major guideline
for the OCL 2.0.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 1-2

OVERVIEW

1.4.4 OCL Semantics

Precise semantics of OCL should be defined as much as feasible.

The submission includes a normative semantics for the abstract syntax, expressed using UML itself. In the
appendix a non-normative mathematical based description of this semantics is expressed.

The semantics of OCL not only defines semantics for boolean expressions, as required for using OCL as con-
straint language. It also defines semantics for the use of OCL as a general UML expression and query language.

1.5 DESIGN RATIONALE

This section describes design decisions that have been made during the development of the OCL 2.0 specification
according to the goals outlined above. These decisions usually reflect a change or major clarification with respect
to OCL 1.4. Therefore they are given here to guide the OCL user through the major differences between OCL 1.4
and 2.0.

1.5.1 Abstract syntax

1. Collections can be nested. This is different from OCL 1.4 where collections were always implicitly flattened.
In OCI 1.4 flattening was only applied to the collect and iterate operations. For handling nested collections
and the collect operation OCL 2.0 now distinguises three different operations:

collectNested() which is identical to the OCL 1.4 collect, but without flattening applied,

flatten(), which flattens a nested collection,

collect(), which is identical to collectNested()->flatten().
The current syntax retains the meaning of automatic flattening, because this needs to be backwards compati-
ble. The flatten operation is a deep flatten, it completely flattens a nested collection of any depth.

2. The type OclExpression is removed. This is not a real type and doesn’t fit well in the type system.

3. OclType (OclMetaType in the abstract syntax) is retained, but only as an enumeration kind. No access to the

metalevel and UML metamodel is provided. If the UML 2.0 Infrastructure will include a reflection mecha-
nism, OCL 2.0 will borrow the same mechanism to get access to the metalevel.

4. Although proposed, function types are not added to OCL. It will make the language more general, but this is
(at least) one bridge too far for OCL 2.0.

5. The OCL type model follows the UML kernel type model as close as possible. Therefore the base type for
OCL types has become Classifier from the UML core.

6. OCL should be extendible. We plan to (re)use any extension mechanism as described in the UML infrastruc-
ture submission. We have chosen not to define a separate mechanism for OCL.

7. We want to enable full use of OCL as a query language. Therefore the concept of Tuple is added to OCL. This
gives OCL at least the same expressive power as SQL.

8. Being a full query language, OCL also becomes suitable to specify any type of relationship between different
models at the M2 (MOF) level. It allows the use of OCL as part of the specifying of mappings to enable MDA
tranformations.

1.5.2 Concrete syntax

1. The concrete syntax of OCL 2.0 is backwards compatible with OCL 1.4. This means at least that any OCL 1.4
expression that is also valid in OCL 2.0 will have the same meaning.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 1-3

OVERVIEW

2. The Abstract Syntax does not depend on Concrete Syntax. There is a strict separation.

3. The OCL 2.0 grammar uses a different formalism as the OCL grammar in UML 1.4, but describes essentially
the same concrete syntax. The grammar has been derived directly from the abstract syntax, which simplifies
the mapping from the concrete syntax to the abstract syntax. In the concrete syntax section the approach is
explained.

4. There is a complete and explicit mapping from the concrete syntax to the abstract syntax.

1.5.3 Semantics

1. The semantic description is based on a description in UML. In the appendix an equivalent mathematical
description is given.

2. A description of the semantics in UML is be used to clarify the mathematical semantics for readers familiar
with UML, but not with the mathematical formalism. It is placed in appendix A. This description includes the
semantics for OclMessage.

The equivalance of the two semantic descriptions has not been formally established. Wherever they are conflict-
ing, the description in section A (“Semantics”) is normative.

1.5.4 OCL Standard Library

The so-called predefined types and operations in UML 1.4 are now defined as the OCL Standard Library. This
includes all the standard instances of the metaclass IteratorExp. Note that the iterator operations are not normal
operations in the abstract syntax, but a specialized construct.

1.6 COMPLIANCE TO THE RFP REQUIREMENTS

This section outlines the items in the RFP to be addressed and should act as a guide to the reader in understanding
how this submission meets the requirements of the RFP.

1.6.1 General Requirements

5.1.2; This specification of OCL includes detailed semantics and a normative formalism defining its operational
behavior, sequencing and side-effects.

5.1.3; The inclusion of a normative formalism and the separation of abstract from concrete syntax does provide
both a complete and precise specification.

5.1.4; Although this specification does not provide any interfaces, the implementation of the abstract syntax is
mandatory and that the support for the canonical concrete syntax is mandatory in the absence of any alternative
substitutable implementation.

5.1.10, 5.1.11; the separation of abstract and concrete syntax allows the flexibility for independent implementa-
tions of the concrete syntax to be substitutable for the canonical concrete syntax defined herein.

The following requirements are deemed irrelevant to the activity of defining the UML 2.0 OCL; 5.1.1, 5.1.5,
5.1.7,5.1.8,5.1.9,5.1.12,5.1.13, 5.1.14.

The considerations outlined in section 5.2 (except 5.2.5) where not explicitly accounted for in the development of
this specification.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 1-4

OVERVIEW

1.6.2 Specific Requirements - Mandatory

6.5.1; This submission clearly separates the abstract from concrete syntax and defines a metamodel and formal-
ism for the abstract syntax. This specification also provides a mapping from the concrete syntax to the abstract
syntax.

This submission attempts to provide backwards compatibility to the OCL defined in the UML 1.x family; how-
ever as there was no metamodel for OCL defined in those specifications this is only accomplished at the concrete
syntax level.

This submission does retire a minor language feature from the UML 1.x OCL specifications.
The type ExpressionType has been removed.
An XMI DTD for the OCL metamodel is provided as a normative appendix.

6.5.2; This submission, at its very heart, provides a complete and formal metamodel (the abstract syntax) for the
OCL language.

1.6.3 Specific Requirements - Optional
6.6.2; This submission does provide a mathematically based, formalism for the abstract syntax.

This submission does provide certain additional features to the OCL language to improve its expressive power,
these are clearly defined in the body of the document.

1.6.4 Issues to be Discussed

6.7; The exchange of existing, and future, models that are annotated with constraints represented as strings is not
affected by this specification.

1.7 STRUCTURE OF THIS SUBMISSION

The document is divided into several sections.

Section 2 (“OCL Language Description”) gives an informal description of OCL in the style that has been used in
the UML 1.1 through 1.4. This section is not normative, but meant to be explanatory.

Section 3 (“Abstract Syntax”) describes the abstract syntax of OCL using a MOF 2.0 compliant metamodel. This
is the same approach as used in the UML 1.4 and other UML 2.0 submissions. The metamodel is MOF 2.0 com-
pliant in the sense that it only uses constructs that are defined in the MOF 2.0.

Section 4 (“Concrete Syntax”) describes the canonical concrete syntax using an attributed EBNF grammar. This
syntax is mapped onto the abstract syntax, achieving a complete separation between concrete and abstract syntax.

Section 5 (“Semantics Described using UML”) describes the semantics for OCL using UML.

In section 6 (“The OCL Standard Library”) the OCL Standard Library is described. This defines type like Integer,
Boolean, etc. and all the collection types. OCL is not a stand-alone language, but an integral part of the UML. An
OCL expression needs to be placed within the context of a UML model.

Section 7 (“The Use of Ocl Expressions in UML Models™) describes a number of places within the UML where
OCL expressions can be used.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 1-5

OVERVIEW

Appendix A (“Semantics”) describes the underlying semantics of OCL using a mathematical formalism. This
appendix, however is not normative, but ment for the readers that need a mathematical description for the seman-
tics of OCL.

Appendix B (“Interchange Format”) is currently a place holder for an interchange format, which can be defined
along the same lines as XMI.

1.8 OCL 2.0 COMPLIANCE POINTS

The UML 2.0 Infrastructure and the MOF 2.0 Core submissions that are being developed in parallel with this
OCL 2.0 submission share a common core. The OCL specification will cntain a well-defined and named subset
of OCL that is defined purely based on the common core of UML and MOF. This allows this subset of OCL to be
used with both the MOF and the UML, while the full specification can be used with the UML only.

The following compliance points are distinguished for both parts.

1. Syntax compliance. The tool can read and write OCL expressions in accordance with the grammar, including
validating its type conformance and conformance of well-formedness rules against a model.

2. XMI compliance. The tool can exchage OCL expressions using XMI.

3. Evaluation compliance. The tool evaluates OCL expressions in accordance with the semantics chapter. The
following additional compliance points are optional for OCL evaluators, as they are dependent on the techni-
cal platform on which they are evaluated.

allInstances()

pre-values and oclIsNew() in postconditions
OclMessage

navigating across non-navigable associations
accessing private and protected features of an object

The following table shows the possible compliance points. Each tools is expected to fill in this table to specify
which compliance point are supported.

Table 1. Overview of OCL compliance points

OCL-MOF subset Full OCL

Syntax
XMI

Evaluation

- alllnstances

- @pre in postcondtions

- OclMessage

- navigating non-navigable associations

- accessing proivate and protected features

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 1-6

OVERVIEW

1.9 ALIGNMENT ISSUES WITH RESPECT TO UML 2.0
INFRASTRUCTURE AND MOF 2.0 CORE

This section describes some of the issues we expect to be imprtant in aligning with the UML 2.0 Infrastructure.
We also expect to get feedback from the OMG Analysis and Design task force (ADTF) which will be taken into
account. Furthermore we are open to additional features, when we have the opportunity to add them properly.

Alignment with UML 2.0 Infrastructure

The specification in this document is fully based on the UML 1.4 definition. As such, this specification could
replace the OCL definition in UML 1.4. The integration with the UML metamodel takes place through a set of
metaclasses from the UML 1.4 that are referenced in the OCL abstract syntax metamodel.

In the alignment work the references to UML 1.4 metaclasses should all be changed into references to UML
2.0 metaclasses.e

Pairs of Pre and Postconditions

Presently, the proposed use of OCL in UML considers pre- and post-conditions separately, while the OCL seman-
tics definition uses operation specifications (i.e., pairs of pre- and post-conditions). This needs to be aligned, with
the UML 2.0 including a clarification of how multiple pre- and/or post-conditions are merged into one operation
specification.

Frame Conditions

A syntax and/or semantics might be defined to allow users of OCL to specify what is sometimes called "expres-
sion closure" or "frame condition". This means that it should be possible to state that a specification of an opera-
tion is complete and everything which is not explicitly mentioned by the postconditions has to stay unchanged.
Without such a mechanism, it is difficult to exclude unexpected side effects of operations. As this is not a prop-
erty of an OCL expression, but of the context where it is being used, this should be part of the (postcondition)
context in section 7 (“The Use of Ocl Expressions in UML Models”) and of the UML 2.0.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 1-7

OCL Language Description

This chapter introduces the Object Constraint Language (OCL), a formal language used to describe expressions
on UML models. These expressions typically specify invariant conditions that must hold for the system being
modeled or queries over objects described in a model. Note that when the OCL expressions are evaluated, they do
not have side effects; i.e. their evaluation cannot alter the state of the corresponding executing system.

OCL expressions can be used to specify operations / actions that, when executed, do alter the state of the sys-
tem. UML modelers can use OCL to specify application-specific constraints in their models. UML modelers can
also use OCL to specify queries on the UML model, which are completely programming language independent.

This chapter is informative only and not normative.

2.1 WHY OCL?

A UML diagram, such as a class diagram, is typically not refined enough to provide all the relevant aspects of a
specification. There is, among other things, a need to describe additional constraints about the objects in the
model. Such constraints are often described in natural language. Practice has shown that this will always result in
ambiguities. In order to write unambiguous constraints, so-called formal languages have been developed. The
disadvantage of traditional formal languages is that they are usable to persons with a strong mathematical back-
ground, but difficult for the average business or system modeler to use.

OCL has been developed to fill this gap. It is a formal language that remains easy to read and write. It has been
developed as a business modeling language within the IBM Insurance division, and has its roots in the Syntropy
method.

OCL is a pure specification language; therefore, an OCL expression is guaranteed to be without side effect.
When an OCL expression is evaluated, it simply returns a value. It cannot change anything in the model. This
means that the state of the system will never change because of the evaluation of an OCL expression, even
though an OCL expression can be used to specify a state change (e.g., in a post-condition).

OCL is not a programming language; therefore, it is not possible to write program logic or flow control in
OCL. You cannot invoke processes or activate non-query operations within OCL. Because OCL is a modeling
language in the first place, OCl expressions are not by definition directly executable.

OCL is a typed language, so that each OCL expression has a type. To be well formed, an OCL expression must
conform to the type conformance rules of the language. For example, you cannot compare an Integer with a
String. Each Classifier defined within a UML model represents a distinct OCL type. In addition, OCL includes a
set of supplementary predefined types. These are described in section 6 (“The OCL Standard Library”).

As a specification language, all implementation issues are out of scope and cannot be expressed in OCL.

The evaluation of an OCL expression is instantaneous. This means that the states of objects in a model cannot
change during evaluation.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 2-1

OCL LANGUAGE DESCRIPTION

2.1.1 Where to Use OCL

OCL can be used for a number of different purposes:
As a query language
To specify invariants on classes and types in the class model
To specify type invariant for Stereotypes
To describe pre- and post conditions on Operations and Methods
To describe Guards
To specify target (sets) for messages and actions
To specify constraints on operations
To specify derivation rules for attributes.

for any expression over a UML model

2.2 INTRODUCTION

2.2.1 Legend

Text written in the Letter Gothic typeface as shown below is an OCL expression.
'This is an 0OCL expression'

The context keyword introduces the context for the expression. The keyword inv, pre and post denote the stereo-
types, respectively «invariant», «precondition», and «postcondition», of the constraint. The actual OCL expres-
sion comes after the colon.

context TypeName inv:

"this is an OCL expression with stereotype <<invariant>> in the
context of TypeName' = 'another string'

In the examples the keywords of OCL are written in boldface in this document. The boldface has no formal
meaning, but is used to make the expressions more readable in this document. OCL expressions are written using
ASCII characters only.

Words in [talics within the main text of the paragraphs refer to parts of OCL expressions.

2.2.2 Example Class Diagram

The diagram below is used in the examples in this chapter.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 2-2

OCL LANGUAGE DESCRIPTION

Bank «enumeration»
Gender
male
accountNumber:Integer female
0..1

0..* |customer

Person manager 0"
. . 1 managedCompanies Company
isMarried : Boolean name : String
is_Unemponed : Boolean numberOfEmployees : Integer
birthDate : Date emp|oyee emp|0yer
age : Integer " —.*| stockPrice(): Real
firstName : String 0.. | -
lastName : String |
gender : Gender |
i (Date) : Int wie '
income(Date) : Integer
9 0..1 Job
husband | 0..1 title : String
startDate : Date
salary : Integer
T
|
|
Marriage
place : String
date : Date

Figure 2-1 Class Diagram Example

2.3 RELATION TO THE UML METAMODEL

2.3.1 Self

Each OCL expression is written in the context of an instance of a specific type. In an OCL expression, the
reserved word self is used to refer to the contextual instance. For instance, if the context is Company, then self
refers to an instance of Company.

2.3.2 Specifying the UML context

The context of an OCL expression within a UML model can be specified through a so-called context declaration
at the beginning of an OCL expression. The context declaration of the constraints in the following sections is
shown.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 2-3

OCL LANGUAGE DESCRIPTION

If the constraint is shown in a diagram, with the proper stereotype and the dashed lines to connect it to its con-
textual element, there is no need for an explicit context declaration in the test of the constraint. The context dec-
laration is optional.

2.3.3 Invariants

The OCL expression can be part of an Invariant which is a Constraint stereotyped as an «invariant». When the
invariant is associated with a Classifier, the latter is referred to as a “type” in this chapter. An OCL expression is
an invariant of the type and must be true for all instances of that type at any time. (Note that all OCL expressions
that express invariants are of the type Boolean.)

For example, if in the context of the Company type in figure 2-1 on page 2-3, the following expression would
specify an invariant that the number of employees must always exceed 50:

self.numberOfEmployees > 50

where self is an instance of type Company. (We can view self as the object from where we start evaluating the
expression.) This invariant holds for every instance of the Company type.

The type of the contextual instance of an OCL expression, which is part of an invariant, is written with the con-
text keyword, followed by the name of the type as follows. The label inv: declares the constraint to be an «invar-
iant» constraint.

context Company inv:
self.numberOfEmployees > 50

In most cases, the keyword self can be dropped because the context is clear, as in the above examples. As an
alternative for self, a different name can be defined playing the part of self:

context ¢ : Company inv:
c.numberOfEmployees > 50

This invariant is equivalent to the previous one.

Optionally, the name of the constraint may be written after the inv keyword, allowing the constraint to be ref-
erenced by name. In the following example the name of the constraint is enoughEmployees. In the UML 1.4 met-
amodel, this name is a (meta-)attribute of the metaclass Constraint that is inherited from ModelElement.

context ¢ : Company inv enoughEmployees:
c.numberOfEmployees > 50

2.3.4 Pre- and Postconditions

The OCL expression can be part of a Precondition or Postcondition, corresponding to «precondition» and «post-

condition» stereotypes of Constraint associated with an Operation or other behavioral feature. The contextual

instance self then is an instance of the type which owns the operation or method as a feature. The context declara-

tion in OCL uses the context keyword, followed by the type and operation declaration. The stereotype of con-

straint is shown by putting the labels ‘pre:” and ‘post:’ before the actual Preconditions and Postconditions
context Typename::operationName(paraml : Typel, ...): ReturnType

pre : paraml >
post: result = ...

The name self can be used in the expression referring to the object on which the operation was called. The reser-
ved word result denotes the result of the operation, if there is one. The names of the parameters (paraml) can
also be used in the OCL expression. In the example diagram, we can write:

context Person::income(d : Date) : Integer
post: result = 5000

Optionally, the name of the precondition or postcondition may be written after the pre or post keyword, allowing
the constraint to be referenced by name. In the following example the name of the precondition is parameterOk

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 2-4

OCL LANGUAGE DESCRIPTION

and the name of the postcondition is resultOk. In the UML metamodel, these names are the values of the attribute
name of the metaclass Constraint that is inherited from ModelElement.

context Typename::operationName(paraml : Typel, ...): ReturnType
pre parameterOk: paraml >
post resultOk : result = ...

2.3.5 Package Context

The above context declaration is precise enough when the package in which the Classifier belongs is clear from
the environment. To specify explicitly in which package invariant, pre or postcondition Constraints belong, these
constraints can be enclosed between 'package' and 'endpackage' statements. The package statements have the
syntax:

package Package::SubPackage

context X inv:

some invariant
context X::operationName(..)
pre: ... some precondition

endpackage

An OCL file (or stream) may contain any number package statements, thus allowing all invariant, preconditions
and postconditions to be written and stored in one file. This file may co-exist with a UML model as a separate
entity.

2.3.6 Operation Body Expression

An OCL expression may be used to indicate the result of a query operation. This can be done using the following
syntax:

context Typename::operationName(paraml : Typel, ...): ReturnType
body: -- some expression

The expression must conform to the result type of the operation. Like in the pre- and postconditions, the parame-
ters may be used in the expression. Pre-, and postconditions, and body expressions may be mixed together after
one operation context. For example:

context Person::getCurrentSpouse() : Person

pre: self.isMarried = true
body: self.mariages->select(m | m.ended = false).spouse

2.3.7 Initial and Derived Values

An OCL expression may be used to indicate the initial or derived value of an attribute or association end. This
can be done using the following syntax:

context Typename::attributeName: Type
init: -- some expression representing the initial value

context Typename::assocRoleName: Type
derive: -- some expression representing the derivation rule

The expression must conform to the result type of the attribute. In the case the context is an association end the
expression must conform to the classifier at that end when the multiplicity is at most one, or Set or OrderedSet
when the multiplicity may be more than one. Initial, and derivation expressions may be mixed together after one
context. For example:

context Person::income : Integer
init: parents.income->sum() * 1% -- pocket allowance

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 2-5

OCL LANGUAGE DESCRIPTION

derive: if underAge
then parents.income->sum() * 1% -- pocket allowance
else job.salary -- income from regular job

endif

2.3.8 Other Types of Expressions

Any OCL expression can be used as the value for an attribute of the UML metaclass Expression or one of its sub-
types. In that case, the semantics section describes the meaning of the expression. A special subclass of Expres-
sion, called ExpressionInOcl is used for this purpose. See section 7.1 (“Introduction’) for a definition.

2.4 BASIC VALUES AND TYPES

In OCL, a number of basic types are predefined and available to the modeler at all time. These predefined value
types are independent of any object model and part of the definition of OCL.

The most basic value in OCL is a value of one of the basic types. The basic types of OCL, with corresponding
examples of their values, are shown in Table 2.

type values

Boolean true, false

Integer 1, -5, 2, 34, 26524,
Real 1.5, 3.14,

String 'To be or not to be...!'

Table 2. Basic Types

OCL defines a number of operations on the predefined types. Table 3. gives some examples of the operations on
the predefined types. See 6.4 (“Primitive Types”) for a complete list of all operations.

type operations

Integer *, +, -, /, abs()

Real *, +, -, /, floor()

Boolean and, or, xor, not, implies, if-then-else
String concat (), size(), substring()

Table 3. Operations on predefined types

Collection, Set, Bag, Sequence and Tuple are basic types as well. Their specifics will be described in the upcom-
ing sections.

2.4.1 Types from the UML Model

Each OCL expression is written in the context of a UML model, a number of classifiers (types/classes, ...), their
features and associations, and their generalizations. All classifiers from the UML model are types in the OCL
expressions that are attached to the model.

2.4.2 Enumeration Types

Enumerations are Datatypes in UML and have a name, just like any other Classifier. An enumeration defines a
number of enumeration literals, that are the possible values of the enumeration. Within OCL one can refer to the

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 2-6

OCL LANGUAGE DESCRIPTION

value of an enumeration. When we have Datatype named Gender in the example model with values 'female’ or
‘male' they can be used as follows:

context Person inv: gender = Gender::male

2.4.3 Let Expressions

Sometimes a sub-expression is used more than once in a constraint. The /et expression allows one to define a var-
iable which can be used in the constraint.
context Person inv:

let income : Integer = self.job.salary->sum() in
if isUnemployed then

income < 100
else

income >= 100
endif

A let expression may be included in any kind of OCL expression. It is only known within this specific expres-
sion.

2.4.4 Additional operations/attributes through «definition» expressions

The Let expression allows a variable to be used in one Ocl expression. To enable reuse of variables/operations
over multiple OCL expressions one can use a Constraint with the stereotype «definition», in which helper varia-
bles/operations are defined. This «definition» Constraint must be attached to a Classifier and may only contain
variable and/or operation definitions, nothing else. All variables and operations defined in the «definition» con-
straint are known in the same context as where any property of the Classifier can be used. Such variables and
operations are attributes and operations with stereotype «OclHelper» of the classifier. They are used in an OCL
expression in exactly the same way as normal attributes or operations are used. The syntax of the attribute or
operation definitions is similar to the Let expression, but each attribute and operation definition is prefixed with
the keyword ’def’ as shown below. .

context Person

def: income : Integer = self.job.salary->sum()

def: nickname : String = ’Little Red Rooster’

def: hasTitle(t : String) : Boolean = self.job->exists(title = t)

The names of the attributes / operations in a let expression may not conflict with the names of respective attribu-
tes/associationEnds and operations of the Classifier.

Using this definition syntax is identical to defining an attribute/operation in the UML with stereotype «Ocl-
Helper» with an attached OCL constraint for its derivation.

2.4.5 Type Conformance

OCL is a typed language and the basic value types are organized in a type hierarchy. This hierarchy determines
conformance of the different types to each other. You cannot, for example, compare an Integer with a Boolean or
a String.

An OCL expression in which all the types conform is a valid expression. An OCL expression in which the
types don’t conform is an invalid expression. It contains a type conformance error. A type typel conforms to a
type type2 when an instance of typel can be substituted at each place where an instance of fype2 is expected. The
type conformance rules for types in the class diagrams are simple.

Each type conforms to each of its supertypes.

Type conformance is transitive: if fypel conforms to type2, and type2 conforms to type3, then typel conforms
to type3.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 2-7

OCL LANGUAGE DESCRIPTION

The effect of this is that a type conforms to its supertype, and all the supertypes above. The type conformance
rules for the types from the OCL Standard Library are listed in table 4.

Type Conforms to/Is a subtype of | Condition

Set (T1) Collection(T2) if Tl conforms to T1
Sequence (T1) Collection(T2) if Tl conforms to T1
Bag (T1) Collection(T2) if T1 conforms to T1
Integer Real

Table 4. Type conformance rules

The conformance relation between the collection types only holds if they are collections of element types that
conform to each other. See “Collection Type Hierarchy and Type Conformance Rules” on page -17 for the com-
plete conformance rules for collections.

Table 5 provides examples of valid and invalid expressions.

OCL expression valid explanation

1 + 2 * 34 yes

1 + 'motorcycle' no type String does not conform to type Integer
23 * false no type Boolean does not conform to Integer
12 + 13.5 yes

Table 5. Valid expressions

2.4.6 Re-typing or Casting

In some circumstances, it is desirable to use a property of an object that is defined on a subtype of the current
known type of the object. Because the property is not defined on the current known type, this results in a type
conformance error.

When it is certain that the actual type of the object is the subtype, the object can be re-typed using the opera-
tion oclAsType(OclType). This operation results in the same object, but the known type is the argument OclType.
When there is an object object of type Typel and Type? is another type, it is allowed to write:

object.oclAsType(Type2) --- evaluates to object with type Type?

An object can only be re-typed to one of its subtypes; therefore, in the example, Type2 must be a subtype of
Typel.

If the actual type of the object is not a subtype of the type to which it is re-typed, the expression is undefined
(see 2.4.11 (“Undefined Values”™)).

2.4.7 Precedence Rules

The precedence order for the operations, starting with highest precedence, in OCL is:
@pre
dot and arrow operations: ‘. and ‘->’
unary ‘not’ and unary minus ‘-’
“*7and ‘S
‘+’ and binary ‘-’
‘if-then-else-endif”

€9 <

< , >” 4<=9’ 4>=9

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 2-8

OCL LANGUAGE DESCRIPTION

‘:’, 6<>’
‘and’, ‘or’ and ‘xor’
‘implies’

Parentheses ‘(" and ‘)’ can be used to change precedence.

2.4.8 Use of Infix Operators

The use of infix operators is allowed in OCL. The operators ‘+°, ‘-°, “*’, ¢/’ ‘<, >’ ‘<>’ ‘<=" ‘>=" are used as
infix operators. If a type defines one of those operators with the correct signature, they will be used as infix oper-
ators. The expression:

a+b
is conceptually equal to the expression:
a.+(b)

that is, invoking the ‘+’ operation on a with b as the parameter to the operation.
The infix operators defined for a type must have exactly one parameter. For the infix operators ‘<*, >’, ¢
>=’, ‘<>’, ‘and’, ‘or’, and ‘xor’ the return type must be Boolean.

bl

<=,

2.4.9 Keywords

Keywords in OCL are reserved words. That means that the keywords cannot occur anywhere in an OCL expres-
sion as the name of a package, a type or a property. The list of keywords is shown below:

and
attr
context
def
else
endif
endpackage
if
implies
in

inv

let

not
oper

or
package
post
pre
then
xor

2.4.10 Comment

Comments in OCL are written following two successive dashes (minus signs). Everything immediately following
the two dashes up to and including the end of line is part of the comment. For example:

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 2-9

OCL LANGUAGE DESCRIPTION

-- this is a comment

2.4.11 Undefined Values

Some expressions will, when evaluated, have an undefined value. For instance, typecasting with oclAsType() to
a type that the object does not support or getting the ->first() element of an empty collection will result in unde-
fined. In general, an expression where one of the parts is undefined will itself be undefined. There are some
important exceptions to this rule, however. First, there are the logical operators:

True OR-ed with anything is True
False AND-ed with anything is False
False IMPLIES anything is True

The rules for OR and AND are valid irrespective of the order of the arguments and they are valid whether the
value of the other sub-expression is known or not.

The IF-expression is another exception. It will be valid as long as the chosen branch is valid, irrespective of the
value of the other branch.

Finally, there is an explicit operation for testing if the value of an expression is undefined. ocllsUndefined() is
an operation on OclAny that results in True if its argument is undefined and False otherwise.

2.5 0BJECTS AND PROPERTIES

OCL expressions can refer to Classifiers, e.g. types, classes, interfaces, associations (acting as types) and
datatypes. Also all attributes, association-ends, methods, and operations without side-effects that are defined on
these types, etc. can be used. In a class model, an operation or method is defined to be side-effect-free if the
1sQuery attribute of the operations is true. For the purpose of this document, we will refer to attributes, associa-
tion-ends, and side-effect-free methods and operations as being properties. A property is one of:

an Attribute

an AssociationEnd

an Operation with isQuery being true

a Method with isQuery being true
The value of a property on an object that is defined in a class diagram is specified in an OCL expression by a dot
followed by the name of the property.

context Person inv:
self.isMarried

If self is a reference to an object, then self.property is the value of the property property on self.

2.5.1 Properties: Attributes

For example, the age of a Person is written as self.age:

context Person inv:
self.age > 0

The value of the subexpression self.age is the value of the age attribute on the particular instance of Person iden-
tified by self. The type of this subexpression is the type of the attribute age, which is the standard type Integer.

Using attributes, and operations defined on the basic value types, we can express calculations etc. over the
class model. For example, a business rule might be “the age of a Person is always greater than zero.” This can be
stated by the invariant above.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 2-10

OCL LANGUAGE DESCRIPTION

Attributes may have multiplicities in a UML model. Wheneven the multiplicity of an attribute is greater than 1,
the result type is collection of values. Collections in OCL are described later in this chapter.

2.5.2 Properties: Operations

Operations may have parameters. For example, as shown earlier, a Person object has an income expressed as a
function of the date. This operation would be accessed as follows, for a Person aPerson and a date aDate:

aPerson.income(aDate)

The result of this operation call is a value of the return type of the operation, which is Integer in this example. If
the operation has out or in/out parameters, the result of this operation is a tuple containing all out, in/out parame-
ters and the return value. For example, if the income operation would have an out parameter bonus, the result of
the above operation call is of type Tuple(bonus: Integer, result: Integer). You can access these values using the
names of the out parameters, and the keyword result, for example:

aPerson.income(aDate).bonus = 300 and
aPerson.income(aDate).result = 5000

Note that the out parameters need not be included in the operation call. Values for all in or in/out parameters are
neccessary.

Defining operations

The operation itself could be defined by a postcondition constraint. This is a constraint that is stereotyped as
«postcondition». The object that is returned by the operation can be referred to by result. It takes the following
form:

context Person::income (d: Date) : Integer
post: result = age * 1000

The right-hand-side of this definition may refer to the operation being defined (i.e., the definition may be recur-
sive) as long as the recursion is not infinite. Inside a pre- or postcondition one can also use the parameters of the
operation. The type of result, when the operation has no out or in/out parameters, is the return type of the opera-
tion, which is Integer in the above example. When the operation does have out or in/out parameters, the return
type is a Tuple as explained above. The postcondition for the income operation with out parameter bonus may
take the following form:

context Person::income (d: Date, bonus: Integer) : Integer

post: result = Tuple { bonus = ...,
result = }

To refer to an operation or a method that doesn’t take a parameter, parentheses with an empty argument list are
mandatory:

context Company inv:
self.stockPrice() > 0O

2.5.3 Properties: AssociationEnds and Navigation

Starting from a specific object, we can navigate an association on the class diagram to refer to other objects and
their properties. To do so, we navigate the association by using the opposite association-end:

object.associationEndName

The value of this expression is the set of objects on the other side of the associationEndName association. If the
multiplicity of the association-end has a maximum of one (“0..1” or “1”), then the value of this expression is an
object. In the example class diagram, when we start in the context of a Company (i.e., self is an instance of Com-
pany), we can write:

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 2-11

OCL LANGUAGE DESCRIPTION

context Company
inv: self.manager.isUnemployed = false
inv: self.employee->notEmpty()

In the first invariant self.manager is a Person, because the multiplicity of the association is one. In the second
invariant self.employee will evaluate in a Set of Persons. By default, navigation will result in a Set. When the
association on the Class Diagram is adorned with {ordered}, the navigation results in an OrderedSet.

Collections, like Sets, OrderedSets, Bags, and Sequences are predefined types in OCL. They have a large
number of predefined operations on them. A property of the collection itself is accessed by using an arrow ‘->’
followed by the name of the property. The following example is in the context of a person:

context Person inv:
self.employer->size() < 3

This applies the size property on the Set self.employer, which results in the number of employers of the Person
self.

context Person inv:
self.employer->iskmpty()

This applies the isEmpty property on the Set self.employer. This evaluates to true if the set of employers is empty
and false otherwise.

Missing AssociationEnd names
When the name of an association-end is missing at one of the ends of an association, the name of the type at the
association end is used as the rolename. If this results in an ambiguity, the rolename is mandatory. This is e.g. the

case with unnamed rolenames in reflexive associations. If the rolename is ambiguous, then it cannot be used in
OCL.

Navigation over Associations with Multiplicity Zero or One
Because the multiplicity of the role manager is one, self.manager is an object of type Person. Such a single object
can be used as a Set as well. It then behaves as if it is a Set containing the single object. The usage as a set is done
through the arrow followed by a property of Set. This is shown in the following example:
context Company inv:
self.manager->size() =1
The sub-expression self.manager is used as a Set, because the arrow is used to access the size property on Set.
This expression evaluates to true.
context Company inv:
self.manager->foo
The sub-expression self.manager is used as Set, because the arrow is used to access the foo property on the Set.
This expression is incorrect, because foo is not a defined property of Set.
context Company inv:
self.manager.age > 40
The sub-expression self.manager is used as a Person, because the dot is used to access the age property of Person.
In the case of an optional (0..1 multiplicity) association, this is especially useful to check whether there is an
object or not when navigating the association. In the example we can write:

context Person inv:
self.wife->notEmpty() implies self.wife.gender = Gender::female

Combining Properties

Properties can be combined to make more complicated expressions. An important rule is that an OCL expression
always evaluates to a specific object of a specific type. After obtaining a result, one can always apply another

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 2-12

OCL LANGUAGE DESCRIPTION

property to the result to get a new result value. Therefore, each OCL expression can be read and evaluated left-to-
right.

Following are some invariants that use combined properties on the example class diagram:
[1] Married people are of age >= 18

context Person inv:
self.wife->notEmpty() implies self.wife.age >= 18 and
self.husband->notEmpty() implies self.husband.age >= 18

[2] acompany has at most 50 employees

context Company inv:
self.employee->size() <= 50

2.5.4 Navigation to Association Classes

To specify navigation to association classes (Job and Marriage in the example), OCL uses a dot and the name of
the association class starting with a lowercase character:

context Person inv:
self.job

The sub-expression self.job evaluates to a Set of all the jobs a person has with the companies that are his/her
employer. In the case of an association class, there is no explicit rolename in the class diagram. The name job
used in this navigation is the name of the association class starting with a lowercase character, similar to the way
described in the section “Missing Rolenames” above.

In case of a recursive association, that is an association of a class with itself, the name of the association class
alone is not enough. We need to distinguish the direction in which the association is navigated as well as the
name of the association class. Take the following model as an example.

Person bosses
age "
EmployeeRanking
employees* | — — — - score

Figure 2-2 Navigating recursive association classes

When navigating to an association class such as employeeRanking there are two possibilities depending on the
direction. For instance, in the above example, we may navigate towards the employees end, or the bosses end. By
using the name of the association class alone, these two options cannot be distinguished. To make the distinction,
the rolename of the direction in which we want to navigate is added to the association class name, enclosed in
square brackets. In the expression

context Person inv:
self.employeeRanking[bosses]->sum() > 0

the self.employeeRanking[bosses] evaluates to the set of EmployeeRankings belonging to the collection of bos-
ses. And in the expression

context Person inv:
self.employeeRanking[employees]->sum() > 0

the self.employeeRanking[employees] evaluates to the set of EmployeeRankings belonging to the collection of
employees. The unqualified use of the association class name is not allowed in such a recursive situation. Thus,
the following example is invalid:

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 2-13

OCL LANGUAGE DESCRIPTION

context Person inv:
self.employeeRanking->sum() > 0 -- INVALID!

In a non-recursive situation, the association class name alone is enough, although the qualified version is allowed
as well. Therefore, the examples at the start of this section could also be written as:

context Person inv:
self.job[employer]

2.5.5 Navigation from Association Classes

We can navigate from the association class itself to the objects that participate in the association. This is done
using the dot-notation and the role-names at the association-ends.
context Job

inv: self.employer.numberOfEmployees >= 1
inv: self.employee.age > 21

Navigation from an association class to one of the objects on the association will always deliver exactly one
object. This is a result of the definition of AssociationClass. Therefore, the result of this navigation is exactly one
object, although it can be used as a Set using the arrow (->).

2.5.6 Navigation through Qualified Associations

Qualified associations use one or more qualifier attributes to select the objects at the other end of the association.
To navigate them, we can add the values for the qualifiers to the navigation. This is done using square brackets,
following the role-name. It is permissible to leave out the qualifier values, in which case the result will be all
objects at the other end of the association. The following example results in a Set(Person) containing all custo-
mers of the Bank.

context Bank inv:
self.customer

The next example results in one Person, having accountnumber 8764423,

context Bank inv:
self.customer[8764423]

If there is more than one qualifier attribute, the values are separated by commas, in the order which is specified in
the UML class model. It is not permissible to partially specify the qualifier attribute values.

2.5.7 Using Pathnames for Packages

Within UML, types are organized in packages. OCL provides a way of explicitly referring to types in other pack-
ages by using a package-pathname prefix. The syntax is a package name, followed by a double colon:

Packagename::Typename
This usage of pathnames is transitive and can also be used for packages within packages:

Packagenamel::Packagename?2::Typename

2.5.8 Accessing overridden properties of supertypes

Whenever properties are redefined within a type, the property of the supertypes can be accessed using the
oclAsType() operation. Whenever we have a class B as a subtype of class A, and a property pl of both A and B,
we can write:

context B inv:
self.oclAsType(A).pl -- accesses the pl property defined in A

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 2-14

OCL LANGUAGE DESCRIPTION

source
*

ModelElement target

JAN

ecoe

Note Dependency

value: Uninterpreted

Figure 2-3 Accessing Overridden Properties Example

self.pl -- accesses the pl property defined in B

Figure 2-3 shows an example where such a construct is needed. In this model fragment there is an ambiguity with
the OCL expression on Dependency:

context Dependency inv:
self.source <> self

This can either mean normal association navigation, which is inherited from ModelElement, or it might also
mean navigation through the dotted line as an association class. Both possible navigations use the same role-
name, so this is always ambiguous. Using oc/AsType() we can distinguish between them with:

context Dependency

inv: self.oclAsType(Dependency).source->isEmpty()
inv: self.oclAsType(ModelETement).source->iskmpty()

2.5.9 Predefined properties on All Objects
There are several properties that apply to all objects, and are predefined in OCL. These are:

oclIsTypeOf (t : OclType) : Boolean
oclIsKindOf (t : OclType) : Boolean
oclInState (s : OclState) : Boolean
oclIsNew) : Boolean
oclAsType (t : OclType) : instance of 0clType

The operation is ocllsTypeOf results in true if the type of self and ¢ are the same. For example:

context Person
inv: self.oclIsTypeOf(Person) -- s true
inv: self.oclIsTypeOf(Company) -- s false

The above property deals with the direct type of an object. The ocllsKindOf property determines whether ¢ is
either the direct type or one of the supertypes of an object.

The operation oclInState(s) results in true if the object is in the state s. Values for s are the names of the states
in the statemachine(s) attached to the Classifier of object. For nested states the statenames can be combined using
the double colon “::” .

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 2-15

OCL LANGUAGE DESCRIPTION

On

In the example statemachine above, values for s can be On, Off, Off::Standby, Off::NoPower. If the classifier of
object has the above associated statemachine valid OCL expressions are:

On)

0ff)
0ff::Standby)
0ff::NoPower)

object.oclInState
object.oclInState
object.oclInstate
object.oclInState

~ o~~~

If there are multiple statemachines attached to the object’s classifier, then the statename can be prefixed with the
name of the statemachine containing the state and the double colon ::’, as with nested states.

The operation ocllsNew evaluates to true if, used in a postcondition, the object is created during performing the
operation. i.e., it didn’t exist at precondition time.

2.5.10 Features on Classes Themselves

All properties discussed until now in OCL are properties on instances of classes. The types are either predefined
in OCL or defined in the class model. In OCL, it is also possible to use features defined on the types/classes
themselves. These are, for example, the class-scoped features defined in the class model. Furthermore, several
features are predefined on each type.

A predefined feature on classes, interfaces and enumerations is alllnstances, which results in the Set of all
instances of the type in existence at the specific time when the expression is evaluated. If we want to make sure
that all instances of Person have unique names, we can write:

context Person inv:

Person.allInstances()->forAl1(pl, p2 |
pl <> p2 implies pl.name <> p2.name)

The Person.alllnstances() is the set of all persons and is of type Set(Person). It is the set of all persons that exist
in the system at the time that the expression is evaluated.

2.5.11 Collections

Single navigation of an association results in a Set, combined navigations in a Bag, and navigation over associa-
tions adorned with {ordered} results in an OrderedSet. Therefore, the collection types define in the OCL Stand-
ard Library play an important role in OCL expressions.

The type Collection is predefined in OCL. The Collection type defines a large number of predefined operations
to enable the OCL expression author (the modeler) to manipulate collections. Consistent with the definition of
OCL as an expression language, collection operations never change collections; isQuery is always true. They
may result in a collection, but rather than changing the original collection they project the result into a new one.

Collection is an abstract type, with the concrete collection types as its subtypes. OCL distinguishes three dif-
ferent collection types: Set, Sequence, and Bag. A Set is the mathematical set. It does not contain duplicate ele-

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 2-16

OCL LANGUAGE DESCRIPTION

ments. A Bag is like a set, which may contain duplicates (i.e., the same element may be in a bag twice or more).
A Sequence is like a Bag in which the elements are ordered. Both Bags and Sets have no order defined on them.

Collection Literals

Sets, Sequences, and Bags can be specified by a literal in OCL. Curly brackets surround the elements of the
collection, elements in the collection are written within, separated by commas. The type of the collection is writ-
ten before the curly brackets:

Set { 1,2 ,5, 88}

Set { ‘'apple' , 'orange', 'strawberry' }
A Sequence:

Sequence { 1, 3, 45, 2, 3}

Sequence { 'ape', 'nut' }
A bag:

Bag {1 , 3, 4, 3, 5}

Because of the usefulness of a Sequence of consecutive Integers, there is a separate literal to create them. The ele-
ments inside the curly brackets can be replaced by an interval specification, which consists of two expressions of
type Integer, Int-exprl and Int-expr2, separated by ‘... This denotes all the Integers between the values of Int-
exprl and Int-expr2, including the values of Int-exprl and Int-expr2 themselves:

Sequence{ 1..(6 + 4) }

Sequence{ 1..10 }

-- are both identical to

Sequence{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }

The complete list of Collection operations is described in chapter 6 (“The OCL Standard Library”).
Collections can be specified by a literal, as described above. The only other way to get a collection is by navi-
gation. To be more precise, the only way to get a Set, OrderedSet, Sequence, or Bag is:

1. aliteral, this will result in a Set, OrderedSet, Sequence, or Bag:

Set {e , 4, 1,5 ,7,13, 11, 17 }
OrderedSet {1 , 2, 3 , 5, 7, 11, 13, 17 }
Sequence (r ,2,3,5,7,11, 13, 17 }

Bag {1, 2, 3, 2, 1}
2. anavigation starting from a single object can result in a collection:

context Company inv:
self.employee

3. operations on collections may result in new collections:

collectionl->union(collection?)

2.5.12 Collections of Collections

In UML 1.4 a collection in OCL was always flattened, i.e. a collection could never contain other collections as
elements. This restriction is relieved in UML 2.0. OCL allows elements of collections to be collections them-
selves. The OCL Standard Library includes specific flatten operations for collections. These can be used to flat-
ten collections of collections explicitly.

2.5.13 Collection Type Hierarchy and Type Conformance Rules

In addition to the type conformance rules in 2.4.5 (“Type Conformance”), the following rules hold for all types,
including the collection types:

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 2-17

OCL LANGUAGE DESCRIPTION

The types Set (X), Bag (X) and Sequence (X) are all subtypes of Collection (X).
Type conformance rules are as follows for the collection types:

Typel conforms to Type2 when they are identical (standard rule for all types).
Typel conforms to Type2 when it is a subtype of Type2 (standard rule for all types).

Collection(Typel) conforms to Collection(Type2), when Typel conforms to Type2. This is also true for
Set(Typel)/Set(Type2), Sequence(Typel)/Sequence(Type2), Bag(Typel)/Bag(Type2)

Type conformance is transitive: if Typel conforms to Type2, and Type2 conforms to Type3, then Typel con-
forms to Type3 (standard rule for all types).

For example, if Bicycle and Car are two separate subtypes of Transport:

Set(Bicycle) conformsto Set(Transport)
Set(Bicycle) conformsto Collection(Bicycle)
Set(Bicycle) conformsto Collection(Transport)

Note that Set(Bicycle) does not conform to Bag(Bicycle), nor the other way around. They are both subtypes of
Collection(Bicycle) at the same level in the hierarchy.

2.5.14 Previous Values in Postconditions

As stated in 2.3.4 (“Pre- and Postconditions’), OCL can be used to specify pre- and post-conditions on operations
and methods in UML. In a postcondition, the expression can refer to values for each property of an object at two
moments in time:

the value of a property at the start of the operation or method

the value of a property upon completion of the operation or method

The value of a property in a postcondition is the value upon completion of the operation. To refer to the value of
a property at the start of the operation, one has to postfix the property name with the keyword ‘@pre’:

context Person::birthdayHappens()
post: age = age@pre + 1

The property age refers to the property of the instance of Person which executes the operation. The property
age @pre refers to the value of the property age of the Person that executes the operation, at the start of the opera-
tion.
If the property has parameters, the ‘@pre’ is postfixed to the propertyname, before the parameters.
context Company::hireEmployee(p : Person)
post: employees = employees@pre->including(p) and
stockprice() = stockprice@pre() + 10

When the pre-value of a property evaluates to an object, all further properties that are accessed of this object are
the new values (upon completion of the operation) of this object. So:
a.b@pre.c -- takes the old value of property b of a, say x
-- and then the new value of ¢ of x.

a.b@pre.c@re-- takes the old value of property b of a, say x
-- and then the old value of ¢ of x.

The ‘@pre’ postfix is allowed only in OCL expressions that are part of a Postcondition. Asking for a current pro-
perty of an object that has been destroyed during execution of the operation results in OclUndefined. Also, refer-
ring to the previous value of an object that has been created during execution of the operation results in
OclUndefined.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 2-18

OCL LANGUAGE DESCRIPTION

2.5.15 Tuples

It is possible to compose several values into a fuple. A tuple consists of named parts, each of which can have a
distinct type. Some examples of tuples are:

Tuple {name: String = ‘John’, age: Integer = 10}
Tuple f{a: Collection(Integer) = Set{l, 3, 4}, b: String = ‘foo’, c: String = ‘bar’}

This is also the way to write tuple literals in OCL; they are enclosed in curly brackets, and the parts are separated
by commas. The type names are optional, and the order of the parts is unimportant. Thus:
Tuple {name: String = ‘John’, age: Integer = 10} is equivalent to

Tuple {name = “John’, age = 10} and to
Tuple f{age = 10, name = ‘John’}

Also, note that the values of the parts may be given by arbitrary OCL expressions, so for example we may write:

context Person def:
attr statistics : Set(TupleType(company: Company, numEmployees: Integer,
wellpaidEmployees: Set(Person), totalSalary: Integer)) =
managedCompanies->collect(c |
Tuple { company: Company = c,
numkmployees: Integer = c.employee->size(),
wellpaidEmployees: Set(Person) = c.job->select(salary>10000).employee->asSet(),
totalSalary: Integer = c.job.salary->sum()
}
)

This results in a bag of tuples summarizing the company, number of employees, the best paid employees and
total salary costs of each company a person manages.

The parts of a tuple are accessed by their names, using the same dot notation that is used for accessing
attributes. Thus:

Tuple {x: Integer =5, y: String = ‘hi’}.x =5
is a true, if somewhat pointless, expression. Using the definition of statistics above, we can write:

context Person inv:
statistics->sortedBy(totalSalary)->Tast().wellpaidEmployees->includes(self)

This asserts that a person is one of the best-paid employees of the company with the highest total salary that he
manages. In this expression, both ‘totalSalary’ and ‘wellpaidEmployees’ are accessing tuple parts.

2.6 COLLECTION OPERATIONS

OCL defines many operations on the collection types. These operations are specifically meant to enable a flexible
and powerful way of projecting new collections from existing ones. The different constructs are described in the
following sections.

2.6.1 Select and Reject Operations

Sometimes an expression using operations and navigations results in a collection, while we are interested only in
a special subset of the collection. OCL has special constructs to specify a selection from a specific collection.
These are the select and reject operations. The select specifies a subset of a collection. A select is an operation on
a collection and is specified using the arrow-syntax:

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 2-19

OCL LANGUAGE DESCRIPTION

collection->select(...)

The parameter of select has a special syntax that enables one to specify which elements of the collection we want
to select. There are three different forms, of which the simplest one is:

collection->select(boolean-expression)

This results in a collection that contains all the elements from collection for which the boolean-expression eva-
luates to true. To find the result of this expression, for each element in collection the expression boolean-expres-
sion is evaluated. If this evaluates to true, the element is included in the result collection, otherwise not. As an
example, the following OCL expression specifies that the collection of all the employees older than 50 years is
not empty:

context Company inv:

self.employee->select(age > 50)->notEmpty()

The self.employee is of type Set(Person). The select takes each person from self.employee and evaluates age > 50
for this person. If this results in frue, then the person is in the result Set.

As shown in the previous example, the context for the expression in the select argument is the element of the
collection on which the select is invoked. Thus the age property is taken in the context of a person.

In the above example, it is impossible to refer explicitly to the persons themselves; you can only refer to prop-
erties of them. To enable to refer to the persons themselves, there is a more general syntax for the select expres-
sion:

collection->select(v | boolean-expression-with-v)

The variable v is called the iterator. When the select is evaluated, v iterates over the collection and the boolean-
expression-with-v is evaluated for each v. The v is a reference to the object from the collection and can be used to
refer to the objects themselves from the collection. The two examples below are identical:

context Company inv:
self.employee->select(age > 50)->notEmpty()

context Company inv:
self.employee->select(p | p.age > 50)->notEmpty()

The result of the complete select is the collection of persons p for which the p.age > 50 evaluates to True. This
amounts to a subset of self.employee.

As a final extension to the select syntax, the expected type of the variable v can be given. The select now is
written as:

collection->select(v : Type | boolean-expression-with-v)

The meaning of this is that the objects in collection must be of type Type. The next example is identical to the
previous examples:

context Company inv:
self.employee.select(p : Person | p.age > 50)->notEmpty()

The compete select syntax now looks like one of:

collection->select(v : Type | boolean-expression-with-v)
collection->select(v | boolean-expression-with-v)
collection->select(boolean-expression)

The reject operation is identical to the select operation, but with reject we get the subset of all the elements of the
collection for which the expression evaluates to False. The reject syntax is identical to the select syntax:

collection->reject(v : Type | boolean-expression-with-v)
collection->reject(v | boolean-expression-with-v)
collection->reject(boolean-expression)

As an example, specify that the collection of all the employees who are not married is empty:

context Company inv:
self.employee->reject(isMarried)->isEmpty()

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 2-20

OCL LANGUAGE DESCRIPTION

The reject operation is available in OCL for convenience, because each reject can be restated as a select with the
negated expression. Therefore, the following two expressions are identical:

collection->reject(v : Type | boolean-expression-with-v)
collection->select(v : Type | not (boolean-expression-with-v))

2.6.2 Collect Operation

As shown in the previous section, the select and reject operations always result in a sub-collection of the original
collection. When we want to specify a collection which is derived from some other collection, but which contains
different objects from the original collection (i.e., it is not a sub-collection), we can use a collect operation. The
collect operation uses the same syntax as the select and reject and is written as one of:

collection->collect(v : Type | expression-with-v)

collection->collect(v | expression-with-v)
collection->collect(expression)

The value of the reject operation is the collection of the results of all the evaluations of expression-with-v.
An example: specify the collection of birthDates for all employees in the context of a company. This can be
written in the context of a Company object as one of:
self.employee->collect(birthDate)

self.employee->collect(person | person.birthDate)
self.employee->collect(person : Person | person.birthDate)

An important issue here is that the resulting collection is not a Set, but a Bag. When more than one employee has
the same value for birthDate, this value will be an element of the resulting Bag more than once. The Bag resul-
ting from the collect operation always has the same size as the original collection.

It is possible to make a Set from the Bag, by using the asSet property on the Bag. The following expression
results in the Set of different birthDates from all employees of a Company:

self.employee->collect(birthDate)->asSet()

Shorthand for Collect

Because navigation through many objects is very common, there is a shorthand notation for the collect that
makes the OCL expressions more readable. Instead of

self.employee->collect(birthdate)
we can also write:

self.employee.birthdate

In general, when we apply a property to a collection of Objects, then it will automatically be interpreted as a col-
lect over the members of the collection with the specified property.

For any propertyname that is defined as a property on the objects in a collection, the following two expressions
are identical:

collection.propertyname
collection->collect(propertyname)

and so are these if the property is parameterized:

collection.propertyname (parl, par2, ...)
collection->collect (propertyname(parl, par2, ...))

2.6.3 ForAll Operation

Many times a constraint is needed on all elements of a collection. The forAll operation in OCL allows specifying
a Boolean expression, which must hold for all objects in a collection:

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 2-21

OCL LANGUAGE DESCRIPTION

collection->forA11(v : Type | boolean-expression-with-v)
collection->forAl1(v | boolean-expression-with-v)
collection->forA11(boolean-expression)

This forAll expression results in a Boolean. The result is true if the boolean-expression-with-v is true for all ele-
ments of collection. If the boolean-expression-with-v is false for one or more v in collection, then the complete
expression evaluates to false. For example, in the context of a company:

context Company

inv: self.employee->forA11(age <= 65)

inv: self.employee->forAl1(p | p.age <= 65)

inv: self.employee->forAl1(p : Person | p.age <= 65)

These invariants evaluate to true if the age property of each employee is less or equal to 65.
The forAll operation has an extended variant in which more then one iterator is used. Both iterators will iterate
over the complete collection. Effectively this is a forAll on the Cartesian product of the collection with itself.
context Company inv:

self.employee->forAl1(el, e2 : Person |
el <> e?2 implies el.forename <> e2.forename)

This expression evaluates to true if the forenames of all employees are different. It is semantically equivalent to:

context Company inv:
self.employee->forAll (el | self.employee->forAll (e2 |
el <> e2 implies el.forename <> e2.forename))

2.6.4 Exists Operation

Many times one needs to know whether there is at least one element in a collection for which a constraint holds.
The exists operation in OCL allows you to specify a Boolean expression which must hold for at least one object
in a collection:

collection->exists(v : Type | boolean-expression-with-v)

collection->exists(v | boolean-expression-with-v)
collection->exists(boolean-expression)

This exists operation results in a Boolean. The result is true if the boolean-expression-with-v is true for at least
one element of collection. If the boolean-expression-with-v is false for all v in collection, then the complete
expression evaluates to false. For example, in the context of a company:

context Company inv:
self.employee->exists(forename = "Jack')

context Company inv:
self.employee->exists(p | p.forename = "Jack')

context Company inv:
self.employee->exists(p : Person | p.forename = 'Jack')

These expressions evaluate to true if the forename property of at least one employee is equal to ‘Jack.

2.6.5 Iterate Operation

The iterate operation is slightly more complicated, but is very generic. The operations reject, select, forAll, exists,
collect, can all be described in terms of iferate. An accumulation builds one value by iterating over a collection.

collection->iterate(elem : Type; acc : Type = <expression> |
expression-with-elem-and-acc)

The variable elem is the iterator, as in the definition of select, forAll, etc. The variable acc is the accumulator. The
accumulator gets an initial value <expression>. When the iterate is evaluated, elem iterates over the collection
and the expression-with-elem-and-acc is evaluated for each elem. After each evaluation of expression-with-elem-

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 2-22

OCL LANGUAGE DESCRIPTION

and-acc, its value is assigned to acc. In this way, the value of acc is built up during the iteration of the collection.
The collect operation described in terms of iterate will look like:

collection->collect(x : T | x.property)

-- is identical to:

collection->iterate(x : T; acc : T2 = Bag{! |
acc->including(x.property))

Or written in Java-like pseudocode the result of the iterate can be calculated as:

iterate(elem : T; acc : T2 = value)
{
acc = value;
for(Enumeration e = collection.elements() ; e.hasMoreElements();){
elem = e.nextElement();
acc = <expression-with-elem-and-acc>

}
return acc;
}

Although the Java pseudo code uses a ‘next element’, the iferate operation is defined not only for Sequqgnce, but
for each collection type. The order of the iteration through the elements in the collection is not defined for Set and
Bag. For a Sequence the order is the order of the elements in the sequence.

2.7 MESSAGES IN OCL

This section contains some examples of the concrete syntax and explains the finer details of the message expres-
sion. In earlier versions the phrase "actions in OCL" was used, but message was found to capture the meaning
more precisely.

2.7.1 Calling operations and sending signals
To specify that communication has taken place, the hasSent (‘**) operator is used:

context Subject::hasChanged()
post: observertupdate(12, 14)

The observer*update(12, 14) results in true if an update message with arguments 12 and 14 was sent to observer
during the execution of the operation. Update() is either an Operation that is defined in the class of observer, or it
is a Signal specified in the UML model. The argument(s) of the message expression (12 and 14 in this example)
must conform to the parameters of the operation/signal definition.

If the actual arguments of the operation/signal are not known, or not restricted in any way, it can be left
unspecified. This is shown by using a question mark. Following the question mark is an optional type, which may
be needed to find the correct operation when the same operation exists with different parameter types.

context Subject::hasChanged()
post: observer~update(? : Integer, ? : Integer)

This example states that the message update has been sent to observer, but that the values of the parameters are
not known.

OCL also defines a special OclMessage type. One can get the actual OclMessages through the message opera-
tor: M.

context Subject::hasChanged()
post: observer*tupdate(12, 14)

This results in the Sequence of messages sent. Each element of the collection is sn instance of OcIMessage. In the
remainder of the constraint one can refer to the parameters of the operation using their formal parameter name

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 2-23

OCL LANGUAGE DESCRIPTION

from the operation definition. If the operation update has been defined with formal parameters named i and j, then
we can write:

context Subject::hasChanged()

post: let messages : Sequence(OclMessage) = observer”*update(? : Integer, ? : Integer) in
messages->notEmpty() and
messages->exists(m | m.i > 0 and m.j >=m.i)

The value of the parameter i is not known, but it must be greater than zero and the value of parameter j must be
larger or equal to i..
Because the A operator results in an instance of OclMessage, the message expression can also be used to spec-
ify collections of messages sent to different targets. For an observer pattern we can write:
context Subject::hasChanged()
post: Tlet messages : Sequence(OclMessage) =

observers->collect(o | o**update(? : Integer, ? : Integer)) in
messages->forAll(m | m.i <=m.j)

Messages is now a set of OclMessage instances, where every OclMessage instance has one of the observers as a
target.

2.7.2 Accessing result values

A signal sent message is by definition asynchronous, so there never is a return value. If there is a logical return
value it must be modeled as a separate signal message. Yet, for an operation call there is a potential return value.
This is only available if the operation has already returned (not neccesary if the operation call is aynchronous),
and it specifies a return type in its definition. The standard operation resulf() of OclMessage contains the return
value of the called operation. If getMoney(...) is an operation on Company that returns a boolean, as in Com-
pany::getMoney(amount : Integer) : Boolean, we can write:

context Person::giveSalary(amount : Integer)
post: let message : OclMessage = company”getMoney(amount) in

message.hasReturned() -- getMoney was sent and returned
and
message.result() = true -- the getMoney call returned true

As with the previous example we can also access a collection of return values from a collection of OclMessages.
If message.hasReturned() is false, then message.result() will be undefined.

2.7.3 An example

This section shows an example of using the OCL message expression.

The Example and Problem

Suppose we have build a component, which takes any form of input and transforms it into garbage (aka encrypts
it). The component GarbageCan uses an interface UsefullnformationProvider which must be implemented by
users of the component to provide the input. The operation getNextPieceOfGarbage of GarbageCan can then be

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 2-24

OCL LANGUAGE DESCRIPTION

used to retrieve the garbled data. Figure 2-4 shows the component’s class diagram. Note that none of the opera-

GarbageCan

setUsefullnformationProvider(uip : UsefullnformationProvider)
getNextPieceOfGarbage() : Integer

0.1 #datasource

<<Interface>>
UsefullnformationProvider

getNextPieceOfData() : Integer

Figure 2-4 OclMessage Example

tions are marked as queries.

When selling the component, we do not want to give the source code to our customers. However, we want to
specify the component’s behavior as precisely as possible. So, for example, we want to specify, what getNextPie-
ceOfGarbage does. Note that we cannot write:

context GarbageCan::getNextPieceOfGarbage() : Integer
post: result = (datasource.getNextPieceOfData() * .7683425 + 10000) / 20 + 3

because UsefullnformationProvider::getNextPieceOfData() is not a query (e.g., it may increase some internal
pointer so that it can return the next piece of data at the next call). Still we would like to say something about how
the garbage is derived from the original data.

The solution

To solve this problem, we can use an OclMessage to represent the call to getNextPieceOfData. This allows us to
check for the result. Note that we need to demand that the call has returned before accessing the result:

context GarbageCan::getNextPieceOfGarbage() : Integer

post: let message : OclMessage = datasource”*getNextPieceOfData()->first() in
message.hasReturned()
and
result = (message.result() * .7683425 + 10000) / 20 + 3

2.8 RESOLVING PROPERTIES

For any property (attribute, operation, or navigation), the full notation includes the object of which the property is
taken. As seen in Section 2.3.3, self can be left implicit, and so can the iterator variables in collection operations.
At any place in an expression, when an iterator is left out, an implicit iterator-variable is introduced. For example
in:

context Person inv:
employer->forAl11(employee->exists(lastName = name))

three implicit variables are introduced. The first is self, which is always the instance from which the constraint
starts. Secondly an implicit iterator is introduced by the forAll and third by the exists. The implicit iterator varia-
bles are unnamed. The properties employer, employee, lastName and name all have the object on which they are
applied left out. Resolving these goes as follows:

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 2-25

OCL LANGUAGE DESCRIPTION

at the place of employer there is one implicit variable: self : Person. Therefore employer must be a property of
self.

at the place of employee there are two implicit variables: self : Person and iterl : Company. Therefore
employer must be a property of either self or iterl. If employee is a property of both self and iterl then it is
defined to belong to the variable in the most inner scope, which is iter/.

at the place of lastName and name there are three implicit variables: self : Person , iterl : Company and iter2
: Person. Therefore lastName and name must both be a property of either self or iterl or iter2. In the UML
model property name is a property of iterl. However, lastName is a property of both self and iter2. This is
ambiguous and therefore the lastName refers to the variable in the most inner scope, which is iter2.

Both of the following invariant constraint are correct, but have a different meaning:

context Person
inv: employer->forAl11(employee->exists(p | p.lastName = name))
inv: employer->forAl1(employee->exists(self.lastName = name))

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 2-26

Abstract Syntax

This section describes the abstract syntax of the OCL. In this abstract syntax a number of metaclasse from the
UML metamodel are imported. These metaclasses are shown in the models with the annotation ’(from <UML
package>)’ and shown with a transparant fill color. All metaclasses defined as part of the OCL abstract syntax are
shown with a light gray background.

3.1 INTRODUCTION

The abstract syntax as described below defines the concepts that are part of the OCL using a MOF compliant
metamodel. The abstract syntax is divided into several packages.

The Types package describes the concepts that define the type system of OCL. It shows which types are prede-
fined in OCL and which types are deduced from the UML models.

The Expressions package describes the structure of OCL expressions.

3.2 THE TYPES PACKAGE

OCL is a typed language. Each expression has a type which is either explicitly declared or can be statically
derived. Evaluation of the expression yields a value of this type. Therefore, before we can define expressions, we
have to provide a model for the concept of type. A metamodel for OCL types is shown in this section. Note that
instances of the classes in the metamodel are the types themselves (e.g. Integer) not instances of the domain they
represent (e.g. -15, 0, 2, 3).

The model in figure 3-1 shows the OCL types. The basic type is the UML Classifier, which includes all sub-
types of Classifier from the UML infrastructure.

In the model the CollectionType and its subclasses and the TupleType are special. One can never instantiate all
collection types, because there is an infinite number, especially when nested collections are taken in account.
Users will never instantiate these types explicitly. Conceptually all these types do exist, but such a type should be
(lazily) instantiated by a tool, whenever it is needed in an expression.

In comparison with UML 1.4 the type OclType has been removed from the type hierarchy. This means that a
Classifier is not a valid OCL expression any more.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 3-1

ABSTRACT SYNTAX

StructuralFeature | 0-N +type | Classifier | ,glementType
(from Core)

(from Core) 1 1

g

OclMessageType OcIlModelElementType || DataType VoidType
(from Core)

Primiti : ‘ 0.4

TupleType rimitive CollectionType
(from Core) +collectionTypes
SetType SequenceType BagType

0..1|treferredSignal
.1\, +referredOperation
Signal Operation OrderedSetType
(from Common Behavi... (from Core)

Figure 3-1 Abstract syntax kernel metamodel for OCL Types

BagType
BagType is a collection type which describes a multiset of elements where each element may occur multiple
times in the bag. The elements are unordered. Part of a BagType is the declaration of the type of its elements.

CollectionType

CollectionType describes a list of elements of a particular given type. CollectionType is an abstract class. Its con-
crete subclasses are SetType, SequenceType and BagType types. Part of every collection type is the declaration of
the type of its elements, i.e. a collection type is parameterized with an element type. In the metamodel, this is
shown as an association from CollectionType to Classifier. Note that there is no restriction on the element type of
a collection type. This means in particular that a collection type may be parameterized with other collection types

allowing collections to be nested arbitrarily deep.
Associations
elementType The type of the elements in a collection. All elements in a collection must con-

form to this type.

OclMessageType

OclMessageType describe ocl messages. Like to the collection types, OciMessageType describes a set of types in
the standard library. Part of every OclMessageType is a reference to the declaration of the type of its operation or
signal, i.e. an ocl message type is parameterized with an operation or signal. In the metamodel, this is shown as

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 3-2

ABSTRACT SYNTAX

an association from OclMessageType to Operation and to Signal. OcIMessageType is part of the abstract syntax
of OCL, residing on M2 level. Its instances, called Oc/Message, and subtypes of OclMessage, reside on M1
level.
Associations

referredSignal The Signal that is sent by the message.

referredOperation The Operation that is called by the message.

OclModelElementType

OclModelElementType represents the types of elements that are ModelElements in the UML metamodel. It is
used to be able to refer to states and classifiers in e.g. oclInState(...) and ocllsKindOf...)

OrderedSetType

OrderedSetType is a collection type which describes a set of elements where each distinct element occurs only
once in the set. The elements are ordered by their position in the sequence. Part of an OrderedSetType is the dec-
laration of the type of its elements.

SequenceType

SequenceType is a collection type which describes a list of elements where each element may occur multiple
times in the sequence. The elements are ordered by their position in the sequence. Part of a SequenceType is the
declaration of the type of its elements.

SetType

SetType is a collection type which describes a set of elements where each distinct element occurs only once in the
set. The elements are not ordered. Part of a SetType is the declaration of the type of its elements.

TupleType

TupleType (informaly known as record type or struct) combines different types into a single aggregate type. The
parts of a TupleType are described by its attributes, each having a name and a type. There is no restriction on the
kind of types that can be used as part of a tuple. In particular, a TupleType may contain other tuple types and col-
lection types. Each attribute of a TupleType represents a single feature of a TupleType. Each part is to uniquely
identified by its name.

VoidType

VoidType represents a type that conforms to all types. The only instance of VoidType is OclVoid, which is further
defined in the standard library. Furthermore OclVoid has exactly one instance called OclUndefined.

3.2.1 Type Conformance

The type conformance rules are formally underpinned in the Semantics section of the specification. To ensure
that the rules are accessible to UML modellers they are specified in this section using OCL. For this, the addi-
tional operation conformsTo(c : Classifier) : Boolean is defined on Classifier. It evaluates to true, if the self Clas-
sifier conforms to the argument c. The following OCL statements define type conformance for individual types.

BagType

[1] Different bag types conform to each other if their element types conform to each other.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 3-3

ABSTRACT SYNTAX

context BagType
inv: BagType.allInstances()->forAll(b |
self.elementType.conformsTo(b.elementType) implies self.conformsTo(b))

Classifier

[1] Conformance is a transitive relationship.

context Classifier
inv Transitivity: Classifier.allInstances()->forAll(x|Classifier.allInstances()
>forAll(y]
(self.conformsTo(x) and x.conformsTo(y)) implies self.conformsTo(y)))

[2] All classifiers except collections conform to OclAny.

context Classifier
inv: (not self.oclIsKindOf (CollectionType)) implies
Primitive.allInstances()->forAll(p | (p.name = 'OclAny') implies self.conformsTo(p))

[3] Classes conform to superclasses and interfaces that they realize.

context Class
inv : self.generalization.parent->forAll (p
(p.oclIsKindOf(Class) or p.oclIsKindOf(Interface)) implies
self.conformsTo(p.oclAsType(Classifier)))

[4] Interfaces conforms to super interfaces.

context Interface
inv : self.generalization.parent->forAll (p |
p.oclIsKindOf(Interface) implies self.conformsTo(p.oclAsType(Interface)))

[5] The Conforms operation between Types is reflexive, a Classifier always conform to itself.

context Classifier
inv: self.conformsTo(self)

[6] The Conforms operation between Types is anti-symmetric.

context Classifier
inv: Classifier.alllnstances()->forAl1(tl, t2 |
(tl.conformsTo(t2) and t2.conformsTo(tl)) implies t1 = t2)

CollectionType

[1] Specific collection types conform to collection type.

context CollectionType
inv: -- all instances of SetType, SequenceType, BagType conform to a
-- CollectionType if the elementTypes conform
CollectionType.alllnstances()->forAll (c |
c.oclIsTypeOf(CollectionType) and
self.elementType.conformsTo(c.elementType) implies
self.conformsTo(c))

[2] Collections do not conform to any primitive type.

context CollectionType
inv: Primitive.allInstances()->forAll (p | not self.conformsTo(p))

[3] Collections of non-conforming types do not conform.

context CollectionType
inv: CollectionType.alllnstances()->forAll (c |
(not self.elementType.conformsTo (c.elementType)) implies (not self.conformsTo (c)))

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 3-4

ABSTRACT SYNTAX

OrderedSetType

[1] Different ordered set types conform to each other if their element types conform to each other.

context OrderedSetType
inv: OrderedSetType.allInstances()->forAl1(s |
self.elementType.conformsTo(s.elementType) implies self.conformsTo(s))

Primitive
[1] Integer conforms to real.

context Primitive

inv: (self.name = 'Integer') implies
Primitive.allInstances()->forAll (p | (p.name = 'Real') implies
(self.conformsTo(p))))
SequenceType

[1] Different sequence types conform to each other if their element types conform to each other.

context SequenceType
inv: SequenceType.allInstances()->forAll(s |
self.elementType.conformsTo(s.elementType) implies self.conformsTo(s))

SetType

[1] Different set types conform to each other if their element types conform to each other.

context SetType
inv: SetType.allInstances()->forAll(s |
self.elementType.conformsTo(s.elementType) implies self.conformsTo(s))

TupleType

[1] Tuple types conform to each other when their names and types conform to each other. Note that allAttributes
is an additional operation in the UML 1.4,

context TupleType
inv: TupleType.alllnstances()->forAll (t |
(t.allAttributes()->forAll (tp |
-- make sure at least one tuplepart has the same name
-- (uniqueness of tuplepart names will ensure that not two
-- tupleparts have the same name within one tuple)
self.allAttributes()->exists(stp|stp.name = tp.name) and
-- make sure that all tupleparts with the same name conforms.
self.allAttributes()->forAll(stp | (stp.name = tp.name) and
stp.type.conformsTo(tp.type))
)
implies
self.conformsTo(t)
))

VoidType

[1] Void conforms to all other types.

context VoidType
inv: Classifier.allInstances()->forAll (c | self.conformsTo (c))

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 3-5

ABSTRACT SYNTAX

3.2.2 Well-formedness Rules for the Types Package

BagType
[1] The name of a bag type is “Bag” followed by the element type’s name in parentheses.

context BagType
inv: self.name = 'Bag(’ + self.elementType.name + *)’

CollectionType

[1] The name of a collection type is “Collection” followed by the element type’s name in parentheses.

context CollectionType
inv: self.name = "Collection(’ + self.elementType.name + ")’

Classifier

[1] For each classifier at most one of each of the different collection types exist.

context Classifier

inv: collectionTypes->select(oclIsTypeOf(CollectionType))->size() <=1
inv: collectionTypes->select(oclIsTypeOf(BagType))->size() <=1
inv: collectionTypes->select(oclIsTypeOf(SequenceType))->size() <=1
inv: collectionTypes->select(oclIsTypeOf(SetType))->size() <=1

OclMessageType

[1] OclMessageType has either a link with a Signal or with an operation, but not both

context OclMessageType
inv: referredOperation->size() + referredSignal->size() =1

[2] The parameters of the referredOperation become attributes of the instance of OclMessageType

context OclMessageType
inv: referredOperation->size() = 1 implies
self.feature = referredOperation.parameter.asAttribute()

[3] The attributes of the referredSignal become attributes of the instance of OclMessageType

context OclMessageType
inv: referredSignal->size() =1 implies
self.feature = referredSignal.feature

OrderedSetType

[1] The name of a set type is “OrderedSet” followed by the element type’s name in parentheses.

context OrderedSetType
inv: self.name = ’OrderedSet(’ + self.elementType.name + ")’

SequenceType

[1] The name of a sequence type is “Sequence” followed by the element type’s name in parentheses.

context SequenceType
inv: self.name = ’Sequence(’ + self.elementType.name + *)’

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 3-6

ABSTRACT SYNTAX

SetType

[1] The name of a set type is “Set” followed by the element type’s name in parentheses.

context SetType
inv: self.name = *Set(’ + self.elementType.name + *)°

TupleType

[1] The name of a tuple type includes the names of the individual parts and the types of those parts.

context TupleType
inv: name =
"Tuple(’.concat (
Sequence{l..allAttributes()->size()}->iterate (pn; s: String =~
let p: Attribute = allAttributes()->at (pn) in (
s.concat (
(if (pn>1) then ’,” else ’’ endif)
.concat (p.name).concat (’:’)
.concat (p.type.name)
)
)
)
).concat (7))

[2] All parts belonging to a tuple type have unique names.

context TupleType
inv: -- always true, because attributes must have unique names.

[3] A TupleType instance has only features that are Attributes (tuple parts).

context TupleType
inv: feature->forAll (f | f.oclIsTypeOf(Attribute))

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003

3-7

ABSTRACT SYNTAX

3.3 THE EXPRESSIONS PACKAGE

This section defines the abstract syntax of the expressions package. This package defines the structure that OCL
expressions can have. An overview of the inheritance relationships between all classes defined in this package is
shown in figure 3-8 on page 3-26.

ModelElement
(from Core)

- name : String

+body Z> +type| Classifier
1 | OclExpression (from Core)
+source Bin;tExpression 1 +type
0.1 - 1

7

PropertyCallExp LiteralExp IfExp VariableExp OclIMessageExp

-appliedProperty @ 0..1

0..n

| 0.1
ModelPropertyCallExp | | LOOPEXP | ™ +loopExpr

r +iterators|1..n 1 |+referredVariable
VariableDeclaration Q.1
0.1 varName : Strmg +initalizedVariable
+result | 1
+baseE
lteratorExp lterateExp ;1&

Figure 3-2 The basic structure of the abstract syntax kernel metamodel for Expressions

3.3.1 Expressions Core

Figure 3-2 on page 3-8 shows the core part of the Expressions package. The basic structure in the package con-
sists of the classes OclExpression, PropertyCallExp and VariableExp. An OclExpression always has a type,
which is usually not explicitly modeled, but derived. Each PropertyCallExp has exactly one source, identified by
an OclExpression. In this section we use the term ’property’, which is a generalization of Feature, Associatio-
nEnd and predefined iterating OCL collection operations.

A ModelPropertyCallExp generalizes all propertycalls that refer to Features or associations or Associatio-
nEnds in the UML metamodel. In figure 3-3 on page 3-11 the various subtypes of ModelPropertyCallExp are
defined.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 3-8

ABSTRACT SYNTAX

Most of the remainder of the expressions package consists of a specification of the different subclasses of
PropertyCallExp and their specific structure. From the metamodel it can be deduced that an OCL expression
always starts with a variable or literal, on which a property is recusively applied.

IfExp

An [fExp is defined in section 3.3.3 (“If Expressions”), but included in this diagram for completeness.

IterateExp

An IterateExp is an expression which evaluates its body expression for each element of a collection. It acts as a
loop construct that iterates over the elements of its source collection and results in a value. An iterate expression
evaluates its body expression for each element of its source collection. The evaluated value of the body expression
in each iteration-step becomes the new value for the result variable for the succeding iteration-step. The result can
be of any type and is defined by the result association. The IterateExp is the most fundamental collection expres-
sion defined in the OCL Expressions package.

Associations
result The VariableDeclaration that represents the result variable.

IteratorExp

An IteratorExp is an expression which evaluates its body expression for each element of a collection. It acts as a
loop construct that iterates over the elements of its source collection and results in a value. The type of the iterator
expression depends on the name of the expression, and sometimes on the type of the associated source expres-
sion. The [teratorExp represents all other predefined collection operations that use an iterator. This includes
select, collect, reject, forAll, exists, etc. The OCL Standard Library defines a number of predefined iterator
expressions. Their semantics is defined in terms of the iterate expression in , see 6.6 (“Predefined Iterator Expres-
sions”).

LiteralExp

A LiteralExp is an expression with no arguments producing a value. In general the result value is identical with
the expression symbol. This includes things like the integer 1 or literal strings like ’this is a LiteralExp’.

LoopExp

A LoopExp is an expression that respresent a loop construct over a collection. It has an iterator variable that rep-
resents the elements of the collection during iteration. The body expression is evaluated for each element in the
collection. The result of a loop expression depends on the specific kind and its name.

Associations
iterators The VariableDeclarations that represents the iterator variables. These variables
are, each in its turn, bound to every element value of the source collection while
evaluating the body expression.
body The OclExpression that is evaluated for each element in the source collection.

ModelPropertyCallExp

A ModelPropertyCall expression is an expression that refers to a property that is defined for a Classifier in the
UML model to which this expression is attached. Its result value is the evaluation of the corresponding property.
In section 3.3.2 (“Model PropertyCall Expressions”) the various subclasses of ModelPropertyCallExp are
defined.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 3-9

ABSTRACT SYNTAX

OclExpression

An OclExpression is an expression that can be evaluated in a given environment. OclExpression is the abstract
superclass of all other expressions in the metamodel. It is the top-level element of the OCL Expressions package.
Every OclExpression has a type that can be statically determined by analyzing the expression and its context.
Evaluation of an expression results in a value. Expressions with boolean result can be used as constraints, e.g. to
specify an invariant of a class. Expressions of any type can be used to specify queries, initial attribute values, tar-
get sets, etc..

The environment of an OclExpression defines what model elements are visible and can be referred to in an
expression. At the topmost level the environment will be defined by the ModelElement to which the OCL expres-
sion is attached, for example by a Classifier if the OCL expression is used as an invariant. On a lower level, each
iterator expression can also introduce one or more iterator variables into the environment. the environment is not
modeled as a separate metaclass, because it can be completely derived using derivation rules. The complete deri-
vation rules can be found in chapter 4 (“Concrete Syntax”).

Associations

appliedProperty The property that is applied to the instance that results from evaluating this
OclExpression.
type The type of the value that is the result of evaluating the OclExpression.
parentOperation The OperationCallExp where this OclExpression is an argument of. See figure 3-
3 on page 3-11.
initializedVariable The variable of which the result of this expression is the initial value.
OclMessageExp

OclMessageExp is defined in section 3.3.4 (“Message Expressions”), but included in this diagram for complete-
ness.

PropertyCallExp
A PropertyCallExp is an expression that refers to a property (operation, attribute, association end, predefined iter-
ator for collections). Its result value is the evaluation of the corresponding property. This is an abstract metaclass.
Associations
source The result value of the source expression is the instance that performs the prop-
erty call.

VariableDeclaration

A VariableDeclaration declares a variable name and binds it to a type. The variable can be used in expressions
where the variable is in scope. This metaclass represents amongst others the variables self and result and the var-
iables defined using the Let expression.

Associations

initExpression The OclExpression that represents the initial value of the variable. Depending on
the role that a variable declaration plays, the init expression might be mandatory.
type The Classifier which represents the type of the variable.
Attributes
varName The String that is the name of the variable.
VariableExp

A VariableExp is an expression which consists of a reference to a variable. References to the variables self and
result or to variables defined by Let espressions are examples of such variable expressions.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 3-10

ABSTRACT SYNTAX

Associations
referredVariable The VariableDeclaration to which this variable expression refers. In the case of a
self expression the variable declaration is the definition of the self variable.

3.3.2 Model PropertyCall Expressions

A ModelPropertyCallExp can refer to any of the subtypes of Feature as defined in the UML kernel. This is shown
in figure 3-3 by the three different subtypes , each of which is associated with its own type of ModelElement.

ModelPropertyCallExp

.

AttributeCalExp | 0.n +referredAttribut Attribute
1 (from Core)
NavigationCallExp
0.1 ’ 4 +navigationSource | 1
.. ‘
AssociationEndCallExp +referredAssociationEnd| AssociationEnd
0.n (from Core)

+referredAssociationClass| AssociationClass
(from Core)

AssociationClassCallExp

0..n 1

+qualifiers | OclExpression
{ordered} 0..n

{ordered} 0..n
+arguments

0..1, t+parentOperation

0..n 1 Operation
OperationCallE xp (from Core)

+referredOperation

Figure 3-3 Abstract syntax metamodel for ModelPropertyCallExp in the Expressions package

AssociationEndCallExp

An AssociationEndCallExp is a reference to an AssociationEnd defined in a UML model. It is used to determine
objects linked to a target object by an association. The expression refers to these target objects by the role name of
the association end connected to the target class.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 3-11

ABSTRACT SYNTAX

Associations
referredAssociationEnd The AssociationEnd to which this AssociationEndCallExp is a reference. This
refers to an AssociationEnd of an Association that is defined in the UML model.

AssociationClassCallExp
An AssociationClassCallExp is a reference to an AssociationClass defined in a UML model. It is used to deter-
mine objects linked to a target object by an association class. The expression refers to these target objects by the
name of the target associationclass.
Associations
referredAssociationClass The AssociationClass to which this AssociationClassCallExp is a reference. This
refers to an AssociationClass that is defined in the UML model.

AttributeCallExp

An AttributeCallExpression is a reference to an Attribute of a Classifier defined in a UML model. It evaluates to
the value of the attribute.
Associations

referredAttribute The Attribute to which this AttributeCallExp is a reference.

NavigationCallExp

A NavigationCallExp is a reference to an AssociationEnd or an AssociationClass defined in a UML model. It is
used to determine objects linked to a target object by an association. If there is a qualifier attached to the source
end of the association then additional qualifiers expressions may be used to specify the values of the qualifying
attributes.

Associations
qualifiers The values for the qualifier attributes if applicable.
navigationSource The source denotes the AssociationEnd at the end of the object itself. This is

used to resolve ambiguities when the same Classifier participates in more than
one AssociationEnd in the same association. In other cases it can be derived.

OperationCallExp

A OperationCallExp refers to an operation defined in a Classifier. The expression may contain a list of argument
expressions if the operation is defined to have parameters. In this case, the number and types of the arguments
must match the parameters.

Associations

arguments The arguments denote the arguments to the operation call. This is only useful
when the operation call is related to an Operation that takes parameters.
referredOperation The Operation to which this OperationCallExp is a reference. This is an Opera-

tion of a Classifier that is defined in the UML model.

3.3.3 If Expressions

This section describes the if expression in detail. Figure 3-4 shows the structure of the if expression.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 3-12

ABSTRACT SYNTAX

0.1 0.1 0.1
] 1,|/+condition
COclExpression 1
+herExpression +elseExpression

Figure 3-4 Abstract syntax metamodel for if expression

IfExp

An [fExp results in one of two alternative expressions depending on the evaluated value of a condition. Note that
both the thenExpression and the elseExpression are mandatory. The reason behind this is that an if expression
should always result in a value, which cannot be guaranteed if the else part is left out.

Associations
condition The OclExpression that represents the boolean condition. If this condition evalu-
ates to true, the result of the if expression is identical to the result of the thenEx-
pression. If this condition evaluates to false, the result of the if expression is
identical to the result of the elseExpression
thenExpression The OclExpression that represents the then part of the if expression.
elseExpression The OclExpression that represents the else part of the if expression.

3.3.4 Message Expressions

In the specification of communication between instances we unify the notions of asynchronous and synchronous
communication. The structure of the message expressions is shown in figure 3-5.

OclMessageExp

An OclMessageExp is an expression that results in an collection of OclMessage value. An OclMessage is the uni-
fication of a signal sent, and an operation call. The target of the operation call or signal sent is specified by the
target OclExpression. Arguments can be OclExpressions, but may also be unspecified value expressions for argu-
ments whose value is not specified. It covers both synchronous and asynchronous actions. See [Kleppe2000] for
a complete description and motivation of this type of expression, also called "action clause".

Associations

target The OclExpression that represents the target instance to which the signal is sent.

arguments The SignalArgs that represents the parameters to the Operation or Signal. The
number and type of arguments should conform to those defined in the Operation
or Signal. The order of the arguments is the same as the order of the parameters
of the Operation or the attributes of a Signal.

calledOperation If this is a message to request an operation call, this is the requested CallAction.

sentSignal If this is a UML signal sent, this is the SendAction.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 3-13

ABSTRACT SYNTAX

ModelElement
(from Core)

]

UnspecifiedValueExp

+type | Classifier
1 (from Core)

+unspecified’|'0..1

0.1 OclMessageArg 0..n {ordered}
0.1 +arguments

+expression| g 1

. +target
OclExpression 9 OclMessageExp
1

+calledOperation as;antSignal
CallAction SendAction

(from Common Behavior) (from Common Behavior)

0..n 0..n
+operation,|, 4 +signal |, 1

Operation Signal
(from Core) (from Common Behavior)

Figure 3-5 The abstract syntax of Ocl messages

OclMessageArg

An OclMessageArg is an argument of an OcIMessageExp. It is either an OclExpression, or an UnspecifiedValue-
Exp. An OclExpression is used to specify the exact value of the parameter. An UnspecifiedValueExp is used when
one does not want, or is not able to specify the exact value of the parameter at the time of sending of the message.
An OclMessageArg has either a specified or an unspecified value.

Associations

expression The OclExpression that represents an actual parameters to the Operation or Sig-
nal.
unspecified The UnspecifiedValueExp that represents a random value that conforms to the

type of this expression.

UnspecifiedValueExp

An UnpecifiedValueExp is an expression whose value is unspecified in an OCL expression. It is used within OCL
messages to leave parameters of messages unspecified.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 3-14

ABSTRACT SYNTAX

3.3.5 Literal Expressions

This section defines the different types of literal expressions of OCL. It also refers to enumeration types and enu-
meration literals. Figure 3-6 shows all types of literal expressions.

LiteralExp

;

PrimitiveLiteralExp

L

NumericLiteralExp

\
String LiteralE xp
stringSymbol : String

TupleLiteralExp

+tuplePart|0..n

Variable Declaration

BooleanLiteralExp

booleanSymbol : Boolean

IntegerLiteralExp

RealLiteralExp

integerSymbol : Integer

realSymbol: Real

EnumLiteralExp

CollectionLiteralExp

kind : CollectionKind

Enumeration
(from Core)

-

+parts

+referredEnumLiteral, |, 1

+literal

CollectionLiteralPart

0..n {ordered}

CollectionKind

<<enumeration>>

Collection
Set

Bag
Sequence

tenumeration 0.n

EnumLiteral
(from Core)
CollectionRange Collectionltem
0.1 0..1 0.1
+first\[/1 +last|/1 "
+
OclExpression rem +ype 1

Figure 3-6 Abstract syntax metamodel for Literal expression

BooleanLiteralExp
A BooleanLiteralExp represents the value true or false of the predefined type Boolean.

Attributes
booleanSymbol

Collectionltem

The Boolean that represents the value of the literal.

A Collectionltem represents an individual element of a collection.

CollectionKind

A CollectionKind is an enumeration of kinds of collections.

Classifier
(from Core)

OCL 2.0 REVISED SUBMISSION

VERSION 1.6, JANUARY 6, 2003

3-15

ABSTRACT SYNTAX

CollectionLiteralExp
A CollectionLiteral Exp represents a reference to collection literal.

Attributes
kind The kind of collection literal that is specified by this CollectionLiteral Exp.

CollectionLiteralPart
A CollectionLiteralPart is a member of the collection literal.

Associations
type The type of the collection literal.

CollectionRange
A CollectionRange represents a range of integers.

EnumLiteralExp
An EnumlLiteral Exp represents a reference to an enumeration literal.

Associations
referredEnumLiteral The EnumLiteral to which the enum expression refers.

IntegerLiteralExp
A IntegerLiteralExp denotes a value of the predefined type Integer.

Attributes
integerSymbol The Integer that represents the value of the literal.

NumericLiteralExp
A NumericLiteralExp denotes a value of either the type Integer or the type Real.

PrimitiveLiteralExp
A PrimitiveLiteral Exp literal denotes a value of a primitive type.

Attributes
symbol The String that represents the value of the literal.

ReallLiteralExp
A RealLiteralExp denotes a value of the predefined type Real.

Attributes
realSymbol The Real that represents the value of the literal.

StringLiteralExp
A StringLiteralExp denotes a value of the predefined type String.

Attributes
stringSymbol The String that represents the value of the literal.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 3-16

ABSTRACT SYNTAX

TupleLiteralExp

A TupleLiteral Exp denotes a tuple value. It contains a name and a value for each part of the tuple type.

3.3.6 Let expressions

This section defines the abstract syntax metamodel for Let expressions. The only addition to the abstract syntax is
the metaclass LetExp as shown in figure 3-7. The other metaclasses are re-used from the previous diagrams.

Note that Let expressions that take arguments are no longer allowed in OCL 2.0. This feature is redundant.
Instead, a modeler can define an additional operation in the UML Classifier, potentially with a special stereotype
to denote that this operation is only ment to be used as a helper operation in OCL expressions. The postcondition
of such an additional operation can then define its result value. Removal of Let functions will therefore not affect
the expressibility of the modeler. Another way to define such helper operations is through the <<definition>>
constraint, which reuses some of the concrete syntax defined for Let expressions (see section 7.3.1), but is noth-
ing more than an OCL-based syntax for defining helper attributes and operations.

+in | OclExpression |TiNitEXpression

A
, 0
0.1 ‘ +initalizedVariable
0.1 +variable | VariableDeclarati
ariaplepveclaration
LetExp ?1) varName : String

Figure 3-7 Abstract syntax metamodel for let expression

LetExp
A LetExp is a special expression that defined a new variable with an initial value. A variable defined by a LetExp
cannot change its value. The value is always the evaluated value of the initial expression. The variable is visible in
the in expression.
Associations

variable The VariableDeclaration that defined the variable.

in The OclExpression in whose environment the defined variable is visible.

3.3.7 Well-formedness Rules of the Expressions package

The metaclasses defined in the abstract syntax have the following well-formednes rules:

AttributeCallExp
[1] The type of the Attribute call expression is the type of the referred attribute.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 3-17

ABSTRACT SYNTAX

context AttrubuteCallExp
inv: type = referredAttribute.type

BooleanLiteralExp

[1] The type of a boolean Literal expression is the type Boolean.

context BooleanlLiteralExp
inv: self.type.name = ’Boolean’

CollectionLiteralExp

[1] ’Collection’ is an abstract class on the M1 level and has no MO instances.

context CollectionlLiteralExp
inv: kind <> CollectionKind::Collection

[2] The type of a collection literal expression is determined by the collection kind selection and the common
supertype of all elements. Note that the definition below implicitly states that empty collections have OclVoid
as their elementType.

context CollectionlLiteralExp

inv: kind = CollectionKind::Set implies type.oclIsKindOf (SetType)
inv: kind = CollectionKind::Sequence 1implies type.oclIsKindOf (SequenceType)
inv: kind = CollectionKind::Bag implies type.oclIsKindOf (BagType)

inv: type.oclAsType (CollectionType).elementType = parts->iterate (p; c : Classifier =
OclVoid | c.commonSuperType (p.type))

CollectionLiteralPart
No additional well-formedness rules.

Collectionltem

[1] The type of a Collectionltem is the type of the item expression.

context CollectionItem
inv: type = item.type

CollectionRange

[1] The type of a CollectionRange is the common supertype of the expressions taking part in the range.

context CollectionRange
inv: type = first.type.commonSuperType (last.type)

EnumLiteralExp

[1] The type of an enum Literal expression is the type of the referred literal.

context EnumLiteralExp
inv: self.type = referredEnumlLiteral.enumeration

IfExp

[1] The type of the condition of an if expression must be Boolean.

context IfExp
inv: self.condition.type.oclIsKindOf(Primitive) and self.condition.type.name = ’Boolean’

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 3-18

ABSTRACT SYNTAX

[2] The type of the if expression is the most common supertype of the else and then expressions.

context IfExp
inv: self.type = thenExpression.type.commonSuperType(elseExpression.type)

IntegerLiteralExp

[1] The type of an integer Literal expression is the type Integer.

context IntegerlLiteralExp
inv: self.type.name = ’Integer’

IteratorExp

[1] If the iterator is forAll’, ’isUnique’, or ’exists’ the type of the iterator must be Boolean.

context IteratorkExp
inv: name = ’exists’ or name = *forAll’ or name = “isUnique’
implies type.oclIsKindOf(Primitive) and type.name = ’Boolean’

[2] The result type of the collect operation on a sequence type is a sequence, the result type of ’collect’ on any
other collection type is a Bag. The type of the body is always the type of the elements in the return collection.

context IteratorkExp
inv: name = ’‘collect’ implies
if source.type.oclIsKindOf(SequenceType) then
type = expression.type.collectionType->select(oclIsTypeOf(SequenceType))->first()
else
type = expression.type.collectionType->select(oclIsTypeOf(BagType))->first()
endif

[3] The ’select’and ’reject’ iterators have the same type as its source.

context Iteratorkxp
inv: name = ’select’ or name = ’“reject’ implies type = source.type

[4] The type of the body of the select, reject,exists and forAll must be boolean.

context Iteratorkxp

inv: name = ‘exists’ or name = “forAll’ or name = ’select’ or name = ’reject’
implies body.type.name = ’Boolean’
IterateExp

[1] The type of the iterate is the type of the result variable.

context IterateExp
inv: type = result.type

[2] The type of the body expression must conform to the declared type of the result variable.

context IterateExp
body.type.conformsTo(result.type)

[3] A result variable must have an init expression.

context IteratekExp
inv: self.result.initExpression->size() =1

LetExp

[1] The type of a Let expression is the type of the in expression.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 3-19

ABSTRACT SYNTAX

context LetExp
inv: type = in.type

LiteralExp

No additional well-formedness rules.

LoopExp

[1] The type of the source expression must be a collection.

context LoopExp
inv: source.type.oclIsKindOf (CollectionType)

[2] The loop variable of an iterator expression has no init expression.

context LoopExp
inv: self.iterators->forAll(initExpression->isEmpty())

[3] The type of each iterator variable must be the type of the elements of the source collection.

context Iteratorkxp
inv: self.iterators->forAll(type = source.type.oclAsType (CollectionType).elementType)

ModelPropertyCallExp

No additional well-formedness rules.

NumericLiteralExp
No additional well-formedness rules.

OclExpression
No additional well-formedness rules.

OclMessageArg

[1] There is either an expression or an unspecified value.

context OclMessageArg
inv: expression->size() + unspecified->size() =1

OclMessageExp

[1] If the message is a call action, the arguments must conform to the parameters of the operation.

context OclMessageExp
inv: calledOperation->notEmpty() implies
arguments->forall (a | a.getType().conformsTo
(self.calledOperation.operation.parameter->
select(kind = ParameterDirectionKind::in)
->at (arguments->index0f (a)).type))

[2] If the message is a send action, the arguments must conform to the attributes of the signal.

context OclMessageExp
inv: sentSignal->notEmpty() implies
arguments->forall (a | a.getType().conformsTo
(self.sentSignal.signal.feature.oclAsType(StructuralFeature))
->at (arguments->index0f (a)).type))

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 3-20

ABSTRACT SYNTAX

[3] If the message is a call action, the operation must be an operation of the type of the target expression.

context OclMessageExp
inv: calledOperation->notEmpty() implies
target.type.allOperations()->includes(calledOperation.operation)

[4] An OCL message has either a called operation or a sent signal.

context OclMessageExp
inv: calledOperation->size() + sentMessage->size() =1

[5] The target of an OCL message cannot be a collection.

context OclMessageExp
inv: not target.type.oclIsKindOf (CollectionType)

OperationCallExp

[1] All the arguments must conform to the parameters of the referred operation

context OperationCallExp
inv: arguments->forall (a | a.type.conformsTo
(self.refParams->at (arguments->index0f (a)).type))

[2] There must be exactly as many arguments as the referred operation has parameters.

context OperationCallExp
inv: arguments->size() = refParams->size()

[3] An additional attribute refParams lists all parameters of the referred operation except the return and out
parameter(s).

context OperationCallExp

def: refParams: Sequence(Parameter) = referredOperation.parameters->select (p |
p.kind <> ParameterDirectionKind::return or
p.kind <> ParameterDirectionKind::out)

PropertyCallExp

No additional well-formedness rules.

RealLiteralExp
[1] The type of a real Literal expression is the type Real.

context RealliteralExp
inv: self.type.name = "Real’

StringLiteralExp

[1] The type of a string Literal expression is the type String.

context StringliteralExp
inv: self.type.name = “String’

TupleLiteralExp

[1] The type of a TupleLiteralExp is a TupleType with the specified parts.

context TupleliteralExp

inv: type.oclIsKindOf (TupleType)
and
tuplePart->forAll (tlep |

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 3-21

ABSTRACT SYNTAX

type.oclAsType (TupleType).allAttributes()->exists (tp | tlep.attribute = tp))
and
tuplePart->size() = type.oclAsType (TupleType).allAttributes()->size()

[2] All tuple literal expression parts of one tuple literal expression have unique names.

context TupleliteralExp
inv: tuplePart->isUnique (attribute.name)

TupleLiteralExpPart

[1] The type of the attribute is the type of the value expression.

context TupleliteralExpPart
inv: attribute.type = value.type

UnspecifiedValueExp

No additional well-formedness rules.

VariableDeclaration
[1] For initialized variable declarations, the type of the initExpression must conform to the type of the declared
variable.

context VariableDeclaration
inv: initExpression->notEmpty() implies initExpression.type.conformsTo (type)

VariableExp
[1] The type of a VariableExp is the type of the variable to which it refers.

context VariableExp
inv: type = referredVariable.type

3.3.8 Additional Operations on UML metaclasses

In the chapters 3 (“Abstract Syntax”), 4 (“Concrete Syntax™), 7 (“The Use of Ocl Expressions in UML Models™)
and appendix 5 (“Semantics Described using UML”) many additional operations on UML metaclasses are used.
They are defined in this section. The next section defines additional operations for the OCL metaclasses

Classifier
The operation commonSuperType results in the most specific common supertype of two classifiers.

context Classifier
def: commonSuperType (¢ : Classifier) : Classifier =
Classifier.alllnstances()->select (cst |
c.conformsTo (cst) and
self.conformsTo (cst) and
not Classifier.allInstances()->exists (clst |
c.conformsTo (clst) and
self.conformsTo (clst) and
clst.conformsTo (cst) and
clst <> cst
)
)->any (true)
The following operations have been added to Classifier to lookup attributes, associationEnds and operations.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 3-22

ABSTRACT SYNTAX

context Classifier
def: TookupAttribute(attName : String) : Attribute =
self.allAttributes->any(me | me.name = attName)
def: TookupAssociationEnd(name : String) : AssociationkEnd =
self.allAssociationEnds->any (ae | ae.name = name)
def: TookupAssociationClass(name : String) : AssociationClass =
self.allAssociationClasses->any (ae | ae.name = name)
def: TookupOperation (name: String, paramTypes: Sequence(Classifier)): Operation =
self.allOperations->any (op | op.name = name and
op.hasMatchingSignature(paramTypes))
def: TookupSignal (sigName: String, paramTypes: Sequence(Classifier)): Operation =
self.allReceptions.signal->any (sig | sig.name = sigName and
sig.hasMatchingSignature(paramTypes))

Operations allAttributes, allOperations, etc. are defined in the UML semantics. The operation allReceptions is
missing and defined here. The operation allReceptions results in a Set containing all Signals that the Classifier
has as Receptions itself and all its inherited Attributes.

context Classifier

def: allReceptions : set(Reception) =
self.allFeatures->select(f | f.oclIsKindOf(Reception))

Operation

An additional operation is added to Operation, which checks whether its signature matches with a sequence of
Clasifiers. Note that in making the match only parameters with direction kind ‘in” are considered.

context Operation
def: hasMatchingSignature(paramTypes: Sequence(Classifier)) : Boolean =
-- check that operation op has a signature that matches the given parameter 1lists
= let sigParamTypes: Sequence(Classifier) = self.allAttributes.type in
(
(sigParamTypes->size() = paramTypes->size()) and
(Set{l..paramTypes->size()}->forAll (1 |
paramTypes->at (i).conformsTo (sigParamlTypes->at (1))
)

Parameter
The operation asAttribute results in an attribute that has the same name, type, etc. as the parameter.
context Parameter::asAttribute(): Attribute

pre: -- none
post: result.name = self.name

post: result.type = self.type

post: result.multiplicity =1

post: result.targetscope = ScopeKind::instance
post: result.ownerscope = ScopeKind::instance
post: result.ordering = OrderingKind: :unordered
post: result.visibility = VisibilityKind::private

post: result.stereotype.name "OclHelper’

An additional class operation is added to Parameter to return a Parameter.

context Parameter::make(n : String, ¢ : Classifier, k : ParameterDirectionKind) :Parameter
post: result.name = n

post: result.kind = k

post: result.type o

post: result.stereotype.name = "OclHelper’

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 3-23

ABSTRACT SYNTAX

Signal

An additional operation is added to Signal, which checks whether its signature matches with a sequence of Clasi-
fiers. Note that in making the match the parameters of the signal are its attributes.

context Signal
def: hasMatchingSignature(paramTypes: Sequence(Classifier)) : Boolean =
-- check that signal has a signature that matches the given parameter lists
= let opParamTypes: Sequence(Classifier) = self.parameter->select (p | p.kind <>
ParameterDirectionKind::return).type in
(
(opParamTypes->size() = paramlypes->size()) and
(Setf{l..paramTypes->size()}->forAll (1 |
paramTypes->at (i).conformsTo (opParamTypes->at (i))
)
)
)

State
The operation getStateMachine() returns the statemachine to which a state belongs.

context State::getStateMachine() : StateMachine
post: result =
if statemachine->notEmpty() then
stateMachine
else
-- must be part of a composite state
state.container.getStateMachine()
endif

Transition
The operation getStateMachine() returns the statemachine to which a transition belongs.

context Transition::getStateMachine() : StateMachine
post: result =
if statemachine->notEmpty() then
stateMachine
else
-- state is not empty
state.getStateMachine()
endif

3.3.9 Additional Operations on OCL metaclasses

In chapters 3 (“Abstract Syntax”), 4 (“Concrete Syntax™), 7 (“The Use of Ocl Expressions in UML Models”) and
appendix 5 (“Semantics Described using UML) many additional operations on OCL metaclasses are used. They
are defined in this section. The previous section defines additional operations for the UML metaclasses

OclExpression

The following operation returns an operation call expression for the predefined atPre() operation with the self
expression as its source.

OclExpression::withAtPre() : OperationCallExp
post: result.name = "atPre’

post: result.arguments->isEmpty()

post: result.source = self

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 3-24

ABSTRACT SYNTAX

The following operation returns an operation call expression for the predefined asSet() operation with the self
expression as its source.

OclExpression::withAsSet() : OperationCallExp

post: result.name = "asSet’

post: result.arguments->iskmpty()
post: result.source = self

OcIMessageArg
An additional operation is added to oclMessageArg to return the type of the argument.

context OclMessageArg

def: getType() : Classifier = if unspecified->notEmpty()
then unspecified.type
else expression.type
endif

TupleType
An additional class operation is added to Tuple to return a new tuple. The name of a tupletype is defined in the
abstract syntax chapter and need not to be specified here.

context TupleType::make(atts : sequence(Attribute)) : TupleType
post: result.features = atts
post: result.stereotype.name = "OclHelper’

VariableDeclaration
An additional operation is added to VariableDeclaration to return a corresponding Parameter.

context VariableDeclaration::asParameter() : Parameter
post: result.name = self.varName

post: result.kind = ParameterKind::in

post: result.type = self.type

An additional operation is added to VariableDeclaration to return a corresponding Attribute.

context VariableDeclaration::asAttribute() : Attribute

post: result.name = self.varName

post: result.type = self.type

post: result.multiplicity =1

post: result.targetscope = ScopeKind::instance
post: result.ownerscope = ScopeKind::instance
post: result.ordering = OrderingKind: :unordered
post: result.visibility = VisibilityKind::private
post: result.constraint.bodyExpression = self.initExpression
post: result.stereotype.name = "OclHelper’

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 3-25

ABSTRACT SYNTAX

3.3.10 Overview of class hierarchy of OCL Abstract Syntax metamodel

ModelElement

(from Core)

CollectionLiteralPart

VariableDeclaration

$

Collectionltem

CollectionRange

I
<<enumeration>>
CollectionKind

UnspecifiedValueExp

OclMessageArg

OclExpression

=

‘ IfExp

VariableExp

LiteralExp

$ |

CollectionLiteral Exp

TupleLiteralExp

PrimitiveLiteralE xp

.

BooleanLiteralExp

StringLiteralExp

NumericLiteralExp

&

IntegerLiteralExp

RealLiteralExp

LetExp PropertyCallE xp
OclMessageExp Z>
LoopExp Model PropertyCal[Exp
EnumLiteralExp 4
OperationCallExp AttributeCallExp
IteratorExp lterateExp

NavigationCallExp

i

AssociationEndCallExp

AssociationClassCallExp

Figure 3-8 Overview of the abstract syntax metamodel for Expressions

OCL 2.0 REVISED SUBMISSION

VERSION 1.6, JANUARY 6, 2003

3-26

Concrete Syntax

This section describes the concrete syntax of the OCL. This allows modelers to write down OCL expressions in a
standardized way. A formal mapping from the concrete syntax to the abstract syntax from chapter 3 (“Abstract
Syntax”) is given. Although not required by the UML 2.0 for OCL RfP, section 4.6 describes a mapping from the
abstract syntax to the concrete syntax. This allows one to produce a standard human readable version of any OCL
expression that is represented as an instance of the abstract syntax.

Section 4.1 (“Structure of the Concrete Syntax’’) describes the structure of the grammar and the motivation for
the use of an attribute grammar.

4.1 STRUCTURE OF THE CONCRETE SYNTAX

The concrete syntax of OCL is described in the form of an a full attribute grammar. Each production in an
attribute grammar may have synthesized attributes attached to it. The value of synthesized attributes of elements
on the left hand side of a production rule is always derived from attributes of elements at the right hand side of
that production rule. Each production may also have inherited attributes attached to it. The value of inherited
attributes of elements on the right hand side of a production rule is always derived from attributes of elements on
the left hand side of that production.

In the attribute grammar that specifies the concrete syntax, every production rule is denoted using the EBNF
formalism and annotated with synthesised and inherited attributes, and disambiguating rules. There are a number
of special annotations:

Synthesized attributes. Each production rule has one synthesized attribute called ast (short for abstract syntax
tree), that holds the instance of the OCL Abstract Syntax that is returned by the rule. The type of ast is different
for every rule, but it always is an element of the abstract syntax. The type is stated with each production rule
under the heading "Abstract Syntax Mapping". The ast attribute constitutes the formal mapping from concrete
syntax to abstract syntax.

The motivation for the use of an attribute grammar is the easiness of the construction and the clarity of this
mapping. Note that each name in the EBNF format of the production rule is postfixed with *CS’ to clearly distin-
guish between the concrete syntax elements and their abstract syntax counterparts.

Inherited attributes. Each production rule has one inherited attribute called env (short for environment), that
holds a list of names that are visible from the expression. All names are references to elements in the model. In
fact, env is a name space environment for the expression or expression part denoted according to the production
rule. The type of the env attribute is Environment, as shown in figure 4-1 on page 4-2. A number of operations are
defined for this type. Their definitions and more details on the Environment type can be found in section 4.4
(“Environment definition”). The manner in which both the ast and env attributes are determined, is given using
OCL expressions.

Note that the contents of the env attribute are fully determined by the context of the OCL expression. When an
OCL expression is used as an invariant to class X, its environment will be different than in the case the expression

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 4-1

CONCRETE SYNTAX

E nvironment
EMPTY ENV : Environment

lookupLocal()

lookup()

lookupLocal()

lookup()

addElement()
addNamespace()
nestedEnvironment()
lookupimplicitAttribute()
lookupImplicitSourceForAttribute()
lookupImplicitAssociationEnd()
lookupImplicitOperation()

+namedElements | 0..n

NamedElement
name : String +referredElement | ModelElement
mayBelmplicit : Boolean 1 (from Core)
getType()

Figure 4-1 The Environment type

is used as a postcondition to an operation of class Y. In chapter 7 (“The Use of Ocl Expressions in UML Models™)
the context of OCL expressions is defined in detail.

Multiple production rules. For some elements there is a choice of multiple production rules. In that case the
EBNF format of each production rule is prefixed by a capital letter between square brackets. The same prefix is
used for the corresponding determination rules for the ast and env attributes.

Multiple occurences of production names. In some production rules the same element name is used more than
once. To distinguish between these occurences the names will be postfixed by a number in square brackets, as in
the following example.

CollectionRangeCS ::= OclExpressionCS[1] *..” OclExpressionCS[2]
Disambiguating rules. Some of the production rules are syntactically ambiguous. For such productions disam-
biguating rules have been defined. Using these rules, each production and thus the complete grammar becomes
nonambiguous. For example in parsing a.b(), there are at least three possible parsing solutions:
1. ais a VariableExpr (a reference to a let or an iterator variable)
2. ais an AttributeCallExp (self is implicit)
3. ais a NavigationCallExp (self is implicit)
A decision on which grammar production rule to use, can only be made when the environment of the expression

is taken into account. The disambiguating rules describe these choices based on the environment and allow unam-
biguous parsing of a.b(). In this case the rules (in plain English) would be:

If a is a defined variable in the current scope, a is a VariableExp.
If not, check self and all iterator variables in scope. The inner-most scope for which as is either

an attribute with the name a, resulting in an AttributeCallExp,

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 4-2

CONCRETE SYNTAX

or an opposite association-end with the name a, resulting in a NavigationCallExp,
defines the meaning of a.b().

If neither of the above is true, the expression is illegal / incorrect and cannot be parsed.

Disambiguating rules may be based on the UML model to which the OCL expresion is attached (e.g does an
attribute exist or not). Because of this, the UML model must be available when an OCL expression is parsed, oth-
erwise it cannot be validated as a correct expression. The grammar is structured in such a way that at most one of
the production rules will fullfil all the disambiguating rules, thus ensuring that the grammar as a whole is unam-
biguous. The disambiguating rules are written in OCL, and use some metaclasses and additional operations from
the UML 1.4 semantics.

4.2 A NoTE 170 TooL BUILDERS

4.2.1 Parsing

The grammar in this chapter might not prove to be the most efficient way to directly construct a tool. Of course, a
tool-builder is free to use a different parsing mechnism. He can e.g. first parse an OCL expression using a special
concrete syntax tree, and do the semantic validation against a UML model in a second pass. Also, error correction
or syntax directed editing might need hand-optimized grammars. This document does not prescribe any specific
parsing approach. The only restriction is that at the end of all processing a tool should be able to produce the
same well-formed instance of the abstract syntax, as would be produced by this grammar.

4.2.2 Visibility

The OCL specification puts no restrictions on visibility. In OCL, all modelelements are considered visible. The
reason for this is to allow a modeler to specify constraints, even between ‘hidden’ elements. At the lowest imple-
mentation level this might be useful.

As a separate option OCL tools may enforce all UML visibility rules to support OCL expressions to be speci-
fied only over visible modelelements. Especially when a tool needs to generate code for runtime evaluation of
OCL expressions, this visibility enforcement is necessary.

4.3 CONCRETE SYNTAX

ExpressionInOcICS

The ExpressionInOcl symbol has been added to setup the initial environment of an expression.

ExpressionInOclCS ::= 0clExpressionCS

Abstract syntax mapping
ExpressionInOc1CS.ast : OclExpression

Synthesized attributes
ExpressionInOclCS.ast = OclExpressionCS.ast

Inherited attributes
The environment of the OCL expression must be defined, but what exactly needs to be in the environ-
ment depends on the context of the OCL expression. The following rule is therefore not complete. It
defines the env attribute by adding the self variable to an empty environment, as well as a Namespace
containing all elements visible from self. (In section 7.2 (“The ExpressionInOcl Type”) the contextual-

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 4-3

CONCRETE SYNTAX

Classifier will be defined for the various places where an ocl expression may occur.) In the context of a
pre- or postcondition, the result variable as well as variable definitions for any named operation para-

meters can be added in a similar way.

OclExpressionCS.env

ExpressionInOclCS.contextualClassifier.namespace.getEnvironmentWithParents()
.addElement (’self’, ExpressionInOcICS.contextualClassifier, true)

OclExpressionCS

An OclExpression has several production rules, one for each subclass of OclExpression. Note that Unspecified-
ValueExp is handled explicitly in OclMessageArgCS, because that is the only place where it is allowed.

[A]
[B]
[C]
[D]
[E]
[F]

Abstract syntax mapping
OclExpressionCS.ast

Synthesized attributes

[A]
[B]
[C]
(D]
LE]
[F]

OclExpressionCS.
OclExpressionCS.
OclTExpressionCsS.
OclTExpressionCsS.
OclExpressionCsS.
OclExpressionCS.

Inherited attributes
PropertyCallExpCS.env

[A]
[B]
[C]
(D]
[E]
[F]

VariableExpCS.en
LiteralExpCS.env
LetExpCS.env
OcTMessageExpCS.
IfExpCS.env

Disambiguating rules
The disambiguating rules are defined in the children.

VariableExpCS

A variable expression is just a name that refers to a variable.

VariableExpCS

Abstract syntax mapping

VariableExpCS.ast

Synthesized attributes
VariableExpCS.ast.referredVariable =

env.lookup(simpleNameCS.ast).referredElement.oclAsType(VariableDeclaration)

Inherited attributes
-- none

Disambiguating rules

[1] simpleName must be a name of a visible VariableDeclaration in the current environment.
env.lookup (simpleNameCS.ast).referredElement.oclIsKindOf (VariableDeclaration)

OclExpressionCS
OclExpressionCS
OclExpressionCS
OclExpressionCS
OclExpressionCS
OclExpressionCS

PropertyCallExpCS
VariableExpCS
LiteralExpCS
LetExpCS
OclMessageExpCS
I[fExpCS

: OclExpression

ast
ast
ast
ast
ast

ast =

v

env

PropertyCallExpCS.ast
VariableExpCS.ast
LiteralExpCS.ast
LetExpCS.ast
OclIMessageExpCS.ast
IfExpCS.ast

= OclExpressionCS.
OclExpressionCS.
OclTExpressionCS.
OclTExpressionCS.
OclExpressionCsS.
OclExpressionCsS.

simpleNameCS

: VariablekExpression

env
env
env
env
env
env

OCL 2.0 REVISED SUBMISSION

VERSION 1.6, JANUARY 6, 2003

CONCRETE SYNTAX

simpleNameCS

This production rule represents a single name. No special rules are applicable. The exact syntax of a String is

undefined in UML 1.4, and remains undefined in OCL 2.0. The reason for this is internationalization.

simpleNameCS ::= <String>
Abstract syntax mapping
simpleNameGr.ast : String

Synthesized attributes
simpleNameGr.ast = <String>

Inherited attributes
-- none

Disambiguating rules
-- none

pathNameCS

This rule represents a path name, which is held in its ast as a sequence of Strings.

pathNameCS ::= simpleNameCS (’::” pathNameCS)?

Abstract syntax mapping
pathNameCS.ast : Sequence(String)

Synthesized attributes

pathNameCS.ast = Sequence{simpleNameCS.ast}->union(pathNameCS.ast)

Inherited attributes
-- none

Disambiguating rules
-~ none

LiteralExpCS

This rule represents literal expressions.

[A] LiteralExpCS ::= EnumLiteralExpCS
[B] LiteralExpCS CollectionLiteralkExpCS
[C] LiteralExpCS TuplelLiteralkExpCS
[D] LiteralExpCS PrimitivelLiteralExpCS

Abstract syntax mapping
LiteralExpCS.ast : LiteralExp

Synthesized attributes
[A] LiteralExpCS.ast = EnumLiteralExpCS.ast
[B] LiteralExpCS.ast CollectionLiteralExpCS.ast
[C] LiteralExpCS.ast = TupleliteralExpCS.ast
[D] LiteralExpCS.ast = PrimitivelLiteralExpCS.ast

Inherited attributes
[A] EnumLiteralExpCS.env = LiteralExpCS.env
[B] CollectionLiteralExpCS.env = LiteralExpCS.env
[C] TuplelLiteralExpCS.env LiteralExpCS.env
[D] PrimitivelLiteralExpCS.env = LiteralExpCS.env
Disambiguating rules
-- none

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003

4-5

CONCRETE SYNTAX

EnumLiteralExpCS

The rule represents Enumeration Literal expressions.

EnumLiteral ExpCS ::= pathNameCS ’::’ simpleNameCS

Abstract syntax mapping
EnumLiteralExpCS.ast : EnumlLiteralExp
Synthesized attributes
EnumLiteralExpCS.ast.type =
env.lookupPathName (pathNameCS.ast).referredElement.oclAsType (Classifier)
EnumLiteralExpCS.ast.referredEnumlLiteral =
EnumLiteralExpCS.ast.type.oclAsType (Enumeration).literal->
select (1 | T.name = simpleNameCS.ast)->any(true)
Inherited attributes
-- none

Disambiguating rules
[1] The specified name must indeed reference an enumeration:

not EnumLiteralExpCS.ast.type.oclIsUndefined() and
EnumLiteralExpCS.ast.type.oclIsKindOf (Enumeration)

CollectionLiteralExpCS
This rule represents a collection literal expression.
CollectionLiteralExpCS ::= CollectionTypeldentifierCsS
“{* CollectionLiteralPartsCS? *}’

Abstract syntax mapping
CollectionlLiteralExpCS.ast : CollectionLiteralExp

Synthesized attributes
CollectionLiteralExpCS.ast.parts = CollectionlLiteralPartsCS.ast
CollectionLiteralExpCS.ast.kind CollectionTypeldentifierCS.ast
Inherited attributes
CollectionTypeldentifierCS.env = CollectionlLiteralExpCS.env
CollectionlLiteralPartsCS.env CollectionLiteralExpCS.env

Disambiguating rules

[1] In a literal the collectiuon type may not be Collection
CollectionTypeldentifierCS.ast <> ’Collection’

CollectionTypeldentifierCS

This rule represent the type indentifier in a collection literal expression. The Collection type is an abstract type on
M1 level, so it has no corresponding literals.

[A] CollectionTypeldentifierCS ::= 'Set’

[B] CollectionTypeldentifierCsS = ’Bag’

[C] CollectionTypeldentifierCsS = ’Sequence’
[D] CollectionTypeldentifierCsS = "Collection’
[E] CollectionTypeldentifierCS ::= ’OrderedSet’

Abstract syntax mapping
CollectionTypeldentifierCS.ast : CollectionKind

Synthesized attributes
[A] CollectionTypeldentifierCS.ast = CollectionKind::Set
[B] CollectionTypeldentifierCS.ast CollectionKind::Bag
[C] CollectionTypeldentifierCS.ast = CollectionKind::Sequence

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 4-6

CONCRETE SYNTAX

[D] CollectionTypeldentifierCS.ast = CollectionKind::Collection
[E] CollectionTypeldentifierCS.ast = CollectionKind::0rderedSet

Inherited attributes
-- none

Disambiguating rules
-~ none

CollectionLiteralPartsCS

This production rule describes a sequence of items that are the contents of a collection literal.

CollectionLiteralPartsCS[1] = CollectionLiteralPartCS
(’,” CollectionlLiteralPartsCS[2])?

Abstract syntax mapping

CollectionLiteralPartsCS[1].ast : Sequence(CollectionlLiteralPart)

Synthesized attributes
CollectionLiteralPartsCS[1].ast =

Sequence{CollectionLiteralPartCS.ast}->union(CollectionlLiteralPartsCS[2].ast)

Inherited attributes

CollectionlLiteralPartCS.env = CollectionLiteralPartsCS[1].env
CollectionLiteralPartSCS[2].env = CollectionLiteralPartsCS[1].env

Disambiguating rules
-~ none

CollectionLiteralPartCS

[A] CollectionLiteralPartCS ::= CollectionRangeCS
OclExpressionCS

[B] CollectionlLiteralPartCS

Abstract syntax mapping
CollectionLiteralPartCS.ast : CollectionLiteralPart

Synthesized attributes
[A] CollectionLiteralPartCS.ast = CollectionRange.ast

[B] CollectionLiteralPartCS.ast.oclIsKindOf(CollectionItem) and
CollectionLiteralPartCS.ast.oclAsType(Collectionltem).OclExpression
OclExpressionCS.ast

Inherited attributes
[A] CollectionRangeCS.env

Disambiguating rules
-~ none

CollectionRangeCS

CollectionRangeCS ::= OclExpressionCS[1] *..> OclExpressionCS[2]

Abstract syntax mapping
CollectionRangeCS.ast : CollectionRange
Synthesized attributes
CollectionRangeCS.ast.first = OclExpressionCS[1].ast
CollectionRangeCS.ast.last OclExpressionCS[2].ast
Inherited attributes

OclExpressionCS[1].env = CollectionRangeCS.env
OclExpressionCS[2].env = CollectionRangeCS.env

CollectionLiteralPartCS.env
[B] OclExpressionCS.env = CollectionLiteralPartCS.env

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003

4-7

CONCRETE SYNTAX

Disambiguating rules
-~ none

PrimitiveLiteralExpCS

This includes Real, Boolean, Integer and String literals. Exprecially String literals must take internationalisation
into account and might need to remain undefined in this specification.

[A] PrimitivelLiteralExpCS ::= IntegerlLiteralExpCS
[B] PrimitiveLiteralExpCS ::= ReallLiteralkExpCS

[C] PrimitiveLiteralExpCS ::= StringLiteralExpCS
[D] PrimitiveLiteralExpCS ::= BooleanLiteralExpCS

Abstract syntax mapping
PrimitiveliteralExpCS.ast : PrimitiveliteralExp

Synthesized attributes
[A] PrimitiveliteralExpCS.ast = IntegerLiteralExpCS.ast
[B] PrimitivelLiteralExpCS.ast = ReallLiteralExpCS.ast
[C] PrimitivelLiteralExpCS.ast = StringlLiteralExpCS.ast
[D] PrimitiveliteralExpCS.ast BooleanlLiteralExpCS.ast

Inherited attributes
-- none

Disambiguating rules
-~ none

TupleLiteralExpCS

This rule represents tuple literal expressions.

TuplelLiteralExpCS ::= “Tuple’” “{° variableDeclarationListCS *}’

Abstract syntax mapping
TuplelLiteralExpCS.ast : TuplelLiteralExp

Synthesized attributes
TuplelLiteralbxpCS.tuplePart = variableDeclarationlListCS.ast

Inherited attributes
variableDeclarationListCS[1].env = TupleliteralExpCS.env

Disambiguating rules
[1] The initExpression and type of all VariableDeclarations must exist.

TupleliteralExpCS.tuplePart->forAl1(varDecl |
varDecl.initExpression->notEmpty() and not varDecl.type.oclIsUndefined())

IntegerLiteralExpCS
This rule represents integer literal expressions.
IntegerlLiteralbxpCS ::= <String>

Abstract syntax mapping
IntegerlLiteralExpCS.ast : IntegerliteralExp

Synthesized attributes
IntegerLiteralbExpCS.ast.integerSymbol = <String>.tolnteger()

Inherited attributes
-- none

Disambiguating rules
-~ none

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 4-8

CONCRETE SYNTAX

RealLiteralExpCS
This rule represents real literal expressions.
ReallLiteralExpCS ::= <String>

Abstract syntax mapping
RealliteralbExpCS.ast : Realliteralkxp

Synthesized attributes
RealliteralExpCS.ast.realSymbol = <String>.toReal()

Inherited attributes
-- none

Disambiguating rules

-- none
StringLiteralExpCS

This rule represents string literal expressions.
StringlLiteralExpCS ::= """ <String> *°’

Abstract syntax mapping
StringliteralExpCS.ast : Stringliteralkxp

Synthesized attributes
StringlLiteralExpCS.ast.symbol = <String>

Inherited attributes
-- none

Disambiguating rules
-~ none

BooleanLiteralExpCS

This rule represents boolean literal expressions.

[A] BooleanLiteralExpCS ::= “true’
[B] BooleanLiteralExpCS ::= "false’

Abstract syntax mapping
BooleanLiteralExpCS.ast : BooleanlLiteralExp

Synthesized attributes

[A] BooleanLiteralExpCS.ast.booleanSymbol = true
[B] BooleanLiteralExpCS.ast.booleanSymbol = false

Inherited attributes
-- none

Disambiguating rules

-~ none
PropertyCallExpCS

This rule represents property call expressions.

[A] PropertyCallExpCS ::= ModelPropertyCallExpCS

[B] PropertyCallExpCS

Abstract syntax mapping
PropertyCallExpCS.ast : PropertyCallExp

Synthesized attributes
[A] PropertyCallExpCS.ast = ModelPropertyCallCS.ast

LoopExpCS

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003

CONCRETE SYNTAX

[B] PropertyCallExpCS.ast =

Inherited attributes
[A] ModelPropertyCallCS.env
[B] LoopExpCS.env =

Disambiguating rules

LoopExpCS.ast

The disambiguating rules are defined in the children.

LoopExpCS

This rule represents loop expressions.

[A] LoopExpCS ::= IteratorkxpCsS
[B] LoopExpCS ::= IteratekExpCS

Abstract syntax mapping
LoopExpCS.ast : LoopExp

Synthesized attributes
[A] LoopExpCS.ast =
[B] LoopExpCS.ast =

Inherited attributes

[A] IteratorExpCS.env
[B] IterateExpCS.env

Disambiguating rules
-- none

IteratorExpCS.ast
IteratebExpCS.ast

= LoopExpCS.env
LoopExpCS.env

IteratorExpCS

= PropertyCallExpCS.env
PropertyCallExpCS.env

The first alternative is a straightforward Iterator expression, with optional iterator variable. The second and third
alternatives are so-called implicit collect iterators. B is for operations and C for attributes, D for navigations and

E for associationclasses.

[A]l IteratortxpCs

OclExpressionCS[1]

VariableDeclarationCS[2]1)? °

"->7 simpleNameCS

T

simpleNameCS ’(’argumentsCS?’)’
simpleNameCS
simpleNameCS

(’[’ argumentsCS *]17)7

(7 (VariableDeclarationCS[1],
(”’
OclExpressionCS[2]

!)!
[B] IteratorExpCS ::= OclExpressionCS ~’
[C] IteratortxpCS ::= OclExpressionCS .’
[D] IteratorExpCS ::= OclExpressionCS *.~’
[E] IteratorkExpCsS = OclExpressionCS *.~

Abstract syntax mapping
I[teratorExpCS.ast :

Synthesized attributes

[teratorkxp

simpleNameCS
(’[’ argumentsCS *]17)7

-- the ast needs to be determined bit by bit, first the source association of IteratorExp

[A] IteratorExpCS.ast.source

= OclExpressionCS[1].ast

-- next the iterator association of Iteratorkxp
-- when the variable declaration is present, its ast is the iterator of this iteratorkExp
-- when the variable declaration is not present, the iterator has a default name and

-- type

-- In any case, the iterator does not have an init expression

[A] IteratorExpCS.ast.iterators->at(1l).name

then ~’

if VariableDeclarationCS[11->isEmpty()

else VariableDeclarationCS[1].ast.name

OCL 2.0 REVISED SUBMISSION

VERSION 1.6, JANUARY 6, 2003

4-10

CONCRETE SYNTAX

endif
[A] TteratorExpCS.ast.iterator->at(l).type =
if VariableDeclarationCS[1]->isEmpty() or
(VariableDeclarationCS[1]->notEmpty() and
VariableDeclarationCS[1].ast.type.oclIsUndefined())

then

OclExpressionCS[1].type.oclAsType (CollectionType).elementType
else

VariableDeclarationCS[1].ast.type
endif

- The optional second iterator
[A] if VariableDeclarationCS[2]1->isEmpty() then
IteratorkExpCS.ast.iterators->size() =1
else
IteratorExpCS.ast.iterators->at(2).name = VariableDeclarationCS[2].ast.name
and
IteratorExpCS.ast.iterators->at(2).type =
if VariableDeclarationCS[2]->isEmpty() or
(VariableDeclarationCS[2]->notEmpty() and
VariableDeclarationCS[2].ast.type.oclIsUndefined())

then

OclExpressionCS[1].type.oclAsType (CollectionType).elementType
else

VariableDeclarationCS[2].ast.type
endif

endif
[A] IteratorkExpCS.ast.iterators->forAll(initExpression->iskmpty())
-- next the name attribute and body association of the IteratorExp
LA] IteratorExpCS.ast.name = simpleNameCS.ast and
[A] IteratorExpCS.ast.body = OclExpressionCS[2].ast

-- Alternative B is an implicit collect of an operation over a collection
[B] IteratorExpCS.ast.iterator.type =
OclExpressionCS.ast.type.oclAsType (CollectionType).elementType
[B] IteratorExpCS.ast.source = OclExpressionCS.ast
[B] IteratorExpCS.ast.name = ’collect’
[B] -- the body of the implicit collect is the operation call referred to by ’'name’
IteratorExpCS.ast.body.oc1IsKindOf (OperationCallExp) and
let body : OperationCallExp = IteratorExpCS.ast.body.oclTAsType(QOperationCallExp)
in
body.arguments = argumentsCS.ast
and
body.source.oc1IsKindOf(VariableExp)
and
body.source.oclAsType (VariablekExp).referredVariable = IteratorkExpCS.ast.iterator
and
body.referredOperation =
OclExpressionCS.ast.type.oclAsType (CollectionType).elementType
.lookupOperation(simpleNameCS.ast,
if (argumentsCS->notEmpty())
then arguments.ast->collect(type)
else Sequence{} endif)

-- Alternative C/D is an implicit collect of an association or attribute over a collection
[C, D] IteratorExpCS.ast.iterator.type =
OclExpressionCS.ast.type.oclAsType (CollectionType).elementType
[C, D] IteratorExpCS.ast.source = OclExpressionCS.ast
[C, D] IteratorExpCS.ast.name = ’"collect’
[C] -- the body of the implicit collect is the attribute referred to by ’'name’
let refAtt : Attribute = OclExpressionCS.ast.type.oclAsType (CollectionType).
elementType.lookupAttribute(simpleNameCS.ast),

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 4-11

CONCRETE SYNTAX

(D]

[E]

in
IteratorExpCS.ast.body.oc1IsKindOf (AttributeCallExp) and
let body : AttributeCallExp = IteratorExpCS.ast.body.ocTAsType(AttributeCallExp)
in
body.source.oclIsKindOf(VariableExp)
and
body.source.oclAsType (VariableExp).referredVariable = IteratorExpCS.ast.iterator
and
body.referredAttribute = refAtt
-- the body of the implicit collect is the navigation call referred to by ’'name’
let refNav : Associationknd = OclExpressionCS.ast.type.oclAsType (CollectionType).
elementType.lookupAssociationEnd(simpleNameCS.ast)
in
IteratorExpCS.ast.body.oc1IsKindOf (AssociationEndCallExp) and
let body : AssociationEndCallExp =
IteratorExpCS.ast.body.oclAsType(AssociationEndCallExp)

in
body.source.oclIsKindOf(VariableExp)
and
body.source.oclAsType (VariablekExp).referredVariable = IteratorExpCS.ast.iterator
and
body.referredAssociationkEnd = refNav
and

body.ast.qualifiers = argumentsCS.ast
-- the body of the implicit collect is the navigation to the association class
-- referred to by ’‘name’
let refClass : AssociationClass =
OclTExpressionCS.ast.type.oclAsType (CollectionType).
elementType.lookupAssociationClass(simpleNameCS.ast)
in
IteratorExpCS.ast.body.oc1IsKindOf (AssociationClassCallExp) and
let body : AssociationClassCallExp =
IteratorkExpCS.ast.body.oclAsType(AssociationClassCallExp)

in
body.source.oclIsKindOf(VariableExp)
and
body.source.oclAsType (VariablekExp).referredVariable = IteratorExpCS.ast.iterator
and
body.referredAssociationClass = refNav
and

body.ast.qualifiers = argumentsCS.ast

Inherited attributes

[A]
[A]

OclExpressionCS[1].env = IteratorExpCS.env
VariableDeclarationCS.env = IteratorExpCS.env

-- inside an iterator expression the body is evaluated with a new environment that
-- includes the iterator variable.

[A]

[B]
[B]
[C]
(D]

OclExpressionCS[2].env =
[teratorExpCS.env.nestedEnvironment().addElement(VariableDeclarationCS.ast.varName,
VariableDeclarationCS.ast,

true)
OclExpressionCS.env = IteratorExpCS.env
argumentsCS.env = IteratorkxpCS.env
OclExpressionCS.env = IteratorkxpCS.env
OclExpressionCS.env = IteratorkxpCS.env

Disambiguating rules

[1] [A] When the variable declaration is present, it may not have an init expression.
VariableDeclarationCS->notEmpty() implies

VariableDeclarationCS.ast.initExpression->iskEmpty()

[2] [B] The source must be of a collection type.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 4-12

CONCRETE SYNTAX

OclExpressionCS.ast.type.oclIsKindOf(CollectionType)

[3] [C] The source must be of a collection type.
OclExpressionCS.ast.type.oclIsKindOf(CollectionType)

[4] [C] The referred attribute must be present.
refAtt->notEmpty()

[5] [D] The referred navifation must be present.
refNav->notEmpty()

IterateExpCS

IterateExpCS ::= OclExpressionCS[1] *-> ’iterate’
(7 (VariableDeclarationCS[1] *;’)?
VariableDeclarationCS[2] * |’
OclExpressionCS[2]

s) s
Abstract syntax mapping
IterateExpCS.ast : Iteratekxp

Synthesized attributes
-- the ast needs to be determined bit by bit, first the source association of IterateExp
IterateExpCS.ast.source = OclExpressionCS[1].ast
-- next the iterator association of IterateExp
-- when the first variable declaration is present, its ast is the iterator of this
-- iteratekExp, when the variable declaration is not present, the iterator has a default
-- name and type,
-- in any case, the iterator has an empty init expression.
[terateExpCS.ast.iterator.name = if VariableDeclarationCS[1]->isEmpty() then *~’
else VariableDeclarationCS[1].ast.name
endif
IterateExpCS.ast.iterator.type =
if VariableDeclarationCS[1]->isEmpty() or
(VariableDeclarationCS[1]->notEmpty() and
VariableDeclarationCS[1].ast.type.oclIsUndefined())

then

OclExpressionCS[1].type.oclAsType (CollectionType).elementType
else

VariableDeclarationCS[1].ast.type
endif

IterateExpCS.ast.iterator.initExpression->iskmpty()
-- next the name attribute and body and result association of the IterateExp

IterateExpCS.ast.result = VariableDeclarationCS[2].ast

IterateExpCS.ast.name = ’iterate’

IterateExpCS.ast.body = OclExpressionCS[2].ast
Inherited attributes

OclExpressionCS[1].env = IteratorExpCS.env

VariableDeclarationCS[1].env IteratorExpCS.env

VariableDeclarationCS[2].env = IteratorExpCS.env

-- Inside an iterate expression the body is evaluated with a new environment that includes

-- the iterator variable and the result variable.

OclExpressionCS[2].env =

IteratorkExpCS.env.nestedEnvironment().addElement

(VariableDeclarationCS[1].ast.varName,
VariableDeclarationCS[1].ast,
true).addElement
(VariableDeclarationCS[2].ast.varName,
VariableDeclarationCS[2].ast,
true)

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 4-13

CONCRETE SYNTAX

Disambiguating rules

[1] A result variable declaration must have a type and an initial value
not VariableDeclarationCS[2].ast.type.oclIsUndefined()
VariableDeclarationCS[2].ast.initExpression->notEmpty()

[2] When the first variable declaration is present, it may not have an init expression.
VariableDeclarationCS[1]->notEmpty() implies
VariableDeclarationCS[1].ast.initExpression->isEmpty()

VariableDeclarationCS

In the variable declaration, the type and init expression are optional. When these are required, this is defined in
the production rule where the variable declaration is used.

VariableDeclarationCS ::= simpleNameCS (’:’ typeCS)?
(’=’ OclExpressionCS)?

Abstract syntax mapping
VariableDeclarationCS.ast : VariableDeclaration

Synthesised attributes
VariableDeclarationCS.ast.name = simpleNameCS.ast
VariableDeclarationCS.ast.initExpression = OclExpressionCS.ast
-- A well-formed VariableDeclaration must have a type according to the abstract syntax.
-- The value OclUndefined is used when no type has been given in the concrete syntax.
-- Production rules that use this need to check on this type.
VariableDeclarationCS.ast.type = if typeCS->notEmpty() then
typeCS.ast
else
OclUndefined
endif

Inherited attributes
OclExpressionCS.env = VariableDeclarationCS.env

typeCS.env = VariableDeclarationCS.env
Disambiguating rules

-- none
TypeCS
A typename is either a Classifier, or a collection of some type.
[A] typeCS ::= pathNameCS
[B] typeCS ::= collectionTypeCS
[C] typeCS ::= tupleTypeCS

Abstract syntax mapping
typeCS.ast : Classifier

Synthesised attributes
[A] typeCS.ast =
typeCS.env.lookupPathName(pathNameCS.ast).referredElement.oclAsType(Classifier)
[B] typeCS.ast = CollectionTypeCS.ast
[C] typeCS.ast = tupleType(CS.ast
Inherited attributes
[B] collectionTypeCS.env = typeCS.env
[C] tupleTypeCS.env = typeCS.env

Disambiguating rules

[1] [A] pathName must be a name of a Classifier in current environment.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 4-14

CONCRETE SYNTAX

typeCS.env.lookupPathName(pathNameCS.ast).referredElement.oclIsKindOf (Classifier)

collectionTypeCS

A typename is either a Classifier, or a collection of some type.

collectionTypeCS ::= collectionTypeldentifierCS *(’ typeCS ')’

Abstract syntax mapping
typeCS.ast : CollectionType

Synthesised attributes
collectionTypeCS.ast.elementType = typeCS.ast
-- We know that the ’ast’ is a collectiontype, all we need to state now is which
-- specific collection type it is.

kind = CollectionKind::Set implies collectionTypeCS.ast.oclIsKindOf (SetType)
kind = CollectionKind::Sequence implies collectionTypeCS.ast.oclIsKindOf (SequenceType)
kind = CollectionKind::Bag implies collectionTypeCS.ast.oclIsKindOf (BagType)

kind = CollectionKind::Collection implies collectionTypeCS.ast.oclIsKindOf

(CollectionType)
CollectionKind::0rderedSet implies collectionTypeCS.ast.oclIsKindOf
(OrderedSetType)

kind

Inherited attributes
typeCS.env = collectionTypeCS.env

Disambiguating rules

-- none
tupleTypeCS
This represents a tuple type declaration.
tupleTypeCS ::= "Tuple” (' variableDeclarationlListCS? ")~

Abstract syntax mapping
typeCS.ast : TupleType

Synthesised attributes
typeCS.ast = TupleType::make(variableDeclarationListCS->collect(v | v.asAttribute()))
Inherited attributes
variableDeclarationListCS.env = tupleTypeCS.env
Disambiguating rules
[1] Of all VariableDeclarations the initExpression must be empty and the type must exist.

variableDeclarationListCS.ast->forA11(varDecl |
varDecl.initExpression->notEmpty() and varDecl.type->notEmpty())

variableDeclarationListCS
This production rule represents the formal parameters of a tuple or attribute definition.

variableDeclarationListCS[1] = VariableDeclarationCS
(’,’variableDeclarationlListCS[2])?
Abstract syntax mapping
variableDeclarationlListCS[1].ast : Sequence(VariableDeclaration)

Synthesized attributes

variableDeclarationlListCS[1].ast = Sequence{VariableDeclarationCS.ast}
->union(variableDeclarationlListCS[2].ast)

Inherited attributes
VariableDeclarationCS.env = variableDeclarationListCS[1].env

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 4-15

CONCRETE SYNTAX

variableDeclarationListCS[2].env

Disambiguating rules
- none

ModelPropertyCallExpCS

variableDeclarationListCS[1].env

A ModelPropertCall expression may have three different productions. Which one is chosen depends on the dis-
ambiguating rules defined in each of the alternatives.

[A] ModelPropertyCallExpCS
[B] ModelPropertyCallExpCS
[C] ModelPropertyCallExpCS

= OperationCallExpCS
AttributeCallExpCS
NavigationCallExpCS

Abstract syntax mapping
ModelPropertyCallExpCS.ast

Synthesised attributes

The value of this production is the value of its child production.

[A] ModelPropertyCallExpCS.ast
[B] ModelPropertyCallExpCS.ast
[C] ModelPropertyCallExpCS.ast

Inherited attributes
[A] OperationCallExpCS.env
[B] AttributeCallExpCS.env
[C] NavigationCallExpCS.env
Disambiguating rules

These are defined in the children.

: ModelPropertyCallExp

= OperationCallExpCS.ast
AttributeCallExpCS.ast
NavigationCallExpCS.ast

= ModelPropertyCallExpCS.env
ModelPropertyCallExpCS.env
ModelPropertyCallExpCS.env

OperationCallExpCS

An operation call has many different forms. A is used for infix, B for using an object as an implicit collection. C
is a straightforward operation call, while D has an implicit source expression. E and F are like C and D, with the
@pre addition. G covers the class operation call. Rule H is for unary prefix expressions.

[A] OperationCallExpCS OclExpressionCS[1]

simpleNameCS OclExpressionCS[2]

[B] OperationCallExpCS ::= OclExpressionCS ’->’ simpleNameCS ’(’
argumentsCS? *)’
[C] OperationCallExpCS ::= OclExpressionCS .’ simpleNameCS
*(’ argumentsCS? ’)°
[D] OperationCallExpCS ::= simpleNameCS ’*(’ argumentsCS?)’
[E] OperationCallExpCS = OclExpressionCS *.’ simpleNameCS
isMarkedPreCS " (’ argumentsCS?)’
[F] OperationCallExpCS ::= simpleNameCS isMarkedPreCS ’(’ argumentsCS? *)’
[G] OperationCallExpCS ::= pathNameCS ’(’ argumentsCS?)’
[H] OperationCallExpCS ::= simpleNameCS OclExpressionCS

Abstract syntax mapping
OperationCallExpCS.ast

Synthesised attributes

- this rule is for binary
[A] OperationCallExpCS.ast.

: OperationCallExp

operators as ’'+’, **7 etc. It has only one argument.
arguments = Sequence{OclExpression2[2].ast}
OperationCallExpCS.ast.source = OclExpressionCS[1].ast
OperationCallExpCS.ast.referredOperation
OclExpressionCS.ast.type.lookupOperation (
simpleNameCS.ast,

Sequence{OclExpression[2].ast.type}

)

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 4-16

CONCRETE SYNTAX

-- The source is either a collection or a single object
[B] OperationCallExpCS.ast.arguments = argumentsCS.ast
-- if the 0clExpressionCS is a collectiontype, then the
-- Otherwise, the source must be build up by defining a

used as a collection.

source is this OclExpressionCS.
singleton set containing

-- the OclExpressionCS. This is done though inserting a call to the standard
-- operation "asSet()"
OperationCallExpCS.ast.source =
if OclExpressionCS.ast.type.oclIsKindOf(CollectionType)
then OclExpressionCS.ast
else OclExpressionCS.ast.withAsSet()
endif
---- The referred operation:
OperationCallExpCS.ast.referredOperation =
if OclExpressionCS.ast.type.oclIsKindOf (CollectionType)
then -- this is a collection operation called on a collection
OclExpressionCS.ast.type.lookupOperation (simpleNameCS.ast,
if (argumentsCS->notEmpty())
then argumentsCS.ast->collect(type)
else Sequence{} endif)
else
-- this is a set operation called on an object
SetType.alllnstances()->any (st |
st.elementType = OclExpressionCS.ast.type).lookupOperation (
simpleNameCS.ast,
if (argumentsCS->notEmpty())
then argumentsCS.ast->collect(type)
else Sequence{} endif)

=> implicit Set with one element

endif
[C] OperationCallExpCS.ast.referredOperation =
OcTExpressionCS.ast.type.lookupOperation (simpleNameCS.ast,
if argumentsCS->notEmpty ()
then arguments.ast->collect(type)
else Sequence{} endif)
OperationCallExpCS.ast.arguments = argumentsCS.ast
OperationCallExpCS.ast.source = OclExpressionCS.ast
[D] OperationCallExpCS.ast.arguments = argumentsCS.ast and
OperationCallExpCS.ast.referredOperation =
env.lookupImplicitOperation(simpleName.ast,
if argumentsCS->notEmpty()
then arguments.ast->collect(type)
else Sequence{} endif)
OperationCallExpCS.ast.source = env.lookupImplicitSourceForOperation(
simpleName.ast,
if argumentsCS->notEmpty()
then arguments.ast->collect(type)
else Sequence{} endif)
[E] -- incorporate the isPre() operation.
OperationCallExpCS.ast.referredOperation =
OclExpressionCS.ast.type.lookupOperation (simpleNameCS.ast,
if argumentsCS->notEmpty()
then arguments.ast->collect(type)
else Sequence{} endif)
OperationCallExpCS.ast.arguments = argumentsCS.ast
OperationCallExpCS.ast.source = OclExpressionCS.ast.withAtPre()
LF] -- incorporate atPre() operation with the implicit source

OperationCallExpCS.ast.arguments = argumentsCS.ast and
OperationCallExpCS.ast.referredOperation =
env.lookupImplicitOperation(simpleName.ast,
if argumentsCS->notEmpty ()

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 4-17

CONCRETE SYNTAX

then arguments.ast->collect(type)
else Sequence{} endif)
)
OperationCallExpCS.ast.source =
env.lookupImplicitSourceForOperation(simpleName.ast,
if argumentsCS->notEmpty()
then arguments.ast->collect(type)
else Sequence{} endif)
) .withAtPre()

L[G] OperationCallExpCS.ast.arguments = argumentsCS.ast and
OperationCallExpCS.ast.referredOperation
env.lookupPathName(pathName.ast,
if argumentsCS->notEmpty()
then arguments.ast->collect(type)
else Sequence{} endif)

OperationCallExpCS.ast.source->isEmpty()

-- this rule is for unary operators as -’ and ’'not’ etc. It has no argument.
[H] OperationCallExpCS.ast.arguments->isEmpty()
OperationCallExpCS.ast.source = OclExpressionCS.ast

OperationCallExpCS.ast.referredOperation =
OclExpressionCS.ast.type.lookupOperation (
simpleNameCS.ast,
Sequence{})

Inherited attributes

[A] OclExpressionCS[1].env = OperationCallExpCS.env
[A] OclExpressionCS[2].env = OperationCallExpCS.env

[B] OclExpressionCS.env = OperationCallExpCS.env
[B] argumentsCS.env = OperationCallExpCS.env
[C] OclExpressionCS.env = OperationCallExpCS.env

[C] argumentsCS.env
[D] argumentsCS.env

OperationCallExpCS.env
OperationCallExpCS.env

[E] OclExpressionCS.env = OperationCallExpCS.env
LE] argumentsCS.env = OperationCallExpCS.env
LF] argumentsCS.env = OperationCallExpCS.env

Disambiguating rules

[1] [A] The name of the referred Operation must be an operator
Set{’+’,’-7,’*’ 7/’ ,7and’,’or’, xor’,’=","<="">=" "< [’>"}->includes(simpleNameCS.ast)

[2] [A,B,C,D,E,F] The referred Operation must be defined for the type of source
not OperationCallExpCS.ast.referredOperation.oclIsUndefined()

[3] [C] The name of the referred Operation cannot be an operator.
Set{’+’,’-7,’*" .7/’ ,7and’,’or’, xor’,’=","<=",">=" "< [’>"}->excludes(simpleNameCS.ast)

AttributeCallExpCS

This production rule results in an AttributeCallExp. In production [A] the source is explicit, while production [B]
is used for an implicit source. Alternative C covers the use of a classifier scoped attribute.

[A] AttributeCallExpCS ::= OclExpressionCS .’ simpleNameCS isMarkedPreCS?
[B] AttributeCallExpCS = simpleNameCS isMarkedPreCS?
[C] AttributeCallExpCS = pathNameCS

Abstract syntax mapping
AttributeCallExpCS.ast : AttributeCallExp

Synthesised attributes
LAl AttributeCallExpCS.ast.referredAttribute =
OclExpressionCS.ast.type.lookupAttribute(simpleNameCS.ast)
[A] AttributeCallExpCS.ast.source = if isMarkedPreCS->isEmpty()

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 4-18

CONCRETE SYNTAX

then 0OclExpressionCS.ast
else OclExpressionCS.ast.withAtPre()
endif

[B] AttributeCallExpCS.ast.referredAttribute =
env.lookupImplicitAttribute(simpleNameCS.ast)
[B] AttributeCallExpCS.ast.source =
if isMarkedPreCS->iskEmpty()
then env.findImplicitSourceForAttribute(simpleNameCS.ast)
else env.findImplicitSourceForAttribute(simpleNameCS.ast).withAtPre()
endif

[C] AttributeCallExpCS.ast.referredAttribute =
env.lookupPathName(pathNameCS.ast).oclAsType(Attribute)

Inherited attributes
LAl OclExpressionCS.env = AttributeCallExpCS.env

Disambiguating rules

[1] [A, B] ’simpleName’ is name of an Attribute of the type of source or if source is empty the name of an
attribute of ’self” or any of the iterator variables in (nested) scope. In OCL.:
not AttributeCallExpCS.ast.referredAttribute.oclIsUndefined()

[2] [C] The pathName refers to a class attribute.
env.lookupPathName(pathNameCS.ast).oclIsKindOf(Attribute)
and
AttributeCallExpCS.ast.referredAttribute.ownerscope = ScopeKind::instance

NavigationCallExpCS

This production rule represents a navigation call expression.

[A] NavigationCallExpCS ::= AssociationkEndCallExpCS
[B] NavigationCallExpCS ::= AssociationClassCallExpCS

Abstract syntax mapping

NavigationCallExpCS.ast : NavigationCallExp
Synthesised attributes

The value of this production is the value of its child production.

[A] NavigationCallExpCS.ast = AssociationEndCallExpCS.ast
[B] NavigationCallExpCS.ast = AssociationClassCallExpCS.ast

Inherited attributes

LA] AssociationEndCallExpCS.env = NavigationCallExpCS.env
[B] AssociationClassCallExpCS.env = NavigationCallExpCS.env

Disambiguating rules
These are defined in the children.

AssociationEndCallExpCS

This production rule represents a navigation through an association end. Rule A is the default, rule B is used with
an implicit source, while rule C is used with qualifiers.

[A] AssociationkEndCallExpCS ::= 0OclExpressionCS *.’ simpleNameCS
([’ argumentsCS *17)7? isMarkedPreCS?
[B] AssociationkEndCallExpCS ::= simpleNameCS

([’ argumentsCS *1°)? isMarkedPreCS?

Abstract syntax mapping
AssociationkndCallExpCS.ast : AssociationEndCallExp

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 4-19

CONCRETE SYNTAX

Synthesised attributes
LA] AssociationEndCallExpCS.ast.referredAssociationknd =
OclExpressionCS.ast.type.lookupAssociationEnd(simpleNameCS.ast)
AssociationEndCallExpCS.ast.source = if isMarkedPreCS->isEmpty()

then 0OclExpressionCS.ast
else OclExpressionCS.ast.withAtPre()
endif

LA] AssociationEndCallExpCS.ast.qualifiers = argumentsCS.ast

[B] AssociationEndCallExpCS.ast.referredAssociationkEnd =
env.lookupImplicitAssociationEnd(simpleNameCS.ast)
AssociationkEndCallExpCS.ast.source =
if isMarkedPreCS->isEmpty()
then env.findImplicitSourceForAssociationEnd(simpleNameCS.ast)
else env.findImplicitSourceForAssociationEnd(simpleNameCS.ast).withAtPre()
endif
[B] AssociationEndCallExpCS.ast.qualifiers = argumentsCS.ast

Inherited attributes

LAl OclExpressionCS.env = AssociationEndCallExpCS.env
LA, B] argumentsCS.env = AssociationEndCallExpCS.env

Disambiguating rules

[1] [A,B] ’simpleName’ is name of an AssociationEnd of the type of source or if source is empty the name of an

AssociationEnd of ’self’ or any of the iterator variables in (nested) scope. In OCL:
not AssociationEndCallExpCS.ast.referredAssociationkEnd.oclIsUndefined()

AssociationClassCallExpCS

This production rule represents a navigation to an association class.

s s

[A] AssociationClassCallExpCS ::= OclExpressionCS simpleNameCS

(’[” argumentsCS *1°)? isMarkedPreCS?
[B] AssociationClassCallExpCS ::= simpleNameCS

([’ argumentsCS *1°)7? isMarkedPreCS?

Abstract syntax mapping
AssociationClassCallExpCS.ast : AssociationClassCallExp

Synthesised attributes
LA] AssociationClassCallExpCS.ast.referredAssociationClass =
OclExpressionCS.ast.type.lookupAssociationClass(simpleNameCS.ast)
AssociationClassCallExpCS.ast.source = if isMarkedPreCS->isEmpty()

then 0OclExpressionCS.ast
else OclExpressionCS.ast.withAtPre()
endif

[A] AssociationClassCallExpCS.ast.qualifiers = argumentsCS.ast

[B] AssociationClassCallExpCS.ast.referredAssociationClass =
env.lookupImplicitAssociationClass(simpleNameCS.ast)
AssociationClassCallExpCS.ast.source =
if isMarkedPreCS->isEmpty()
then env.findImplicitSourceForAssociationClass(simpleNameCS.ast)
else env.findImplicitSourceForAssociationClass(simpleNameCS.ast).withAtPre()
endif
[B] AssociationClassCallExpCS.ast.qualifiers = argumentsCS.ast

Inherited attributes
[A] OclExpressionCS.env = AssociationClassCallExpCS.env
LA, B] argumentsCS.env AssociationClassCallExpCS.env

Disambiguating rules

[1] ’simpleName’ is name of an AssociationClass of the type of source.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 4-20

CONCRETE SYNTAX

not AssociationClassCallExpCS.ast.referredAssociationClass.oclIsUndefined()

isMarkedPreCS
This production rule represents the marking @pre in an ocl expression.
isMarkedPreCS ::= '@ ’pre’

Abstract syntax mapping
isMarkedPreCS.ast : Boolean

Synthesised attributes
self.ast = true

Inherited attributes
-- none

Disambiguating rules
-~ none

argumentsCS
This production rule represents a sequence of arguments.

s s

argumentsCS[1] ::= OclExpressionCS (’,” argumentsCS[2])?

Abstract syntax mapping
argumentsCS[1].ast : Sequence(OcTExpression)

Synthesised attributes
argumentsCS[1].ast = Sequence{OcTExpressionCS.ast}->union(argumentsCS[2].ast)

Inherited attributes
OclExpressionCS.env = argumentsCS[1].env
argumentsCS[2].env = argumentsCS[1].env
Disambiguating rules
-- none

LetExpCS

This production rule represents a let expression. The LetExpSubCS nonterminal has the purpose of allowing
directly nested let expressions with the shorthand syntax, i.e. ending with one ’in’ keyword.

LetExpCS ::= “let’” VariableDeclarationCS
LetExpSubCS

Abstract syntax mapping
LetExpCS.ast : LetExp

Synthesised attributes
LetExpCS.ast.variable = VariableDeclarationCS.ast
LetExpCS.ast.in = LetExpSubCS.ast
Inherited attributes
LetExpSubCS.env = LetExpCS.env.nestedEnvironment().addETement(
VariableDeclarationCS.ast.varName,
VariableDeclarationCS.ast,
false)

Disambiguating rules

[1] The variable name must be unique in the current scope
LetExpCS.env.lookup (VariableDeclarationCS.ast.varName).oclIsUndefined()

[2] A variable declaration inside a let must have a declared type and an initial value.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 4-21

CONCRETE SYNTAX

not VariableDeclarationCS.ast.type.oclIsUndefined() and
VariableDeclarationCS.ast.initExpression->notEmpty ()

LetExpSubCS
[A]l LetExpSubCS[1] ::= ", VariableDeclarationCS LetExpSubCS[2]
[B] LetExpSubCS ::= "in’ OclExpressionCS

Abstract syntax mapping
LetExpSubCS.ast : OclExpression
Synthesised attributes
[A] LetExpSubCS[1].ast.oclAsType(LetExp).variable = VariableDeclarationCS.ast
[A] LetExpSubCS[1].ast.oclAsType(LetExp).0CTExpression = LetExpSubCS[2].ast
[B] LetExpSubCS.ast = OclExpressionCS.ast

Inherited attributes
[A] VariableDeclarationCS.env = LetExpSubCS[1].env
LA] LetExpSubCS[2].env = LetExpSubCS[1].env.nestedEnvironment().addElement(
VariableDeclarationCS.ast.varName,
VariableDeclarationCS.ast,
false)

[B] OClExpressionCS.env = LetExpSubCS.env
Disambiguating rules
[A] The variable name must be unique in the current scope
LetExpSubCS[1].env.lookup (VariableDeclarationCS.ast.varName).oclIsUndefined()
[A] A variable declaration inside a let must have a declared type and an initial value.

not VariableDeclarationCS.ast.type.oclIsUndefined() and
VariableDeclarationCS.ast.initExpression->notEmpty ()

OclMessageExpCS

The message Name must either be the name of a Signal, or the name of an Operation belonging to the target
object(s).

[A] OclMessageExpCS ::= OclExpressionCS *~n’
simpleNameCS *(’ OclMessageArgumentsCS? *)’

[B] OclMessageExpCS ::= OclExpressionCS "7’
simpleNameCS *(’ OclMessageArgumentsCS? ’)°

Abstract syntax mapping
LA] OclMessageExpCS.ast : OclMessageExp
[B] OclMessageExpCS.ast : OclMessageExp
Synthesised attributes

[A] OcTMessageExpCS.ast.target = OclExpressionCS.ast
[A] OclMessagebxpCS.ast.arguments = OclMessageArgumentsCS.ast

-- first, find the sequence of types of the operation/signal parameters
[A] let params : Sequence(Classifier) = OclMessageArguments.ast->collect(messArg |
messArg.getType()),

-- try to find either the called operation or the sent signal
LA] operation : Operation = OclIMessageExpCS.ast.target.type.
lookupOperation(simpleNameCS.ast, params),
signal : Signal = 0OclMessageExpCS.ast.target.type.
TookupSignal(simpleNameCS.ast, params)
in
OcTMessageExpCS.ast.calledOperation = if operation->isEmpty()
then OclUndefined

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 4-22

CONCRETE SYNTAX

else = operation
endif
OcTMessageExpCS.ast.sentSignal = if signal->isEmpty()
then OclUndefined
else signal
endif
[B]
-- OclExpression”simpleNameCS(Oc1MessageArguments) is identical to
-- OclExpression®”simpleNameCS(Oc1MessageArguments)->size() =1
-- actual mapping: straigthforward, TBD...

Inherited attributes
OclExpressionCS.env = OcTMessageExpCS.env
OclMessageArgumentsCS.env OcTMessageExpCS.env
Disambiguating rules
-- none

OclMessageArgumentsCS

OclMessageArgumentsCS[1] ::= 0OclIMessageArgCsS
(7,” 0OclMessageArgumentsCS[2])?

Abstract syntax mapping
OcTMessageArgumentsCS[1].ast : Sequence(OclMessageArg)

Synthesised attributes
OcIMessageArgumentsCS[1].ast =
Sequence{0cTMessageArgCS.ast}->union(OcIMessageArgumentsCS[2].ast)
Inherited attributes
OclMessageArgCS.env = OclMessageArgumentsCS[1].env
OcTMessageArgumentsCS[2].env = OcIMessageArgumentsCS[1].env

Disambiguating rules

-- none
OclMessageArgCS
[A] OcIMessageArgCS ::= 7?7 (’:7 typeCS)?
[B] OclMessageArgCS ::= OclExpressionCS

Abstract syntax mapping
OclMessageArgCS.ast : OclMessageArg

Synthesised attributes
[A] OclMessageArgCS.ast.expression->isEmpty()
[A] OclMessageArgCS.ast.unspecified->notEmpty()
[A] OclMessageArgCS.ast.type = typeCS.ast

[B] OclMessageArgCS.ast.unspecified->isEmpty()
[B] OclMessageArgCS.ast.expression = OclExpressionCS.ast

Inherited attributes
OclExpressionCS.env = 0clMessageArgCS.env

Disambiguating rules
-~ none

IfExpCS
IfExpCS ::= "if’ OclExpressionl[1]

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003

CONCRETE SYNTAX

“then’ OclExpression[2]

"else’ OclExpression[3]
“endif’
Abstract syntax mapping
IfExpCS.ast : IfExp

Synthesised attributes
I[fExpCS.ast.condition = OclExpression[1l].ast
IfExpCS.ast.thenExpression = OclExpression[2].ast
IfExpCS.ast.elseExpression = OclExpression[3].ast

Inherited attributes
OclExpression[1l].env = IfExpCS.env
OclExpression[2].env IfExpCS.env
OclExpression[3].env IfExpCS.env

Disambiguating rules
-- none

4.3.1 Comments

It is possible to include comments anywhere in a text composed according to the above concrete syntax. There
will be no mapping of any comments to the abstract syntax. Comments are simply skipped when the text is being
parsed. There are two forms of comments, a line comment and a paragraph comment. The line comment starts
with the string ‘--” and ends with the next newline. The paragraph comment starts with the string ‘/*’, and ends
with the string ‘*/°. Paragraph comments may be nested.

4.3.2 Operator Precedence
In the grammar, the precedence of the operators from highest to lowest is as follows:
@pre
dot and arrow operations: ‘" and ‘->’
unary ‘not’ and unary minus ‘-’
“*’and ‘/
‘+” and binary ‘-’
‘if-then-else-endif’
<, =, =
= s
‘and’, ‘or’ and ‘xor’
‘implies’

Parentheses ‘(" and ‘)’ can be used to change precedence.

4.4 ENVIRONMENT DEFINITION

The Environment type used in the rules for the concrete syntax is defined according to the following invariants
and additional operations. A diagrammatic view can be found in figure 4-1 on page 4-2. Environments can be
nested, denoted by the existence of a parent environment. Each environment keeps a list of named elements, that
have a name a reference to a ModelElement.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 4-24

CONCRETE SYNTAX

4.4.1 Environment

The definition of Environment has the following invariants and specifications of its operations.

[1] The attribute EMPTY_ENV is really just a helper to avoid having to say new Environment (...).

context Environment
inv EMPTY_ENV_Definition: EMPTY_ENV.namedElements->isEmpty()

[2] Find a named element in the current environment, not in its parents, based on a single name.

context Environment::lookuplLocal(name : String) : NamedElement
post: result = namedElements->any(v | v.name = name)

[3] Find a named element in the current environment or recursively in its parent environment, based on a single
name.
context Environment::lookup(name: String) : ModelElement
post: result = if not lookuplLocal(name).oclIsUndefined() then
lTookupLocal(name).referredElement
else
parent.lookup(name)
endif

[4] Find a named element in the current environment or recursively in its parent environment, based on a path
name.
context Environment::lookupPathName(names: Sequence(String)) : ModelElement
post: let firstNamespace : ModelElement = TookuplLocal(names->first()).referredElement
in
if firstNamespace.isOclKind(Namespace)
-- indicates a sub namespace of the namespace in which self is present
then
result

self.nestedEnvironment().addNamespace(

firstNamespace).lookupPathName(names->tail())
else

-- search in surrounding namespace
result = parent.lookupPathName(names)
endif

[5] Add a new named element to the environment. Note that this operation is defined as a query operation so that
it can be used in OCL constraints.

context Environment::addElement (name : String,
elem : ModelElement, imp : Boolean) : Environment
pre : -- the name must not clash with names already existing in this environment
self.lookuplLocal(name).oclIsUndefined()
post: result.parent = self.parent and
result.namedElements->includesAll (self.namedElements) and
result.namedElements->count (v | v.oclIsNew()) =1 and
result.namedElements->forAll (v | v.oclIsNew() implies
v.name = name and v.referredElement = elem)
and
v.mayBelImplicit = imp)

[6] Combine two environments resulting in a new environment. Note that this operation is defined as a query
operation so that it can be used in OCL constraints.

context Environment::addEnvironment(env : Environment) : Environment
pre : -- the names must not clash with names already existing in this environment
enf.namedElements->forAll(nm | self.lookupLocal(nm).oclIsUndefined())
post: result.parent = self.parent and
result.namedElements = self.namedElements->union(env.namedElements)

[7] Add all elements in the namespace to the environment.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 4-25

CONCRETE SYNTAX

context Environment::addNamespace(ns: Namespace) : Environment
post: result.namedElements = ns.getEnvironmentWithoutParents().namedETements->union(

self.namedETements)
post: result.parent = self.parent

[8] This operation results in a new environment which has the current one as its parent.

context Environment::nestedEnvironment() : Environment
post: result.namedElements->iskEmpty()

post: result.parent = self

post: result.oclIsNew()

[9] Lookup a given attribute name of an implicitly named element in the current environment, including its par-

ents.

context Environment::lookupImplicitAttribute(name: String) : Attribute
pre: -- none
post: result =

lookupImplicitSourceForAttribute(name).referredElement.oclAsType(Attribute)

[10] Lookup the implicit source belonging to a given attribute name in the current environment, including the par-

ents.

context Environment::lookupImplicitSourceForAttribute(name: String) : NamedElement
pre: -- none

post: let foundElement : NamedElement =
namedElements->select(mayBelmplicit)
->any(ne | not ne.getType().lookupAttribute(name).oclIsUndefined()) in
result = if foundAttribute.oclIsUndefined() then

self.parent.lookupImplicitSource ForAttribute(name)

else
foundElement

end

[11]Lookup up a given association end name of an implicitly named element in the current environment, includ-

ing its parents.

context Environment::lookupImplicitAssociationEnd(name: String) : AssociationEnd
pre: -- none

post: let foundAssociationEnd : Associationknd =
namedElements->select(mayBelmplicit)

->any(ne | not ne.getType().lookupAssociationEnd(name).oclIsUndefined()) in

result = if foundAssociationEnd.oclIsUndefined() then
self.parent.lookupImplicitAssociationEnd(name)
else

foundAssociationknd
end

[12] Lookup up an operation of an implicitly named element with given name and parameter types in the current

environment, including its parents.

context Environment::lookupImplicitOperation(name: String,

params : Sequence(Classifier)) : Operation

pre: -- none
post: let foundOperation : Operation =
namedElements->select(mayBelmplicit)

->any(ne | not ne.getType().lookupOperation(name, params).oclIsUndefined()) in

result = if foundOperation.oclIsUndefined() then
self.parent.lookupImplicitOperation(name)
else
foundOperation
end

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003

4-26

CONCRETE SYNTAX

4.4.2 NamedElement

A named element is a modelelement which is referred to by a name. A modelement itself has a name, but this is
not always the name which is used to refer to it.

The operation getType() returns the type of the referred modelelement.

context NamedElement::getType() : Classifier
pre: -- none
post: referredElement.oclIsKindOf(VariableDeclaration) implies
result = referredElement.oclAsType(VariableDeclaration).type
post: referredElement.oclIsKindOf(Classifier) implies
result = referredElement
post: referredElement.oclIsKindOf(State) implies
result = -- TBD: when aligning with UML 2.0 Infrastructure

4.4.3 Namespace

The following additional operation returns the information of the contents of the namespace in the form of an
Environment object, where Environment is the class defined in this chapter. Note that the parent association of
Environment is not filled.

Because the definition of this operation is completely dependent on the UML metamodel, and this model will
be considerably different in the 2.0 version, the definition is left to be done.

context Namespace::getEnvironmentWithoutParents() : Environment

post: self.isTypeOf(Classifier) implies -- TBD when aligning with UML 2.0 Infrastrcuture
-- include all class features and contained classifiers

post: self.isTypeOf(Package) implies -- TBD when aligning with UML 2.0 Infrastrcuture
-- include all classifiers and subpackages

post: self.isTypeOf(StateMachine)implies -- TBD when aligning with UML 2.0 Infrastrcuture
-- include all states

post: self.isTypeOf(Subsystem) implies -- TBD when aligning with UML 2.0 Infrastrcuture
-- include all classifiers and subpackages

The following operation returns an Environment that contains a reference to its parent environment, which is
itself created by this operation by means of a recursive call, and therefore contains a parent environment too.

context Namespace::getEnvironmentWithParents() : Environment

post: result.NamedElements = self.getEnvironmentWithoutParents()

post: if self.namespace->notEmpty() -- this namespace has an owning namespace
then result.parent = self.namespace.getEnvironmentWithParents()
else result.parent OclUndefined
endif

4.5 CONCRETE TO ABSTRACT SYNTAX MAPPING

The mapping from concrete to abstract syntax is described as part of the grammar. It is described by adding a syn-
thesized attribute ast to each production which has the corresponding metaclass from the abstract syntax as its
type. This allows the mapping to be fully formalized within the attribute grammar formalism.

4.6 ABSTRACT SYNTAX TO CONCRETE SYNTAX MAPPING

IIt is often useful to have a defined mapping from the abstract syntax to the concrete syntax. This mapping can be
defined by applying the production rules in section 4.3 (“Concrete Syntax”) from left to right. As a general guide-

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 4-27

CONCRETE SYNTAX

line nothing will be implicit (like e.g implicit collect, implicit use of object as set, etc.), and all iterator variables
will be filled in completely. The mapping is not formally defined in this document but should be obvious.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 4-28

Semantics Described using UML

This chapter describes the semantics of the OCL using the UML itself to describe the semantic domain and the
mapping between semantic domain and abstract syntax. It explains the semantics of OCL in a manner based on
the report Unification of Static and Dynamic Semantics for UML [Kleppe2001], which in its turn is based on the
MML report [Clark2000]. The main difference between appendix A (“Semantics”), which describes the seman-
tics in a formal manner, and this chapter is that this chapter defines a semantics for the ocl message expression.

9.1 INTRODUCTION

In section 3.3 (“The Expressions Package”) an OCL expression is defined as: "an expression that can be evalu-
ated in a given environment", and in section 3.2 (“The Types Package”) it is stated that an "evaluation of the
expression yields a value". The ‘meaning’ (semantics) of an OCL expression, therefore, can be defined as the
value yielded by its evaluation in a given environment.

In order to specify the semantics of OCL expressions we need to define two things: (1) the set of possible val-
ues that evaluations of expressions may yield, and (2) evaluations and their environment. The set of possible val-
ues is called the semantic domain. The set of evaluations together with their associations with the concepts from
the abstract syntax represent the mapping from OCL expressions to values from the semantic domain. Together
the semantic domain and the evaluations with their environment will be called domain in this chapter.

The semantic domain is described in the form of a UML package, containing a UML class diagram, classes,
associations, and attributes. The real semantic domain is the (infinite) set of instances that can be created accord-
ing to this class diagram. To represent the evaluation of the OCL expressions in the semantic domain a second
UML package is used. In it, a set of so-called evaluation classes is defined (in short eval). Each evaluation class is
associated with a value (its result value), and a name space environment that binds names to values. Note that the
UML model comprising both packages, resides on layer 1 of the OMG 4-layered architecture, while the abstract
syntax defined in chapter 3 (“Abstract Syntax”), resides on layer 2.

The semantics of an OCL expression is given by association: each value defined in the semantic domain is
associated with a type defined in the abstract syntax, each evaluation is associated with an expression from the
abstract syntax. The value yielded by an OCL expression in a given environment, its ‘meaning’, is the result value
of its evaluation within a certain name space environment. The semantics are also described in the form of a UML
package called "AS-Domain-Mapping". Note that this package links the domain on layer 1 of the OMG 4-layered
architecture with the abstract syntax on layer 2. The AS-Domain-Mapping package itself can not be positioned in
one of the layers of the OMG 4-layered architecture. Note also that this package contains associations only, no
new classes are defined.

Figure 5-1 on page 5-2 shows how the packages defined in this chapter relate to each other, and to the packages
from the abstract syntax. It shows the following packages:

The Domain package describes the values and evaluations. It is subdivided into two subpackages:

The Values package describes the semantic domain. It shows the values OCL expressions may yield as
result.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 5-1

SEMANTICS DESCRIBED USING UML

—‘ Ocl-AbstractS yntax OCL-Domain

Types —\—

(from Ocl-AbstractSyntax) Values
(from OCL-Domain)

N

— —1_
. Expressions $ L Evaluations .
(from Ocl-AbstractSyntax) — (from OCL-Domain)

Iy

|
|
|
|
OCL-AS-Domain-Mappin‘g
|

|

\

|

‘ Type-Value
- J» (from OCL-AS-Domain-Mapping)

|

|

A
|
|
|
|
|
|
- -

-
|
|
|

Expression-Evaluation
t (from OCL-AS-Domain-Mapping)

Figure 5-1 Overview of packages in the UML-based semantics

The Evaluations package describes the evaluations of OCL expressions. It contains the rules that determine
the result value for a given expression.

The AS-Domain-Mapping package describes the associations of the values and evaluations with elements
from the abstract syntax. It is subdivided into two subpackages:
The Type-Value package contains the associations between the instances in the semantics domain and the
types in the abstract syntax.

The Expression-Evaluation package contains the associations between the evaluation classes and the
expressions in the abstract syntax.

9.2 THE VALUES PACKAGE

OCL is an object language. A value can be either an object, which can change its state in time, or a data type,
which can not change its state. The model in figure 5-2 on page 5-3 shows the values that form the semantic
domain of an OCL expression. The basic type is the Value, which includes both objects and data values. There is
a special subtype of Value called UndefinedValue, which is used to represent the undefined value for any Type in
the abstract syntax.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 5-2

SEMANTICS DESCRIBED USING UML

DomainElement

i

0.1 | LocalSnapshot *bindings NameValueBinding +vale [y o
fsucc 0..n - Stri
01 O name : String 0.n 1
+pred +history
{ordered}
[\ |
1 ObjectValue StaticValue OclVoidValue

Figure 5-2 The kernel values in the semantic domain

+value
Value
+value
0..n
StaticValue NameValueBinding

name : String

Z> +elements’| 0..n

PrimitiveValue CollectionValue TupleValue o
0..1
+elements
EnumValue Element
0.n lindexNr : Integer| 0..n

SetTypeValue SequenceTypeValue BagTypeValue

Figure 5-3 The collection and tuple values in the semantic domain

Figure 5-3 on page 5-3 shows a number of special data values, the collection and tuple values. To distinguish
between instances of the Set, Bag, and Sequence types defined in the standard library, and the classes in this
package that represent instances in the semantic domain, the names SetTypeValue, BagTypeValue, and Sequence-
TypeValue are used, instead of SetValue, BagValue, and Sequence Value.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 5-3

SEMANTICS DESCRIBED USING UML

The value resulting from an ocl message expression is shown in figure 5-4 on page 5-5. It links an ocl message
value to the snapshot of an object.

5.2.1 Definitions of concepts for the Values package.

The section lists the definitions of concepts in the Values package in alphabetical order.

BagTypeValue

A bag type value is a collection value which is a multiset of values, where each value may occur multiple times in
the bag. The values are unordered. In the metamodel, this list of values is shown as an association from Collec-
tionValue (a generalization of BagTypeValue) to Element.

CollectionValue

A collection value is a list of values. In the metamodel, this list of values is shown as an association from Collec-
tionValue to Element.

Associations
elements The values of the elements in a collection.

DomainElement

A domain element is an element of the domain of OCL expressions. It is the generic superclass of all classes
defined in this chapter, including Value and OclExpEval. It serves the same purpose as ModelElement in the
UML meta model.

Element

An element represents a single component of a tuple value, or collection value. An element has an index number,
and a value. The purpose of the index number is to uniquely identify the position of each element within the
enclosing value, when it is used as an element of a SequenceValue.

LocalSnapshot

A local snapshot is a domain element that holds for one point in time the subvalues of an object value. It is always
part of an ordered list of local snapshots of an object value, which is represented in the metamodel by the associ-
ations pred, succ, and history. An object value may also hold a sequence of OcIMessageValues, which the object
value has sent, and a sequence of OcIMessageValues, which the object value has received. Both sequences can
change in time, therefore they are included in a local snapshot. This is represented by the associations in the met-
amodel called inputQ, and outputQ.

A local snapshot has two attributes, isPost and isPre, that indicate whether this snapshot is taken at postcondi-
tion or precondition time of an operation execution. Within the history of an object value it is always possible to
find the local snapshot at precondition time that corresponds with a given snapshot at postcondition time. The
association pre (shown in figure 5-4 on page 5-5) is redundant, but added for convenience.

Associations

bindings The set of name value bindings that hold the changes in time of the subvalues of
the associated object value.

outputQ The sequence of OclMessageValues that the associated ObjectValue at the cer-
tain point in time has sent, and are not yet put through to their targets.

inputQ The sequence of OclMessageValues that the associated ObjectValue at the cer-

tain point in time has received, but not yet dealt with.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 5-4

SEMANTICS DESCRIBED USING UML

pred The predecessor of this local snapshot in the history of an object value.
succ The successor of this local snapshot in the history of an object value.
pre If this snapshot is a snapshot at postcondition time of a certain operation execu-

tion, then pre is the associated snapshot at precondition time of the same opera-
tion in the history of an object value.

NameValueBinding
A name value binding is a domain element that binds a name to a value.

ObjectValue

An object value is a value that has an identity, and a certain structure of subvalues. Its subvalues may change over
time, although the structure remains the same. Its identity may not change over time. In the metamodel, the struc-
ture is shown as a set of NameValueBindings. Because these bindings may change over time, the ObjectValue is
associated with a sequence of LocalSnapshots, that hold a set of NameValueBindings at a certain point in time.

Associations
history The sequence of local snapshots that hold the changes in time of the subvalues of
this object value.

OclMessageValue

An ocl message value is a value that has as target and as source an object value. An ocl message value has a
number of attributes. The name attribute corresponds to the name of the operation called, or signal sent. The
isSyncOperation, isAsyncOperation, and isSignal attributes indicate respectively whether the message corre-
sponds to a synchronous operation, an asynchrounous operation, or a signal.

Value NameValueBinding
0..n"I" +arguments
{ordered}
+target
1 OclMessageValue

name : String

ObjectValue | 1 isSyncOperation : Boolean

+source isAsyncOperation : Boolean +returnMessage
isSignal : Boolean 0..1
+inputQ /' 0..n 0..n/)\ +outputQ
0..n \|/+history
LocalSnapshot

isPost : Boolean
isPre : Boolean

+pre '|'0..1

Figure 5-4 The message values in the semantic domain

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 5-5

SEMANTICS DESCRIBED USING UML

Associations

arguments A sequence of name value bindings that hold the arguments of the message from
the source to the target.

source The object value that has sent this signal.

target The object value for which this signal has been intended.

returnMessage The ocl message value that holds the values of the result and out parameters of a

synchronous operation call in its arguments. Is only present if this message rep-
resents a synchronous operation call.

OclVoidValue

An undefined value is a value that represents void or undefined for any type.

PrimitiveValue
A primitive value is a predefined static value, without any relevant substructure (i.e., it has no parts).

SequenceTypeValue

A sequence type value is a collection value which is a list of values where each value may occur multiple times in
the sequence. The values are ordered by their position in the sequence. In the metamodel, this list of values is
shown as an association from CollectionValue (a generalization of SequenceTypeValue) to Element. The position
of an element in the list is represented by the attribute indexNr of Element.

SetTypeValue

A set type value is a collection value which is a set of elements where each distinct element occurs only once in
the set. The elements are not ordered. In the metamodel, this list of values is shown as an association from Collec-
tionValue (a generalization of SetTypeValue) to Element.

StaticValue

A static value is a value that will not change over time.!

TupleValue

A tuple value (also known as record value) combines values of different types into a single aggregate value. The
components of a tuple value are described by tuple parts each having a name and a value. In the metamodel, this
is shown as an association from TupleValue to NameValueBinding.

Associations
elements The names and values of the elements in a tuple value.

Value
A part of the semantic domain.

1. As StaticValue is the counterpart of the DataType concept in the abstract syntax, the name DataValue would be preferable. Because this
name is used in the UML 1.4 specification to denote a model of a data value, the name StaticValue is used here.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 5-6

SEMANTICS DESCRIBED USING UML

5.2.2 Well-formedness rules for the Values Package

BagTypeValue

No additional well-formedness rules.

CollectionValue
No additional well-formedness rules.

DomainElement
No additional well-formedness rules.

Element
No additional well-formedness rules.

EnumValue
No additional well-formedness rules.

LocalSnapshot

[1] Only one of the attributes isPost and isPre may be true at the same time.

context LocalSnapshot
inv: isPost implies isPre = false
inv: ispre implies isPost = false

[2] Only if a snapshot is a postcondition snapshot it has an associated precondition snapshot.

context LocalSnapshot

inv: isPost implies pre->size() =1

inv: not isPost implies pre->size() =0

inv: self.pre->size() =1 implies self.pre.isPre = true

NameValueBinding
No additional well-formedness rules.

ObjectValue

[1] The history of an object is ordered. The first element does not have a predecessor, the last does not have a suc-
Cessor.

context ObjectValue

inv: history->oclIsTypeOf(Sequence(lLocalSnapShot))
inv: history->Tast().succ->size = 0

inv: history->first().pre->size =0

OclMessageValue

[1] Only one of the attributes isSyncOperation, isAsyncOperation, and isSignal may be true at the same time.

context OclMessageValue
inv: isSyncOperation implies isAsyncOperation = false and isSignal = false

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 5-7

SEMANTICS DESCRIBED USING UML

inv: isAsyncOperation implies isSyncOperation = false and isSignal = false
inv: isSignal implies isSyncOperation = false and isAsyncOperation = false

[2] The return message is only present if, and only if the ocl message value is a synchronous operation call.

context OclMessageValue
inv: isSyncOperation implies returnMessage->size() =1
inv: not isSyncOperation implies returnMessage->size() =0

OclVoidValue

No additional well-formedness rules.

PrimitiveValue
No additional well-formedness rules.

SequenceTypeValue

[1] All elements belonging to a sequence value have unique index numbers.

self.element->isUnique(e : Element | e.indexNr)

SetTypeValue

[1] All elements belonging to a set value have unique values.

self.element->isUnique(e : Element | e.value)

StaticValue
No additional well-formedness rules.

TupleValue

[1] All elements belonging to a tuple value have unique names.

self.elements->isUnique(e : Element | e.name)

Value
No additional well-formedness rules.

5.2.3 Additional operations for the Values Package

LocalSnapshot

[1] The operation allPredecessors returns the collection of all snapshots before a snapshot, allSuccessors returns

the collection of all snapshots after a snapshot.

context LocalSnapshot
def: let allPredecessors() : Sequence(lLocalSnapshot) =
if pred->notEmpty then
pred->union(pred.allPredecessors())
else
Sequence {}
endif

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003

5-8

SEMANTICS DESCRIBED USING UML

def: let allSuccessors() : Sequence(lLocalSnapshot) =
if succ->notEmpty then
succ->union(succ.allSuccessors())
else
Sequence {}
endif

ObjectValue

[1] The operation getCurrentValueOf results in the value that is bound to the name parameter in the latest snap-
shot in the history of an object value. Note that the value may be the Undefined Value.

context ObjectValue::getCurrentValueOf(n: String): Value
pre: -- none
post: result = history->last().bindings->any(name = n).value

[2] The operation outgoingMessages results in the sequence of OclMessageValues that have been in the output
queue of the object between the last postcondition snapshot and its associated precondition snapshot.

context OclExpEval::outgoingMessages() : Sequence(OclMessageValue)
pre: -- none
post:
let end: LocalSnapshot =
history->last().allPredecessors()->select(isPost = true)->first() in
let start: LocalSnapshot = end.pre 1in
let inBetween: Sequence(LocalSnapshot) =
start.allSuccessors()->excluding(end.allSuccessors())->including(start) in
result = inBetween.outputQ->iterate (
-- creating a sequence with all elements present once
m : oclMessageValue;
res: Sequence(OclMessageValue) = Sequencef!}
| if not res->includes(m)
then res->append(m)
else res
endif)
endif

TupleValue

[1] The operation getValueOf results in the value that is bound to the name parameter in the tuple value.

context TupleValue::getValueOf(n: String): Value
pre: -- none
post: result = elements->any(name = n).value

5.2.4 Overview of the Values package

Figure 5-5 on page 5-10 shows an overview of the inheritance relationships between the classes in the Values
package.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 5-9

SEMANTICS DESCRIBED USING UML

DomainElement

1

NameValueBinding Value LocalS napshot Element

7

ObjectValue OclMessageValue || StaticValue OclVoidValue
CollectionValue TupleValue PrimitiveValue
SetTypeValue BagTypeValue E numV alue StringValue

SequenceTypeValue

Figure 5-5 The inheritance tree of classes in the Values package

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003

5-10

SEMANTICS DESCRIBED USING UML

9.3 THE EVALUATIONS PACKAGE

This section defines the evaluations of OCL expressions. The evaluations package is a mirror image of the
expressions package from the abstract syntax. Figure 5-6 on page 5-11 shows how the environment of an OCL
expression evaluation is structured. The environment is determined by the placement of the expression within the
UML model as discussed in chapter 7 (“The Use of Ocl Expressions in UML Models”). The calculation of the
environment is done in the ExpressionInOclEval, which will be left undefined here.

Figure 5-7 on page 5-12 shows the core part of the Evaluations package. The basic elements in the package are
the classes OclEvaluation, PropertyCallExpEval and VariableExpEval. An OclEvaluation always has a result
value, and a name space that binds names to values. In figure 5-8 on page 5-15 the various subtypes of model
propertycall evaluation are defined.

Most of the OCL expressions can be simply evaluated, i.e. their value can be determined based on a non-
changing set of name value bindings. Operation call expressions, however, need the execution of the called oper-
ation. The semantics of the execution of an operation will be defined in the UML infrastructure. For our purposes
it is enough to assume that an operation execution will add to the environment of an OCL expression the name
‘result’ bound to a certain value. In order not to become tangled in a mix of terms, the term evaluation is used in
the following to denote both the ‘normal’ OCL evaluations and the executions of operation call expressions.

In sections 5.3.2 (“Model PropertyCall Evaluations™) to 5.3.6 (“Let expressions”) special subclasses of OclEx-
pEval will be defined.

5.3.1 Definitions of concepts for the Evaluations package

The section lists the definitions of concepts in the Evaluations package in alphabetical order.

DomainElement

+environment +bindings
1 1 ‘ ‘ 0.n
ExpressioninOclE val OCIExpEval EvalEnvironment NameValueBinding
0..1 | +context 1 1 0.1

+('3nvironment

+beforeE nvironment

Figure 5-6 The environment for ocl evaluations

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 5-11

SEMANTICS DESCRIBED USING UML

=N

fin
+bodyEvals 1.. InitExp

{ordered} OclExpEval +resultValue Value

(from Values)
0..n 1
+source 0..1 ZF

0..1

Property CallEx pEval LiteralExpEval OclMessageExpEval VariableExpEval

Q 0.n

+referredVariable

ModelProperty LoopExpEval +iterators 1
CallExpEval StringValue
0.1 0..n 1.n (from Values)
! +name
+result
lteratorExpEval IterateExpEval Variable Decl Eval
0..n 1 0..1

Figure 5-7 Domain model for ocl evaluations

EvalEnvironment

A EvalEnvironment is a set of NameValueBindings that form the environment in which an OCL expression is
evaluated. A EvalEnvironment has three operations which are defined in section 5.3.8 (“Additional operations of
the Evaluations package”).

Associations
bindings The NameValueBindings that are the elements of this name space.

IterateExpEval

An IterateExpEval is an expression evaluation which evaluates its body expression for each element of a collec-
tion value, and accumulates a value in a result variable. It evaluates an IterateExp.

IteratorExpEval
An IteratorExp is an expression evaluation which evaluates its body expression for each element of a collection.

ExpressioninOclEval

An ExpressionInOclEval is an evaluation of the context of an OCL expression. It is the counterpart in the domain
of the ExpressionInOcl metaclass defined in chapter 7 (“The Use of Ocl Expressions in UML Models”). It is
merely included here to be able to determine the environment of an OCL expression.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 5-12

SEMANTICS DESCRIBED USING UML

LiteralExpEval

A Literal expression evaluation is an evaluation of a Literal expression.

LoopExpEval
A loop expression evaluation is an evaluation of a Loop expression.

Associations

bodyEvals The oclExpEvaluations that represent the evaluation of the body expression for
each element in the source collection.
iterators The names of the iterator variables in the loop expression.

ModelPropertyCallExpEval

A model property call expression evaluation is an evaluation of a ModelPropertyCallExp. In figure 5-8 on page 5-
15 the various subclasses of ModelPropertyCallExpEval are shown.

Operations
atPre The atPre operation returns true if the property call is marked as being evaluated
at precondition time.
OclExpEval

An ocl expression evaluation is an evaluation of an Oc/Expression. It has a result value, and it is associated with a
set of name-value bindings, called environment. These bindings represent the values that are visible for this eval-
uation, and the names by which they can be referenced. A second set of name-value bindings is used to evaluate
any sub expression for which the operation atPre returns true, called beforeEnvironment.

Note that as explained in chapters 4 (“Concrete Syntax™) and 7 (“The Use of Ocl Expressions in UML Mod-
els”), these bindings need to be established, based on the placement of the OCL expression within the UML
model. A binding for an invariant will not need the beforeEnvironment, and it will be different from a binding of
the same expression when used as precondition.

Associations

environment The set of name value bindings that is the context for this evaluation of an ocl
expression.
beforeEnvironment The set of name value bindings at the precondition time of an operation, to eval-

uate any sub expressions of type ModelPropertyCallExp for which the operation
atPre returns true.
resultValue The value that is the result of evaluating the OclExpression.

OclMessageExpEval

An ocl message expression evaluation is defined in section 5.3.4 (“Ocl Message Expression Evaluations™), but
included in this diagram for completeness.

PropertyCallExpEval
A property call expression evaluation is an evaluation of a PropertyCallExp.
Associations
source The result value of the source expression evaluation is the instance that performs
the property call.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 5-13

SEMANTICS DESCRIBED USING UML

VariableDeclEval

A variable declaration evaluation represents the evaluation of a variable declaration. Note that this is not a sub-
type of OclExpEval, therefore it has no resultValue.

Associations

name The name of the variable.
initExp The value that will be initially bound to the name of this evaluation.
VariableExpEval

A variable expression evaluation is an evaluation of a VariableExp, which in effect is the search of the value that
is bound to the variable name within the environment of the expression.

Associations
variable The name that refers to the value that is the result of this evaluation.

5.3.2 Model PropertyCall Evaluations

The subtypes of ModelPropertyCallExpEval are shown in figure 5-8, and are defined in this section in alphabeti-
cal order.

AssociationClassCallExpEval

An association end call expression evaluation is an evaluation of a AssociationClassCallExp, which in effect is
the search of the value that is bound to the associationClass name within the expression environment.
Associations

referredAssociationClass The name of the AssociationClass to which the corresponding AssociationClass-
CallExp is a reference.

AssociationEndCallExpEval

An association end call expression evaluation is an evaluation of a AssociationEndCallExp, which in effect is the
search of the value that is bound to the associationEnd name within the expression environment.

Associations

referredAssociationEnd The name of the AssociationEnd to which the corresponding NavigationCallExp
is a reference.

AttributeCallExpEval

An attribute call expression evaluation is an evaluation of an AttributeCallExp, which in effect is the search of the
value that is bound to the attribute name within the expression environment.
Associations

referredAttribute The name of the Attribute to which the corresponding ArtributeCallExp is a ref-
erence.

NavigationCallExpEval
A navigation call expression evaluation is an evaluation of a NavigationCallExp.
Associations

navigationSource The name of the AssociationEnd of which the corresponding NavigationCallExp
is the source.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 5-14

SEMANTICS DESCRIBED USING UML

OperationCallExp

An operation call expression evaluation is an evaluation of an OperationCallExp.

Associations
arguments

referredOperation

The arguments denote the arguments to the operation call. This is only useful
when the operation call is related to an Operation that takes parameters.

The name of the Operation to which this OperationCallExp is a reference. This
is an Operation of a Classifier that is defined in the UML model.

5.3.3 If Expression

Evaluations

If expression evaluations are shown in figure 5-9, and defined in this section.

ModelPropertyCallExpEval

-

NavigationCallExpEval |g |

AttributeCallExpEval

2

AssociationClassCallExpEval

AssociationEndCallExpEval

n
+referredAssociationClass

+navigationSource

1

+referredAttribute
1

{ord

0..n
ered}

+qualifiers 0..

+referredAssociationEnd

1

OclExpE val

+arguments 0Q..n

OperationCallExpEval

1

StringValue

(from Values)

+referredOperation
1

Figure 5-8 Domain model for ModelPropertyCallExpEval and subtypes

OCL 2.0 REVISED SUBMISSION

VERSION 1.6, JANUARY 6, 2003

5-15

SEMANTICS DESCRIBED USING UML

+thenExpression Sl +elseExpression

1 1 1
+condition
FExpEval
Figure 5-9 Domain model for if expression
IfExpEval
An IfExpEval is an evaluation of an IfExp.
Associations
condition The OclExpEval that evaluates the condition of the corresponding IfExpression.
thenExpression The OclExpEval that evaluates the thenExpression of the corresponding IfEx-
pression.
elseExpression The OclExpEval that evaluates the elseExpression of the corresponding IfEx-
pression.

5.3.4 Ocl Message Expression Evaluations

Ocl message expressions are used to specify the fact that an object has, or will sent some message to another
object at a some moment in time. Ocl message expresssion evaluations are shown in figure 5-10 on page 5-16,
and defined in this section.

DomainElement

0..1
. OclExpEval
| +expression
UnspecifiedValue ExpEval 1
+target
1

+unspecified /|°0..1
1 | OcIMessageArgEval

+arguments/\Q..n
{ordered}

1

OclMessageE xp Eval
name : String

Figure 5-10 Domain model for message evaluation

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 5-16

SEMANTICS DESCRIBED USING UML

OclMessageArgEval

An ocl message argument evaluation is an evaluation of a OclMessageArg. It represents the evaluation of the
actual parameters to the Operation or Signal. An argument of a message expression is either an ocl expression, or
a variable declaration.

Associations

variable The OclExpEval that represents the evaluation of the argument, in case the argu-
ment is a VariableDeclaration.
expression The OclExpEval that represents the evaluation of the argument, in case the argu-

ment is an OclExpression.

OclMessageExpEval

An ocl message expression evaluation is an evaluation of a OclMessageExp. As explained in [Kleppe2000] the
only demand we can put on the ocl message expression is that the OclMessageValue it represents (either an oper-
ation call, or a UML signal), has been at some time between ‘now’ and a reference point in time in the output
queue of the sending instance. The ‘now’ timepoint is the point in time at which this evaluation is performed.
This point is represented by the environment link of the OcIMessageExpEval (inherited from OclExpEval).

Associations

target The OclExpEval that represents the evaluation of the target instance or instances
on which the action is perfomed.
arguments The OclMessageArgEvals that represent the evaluation of the actual parameters

to the Operation or Message.

UnspecifiedValueExpEval

An unspecified value expression evaluation is an evaluation of an UnSpecifiedValueExp. It results in a randomly
picked instance of the type of the expression.

5.3.5 Literal Expression Evaluations

This section defines the different types of literal expression evaluations in OCL, as shown in figure 5-11 on
page 5-18. Again it is a complete mirror image of the abstract syntax.

BooleanLiteralExpEval
A boolean literal expression evaluation represents the evaluation of a boolean literal expression.

CollectionltemEval
A collection item evaluation represents the evaluation of a collection item.

CollectionLiteralExpEval
A collection literal expression evaluation represents the evaluation of a collection literal expression.

CollectionLiteralPartEval
A collection literal part evaluation represents the evaluation of a collection literal part.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 5-17

SEMANTICS DESCRIBED USING UML

CollectionRangeEval

A collection range evaluation represents the evaluation of a collection range.

EnumLiteralExpEval

An enumeration literal expression evaluation represents the evaluation of an enumeration literal expression.

IntegerLiteralExpEval

A integer literal expression evaluation represents the evaluation of a integer literal expression.

NumericLiteralExpEval

A numeric literal expression evaluation represents the evaluation of a numeric literal expression.

PrimitiveLiteralExpEval

A primitive literal expression evaluation represents the evaluation of a primitive literal expression.

LiteralExpEval

&

‘ PrimitiveLiteralExpEval ‘ ‘ EnumLiteralExpEval

T

TupleLiteralExpE val

1

BooleanLiteralExpEval

StringLiteralExpEval

+tuplePart

0..n

CollectionLiteralExpEval

kind : CollectionKind

NumericLiteralExpEval

VariableDeclEval

1

name : String

IntegerLiteralExpEval RealLiteralExpEval

Figure 5-11 Domain model for literal expressions

0..1

+parts

1

Value

{ordered}
0.n +elemen

CollectionLiteralPartEval

e

CollectionRangeEval || CollectionitemEval

+first

0.1

1 +last

0..1 0.1

1

+initExp

1 OclExpEval | +item

OCL 2.0 REVISED SUBMISSION

VERSION 1.6, JANUARY 6, 2003

5-18

SEMANTICS DESCRIBED USING UML

RealLiteralExpEval

A real literal expression evaluation represents the evaluation of a real literal expression.

StringLiteralExpEval

A string literal expression evaluation represents the evaluation of a string literal expression.

TupleLiteralExpEval

A tuple literal expression evaluation represents the evaluation of a tuple literal expression.

TupleLiteralExpPartEval

A tuple literal expression part evaluation represents the evaluation of a tuple literal expression part.

5.3.6 Let expressions

Let expressions define new variables. The structure of the let expression evaluation is shown in figure 5-12 on

+in

OclExpEval
1
0..1/\+initExpression
0.1 0..1 ~\ariabl
LetExpEval 0 vanaple StringValue
.)

Figure 5-12 Domain model for let expression
page 5-19.

LetExpEval

A Let expression evaluation is an evaluation of a Let expression that defines a new variable with an initial value.
A Let expression evaluation changes the environment of the in expression evaluation.

Associations

variable The name of the variable that is defined.
in The expression in whose environment the defined variable is visible.
initExpression The expression that represents the initial value of the defined variable.

5.3.7 Well-formedness Rules of the Evaluations package

The metaclasses defined in the evaluations package have the following well-formednes rules. These rules state
how the result value is determined. This defines the semantics of the OCL expressions.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 5-19

SEMANTICS DESCRIBED USING UML

AssociationClassCallExpEval

[1] The result value of an association class call expression is the value bound to the name of the association class
to which it refers. Note that the determination of the result value when qualifiers are present is specified in
section 5.4.3 (“Well-formedness rules for the AS-Domain-Mapping.exp-eval Package”). The operation get-
CurrentValueOf is an operation defined on ObjectValue in section 5.2.3 (“Additional operations for the Values
Package”).
context AssociationClassCallExpEval inv:
qualifiers->size = 0 implies

resultValue =
source.resultValue.getCurrentValueOf(referredAssociationClass.name)

AssociationEndCallExpEval

[1] The result value of an association end call expression is the value bound to the name of the association end to
which it refers. Note that the determination of the result value when qualifiers are present is specified in sec-
tion 5.4.3 (“Well-formedness rules for the AS-Domain-Mapping.exp-eval Package”).

context AssociationEndCallExpEval inv:
qualifiers->size = 0 implies

resultValue

source.resultValue.getCurrentValueOf(referredAssociationEnd.name)

AttributeCallExpEval

[1] The result value of an attribute call expression is the value bound to the name of the attribute to which it
refers.

context AttributeCallExpEval inv:
resultValue = if source.resultValue->isOcl1Type(ObjectValue) then
source.resultValue->asOclType(ObjectValue)
.getCurrentValueOf(referredAttribute.name)
else -- must be a tuple value
source.resultValue->asOc1Type(TupleValue)
.getValueOf(referredAttribute.name)
endif

BooleanLiteralExpEval

No extra well-formedness rules. The manner in which the resultValue is determined is given in section 5.4.3
(“Well-formedness rules for the AS-Domain-Mapping.exp-eval Package”).

CollectionltemEval

[1] The value of a collection item is the result value of its item expression. The environment of this ifem expres-
sion is equal to the environment of the collection item evaluation.
context CollectionItemEval
inv: element = item.resultValue
inv: item.environment = self.environment

CollectionLiteralExpEval

[1] The environment of its parts is equal to the environment of the collection literal expression evaluation.
context CollectionlLiteralExpEval
inv: parts->forA11(p | p.environment = self.environment)

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 5-20

SEMANTICS DESCRIBED USING UML

[2] The result value of a collection literal expression evaluation is a collection literal value, or one of its sub-
types.

context CollectionLiteralExpEval inv:
resultValue.isOclKind(CollectionValue)

[3] The number of elements in the result value is equal to the number of elements in the collection literal parts,
taking into account that a collection range can result in many elements.

context CollectionlLiteralExpEval inv:
resultValue.elements->size() = parts->collect(element)->size()->sum()

[4] The elements in the result value are the elements in the collection literal parts, taking into account that a col-
lection range can result in many elements.

context CollectionlLiteralExpEval inv:
let allElements = parts->collect(element)->flatten() in
Sequence{l..allElements->size()}->forAl1(i: Integer
resultValue.elements->at(i).name * and
resultValue.elements->at(i).value = allElements->at(i) and
self.kind = CollectionKind::Sequence implies
resultValue.elements->at(i).indexNr = i)

CollectionLiteralPartEval

No extra well-formedness rules. The manner in which its value is determined is given by its subtypes.

CollectionRangeEval
[1] The value of a collection range is the range of integer numbers between the result value of its first expression
and its last expression.

context CollectionRangeEval
inv: element.isOc1Type(Sequence(Integer)) and
element = getRange(first->asOclType(Integer), last->asOclType(Integer))

EnumLiteralExpEval
No extra well-formedness rules.

EvalEnvironment

[1] All names in a name space must be unique.

context EvalEnvironment inv:
bindings->collect(name)->forAl1(name: String | bindings->collect(name)->isUnique(name))

ExpressioninOclEval
No extra well-formedness rules.

IfExpEval
[1] The result value of an if expression is the result of the thenExpression if the condition is true, else it is the
result of the elseExpression.

context IfExpEval inv:
resultValue = if condition then thenExpression.resultValue else elseExpression.resultValue

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 5-21

SEMANTICS DESCRIBED USING UML

[2] The environment of the condition, thenExpression and elseExpression are both equal to the environment of
the if expression.

context IfExpEval

inv: condition.environment = environment

inv: thenExpression.environment = environment
inv: elseExpression.environment = environment

IntegerLiteralExpEval

No extra well-formedness rules. The manner in which the resultValue is determined is given in section 5.4.3
(“Well-formedness rules for the AS-Domain-Mapping.exp-eval Package”).

IterateExpEval

[1] All sub evaluations have a different environment. The first sub evaluation will start with an environment in
which all iterator variables are bound to the first element of the source, plus the result variable which is bound
to the init expression of the variable declaration in which it is defined.

context IteratekExpEval
inv: lTet bindings: Sequence(NameValueBindings) =
iterators->collect(1 |
NameValueBinding(i.varName, source->asSequence()->first())
in
bodyEvals->at(l).environment = self.environment->addAl1(bindings)
->add(NameValueBinding(result.name, result.initExp.resultValue))

[2] The environment of any sub evaluation is the same environment as the one from its previous sub evaluation,
taking into account the bindings of the iterator variables, plus the result variable which is bound to the result
value of the last sub evaluation.
inv: let SS: Integer = source.value->size()
in if iterators->size() = 1 then

Sequence{2..SS}->forA11(i: Integer |
bodyEvals->at(i).environment = bodyEvals->at(i-1).environment
->replace(NameValueBinding(iterators->at(1l).varName,

source.value->asSequence()->at(i)))
->replace(NameValueBinding(result.varName,

bodyEvals->at(i-1).resultValue)))
else -- iterators->size() = 2

Sequence{2..SS*SS}->forA11(i: Integer |
bodyEvals->at(i).environment = bodyEvals->at(i-1).environment
->replace(NameValueBinding(iterators->at(1l).varName,
source->asSequence()->at(i.div(SS) + 1)))
->replace(NameValueBinding(iterators->at(2).varName,
source.value->asSequence()->at(i.mod(SS))))
->replace(NameValueBinding(result.varName,

bodyEvals->at(i-1).resultValue)))
endif
[3] The result value of an IteratorExpEval is the result of the last of its body evaluations.

context IteratorkxpEval
inv: resultValue = bodyEvals->last().resultValue

IteratorExpEval

The IteratorExp in the abstract syntax is merely a placeholder for the occurence of one of the predefined iterator
expressions in the standard library (see chapter 6 (“The OCL Standard Library”)). These predefined iterator
expressions are all defined in terms of an iterate expression. The semantics defined for the iterate expression are
sufficient to define the iterator expression. No well-formedness rules for IteratorExpEval are defined.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 5-22

SEMANTICS DESCRIBED USING UML

LetExpEval

[1] A let expression results in the value of its in expression.

context LetExpEval inv:
resultValue in.resultValue

[2] A let expression evaluation adds a name value binding that binds the variable to the value of its initExpres-
sion, to the environment of its in expression.

context LetExpEval
inv: in.environment = self.environment
->add(NameValueBinding(variable.varName, variable.initExpression.resultValue))

[3] The environment of the initExpression is equal to the environment of this Let expression evaluation.

context LetExpEval
inv: initExpression.environment = self.environment

LiteralExpEval

No extra well-formedness rules.

LoopExpEval

The result value of a loop expression evaluation is determined by its subtypes.

[1] There is an OclExpEval (a sub evaluation) for combination of values for the iterator variables. Each iterator
variable will run through every element of the source collection.

context LoopExpEval
inv: bodyEvals->size() =
if iterators->size() =1 then
source.value->size()
else -- iterators->size() = 2

source.value->size() * source.value->size()
endif

[2] All sub evaluations (in the sequence bodyEvals) have a different environment. The first sub evaluation will
start with an environment in which all iterator variables are bound to the first element of the source. Note that

this is an arbitrary choice, one could easily well start with the last element of the source, or any other combi-
nation.

context LoopExpEval
inv: let bindings: Sequence(NameValueBindings) =
iterators->collect(i |
NameValueBinding(i.varName, source->asSequence()->first())
in
bodyEvals->at(1l).environment = self.environment->addAl1(bindings)

[3] All sub evaluations (in the sequence bodyEvals) have a different environment. The environment is the same

environment as the one from the previous bodyEval, where the iterator variable or variables are bound to the
subsequent elements of the source.

context LoopExpEval
inv:
let SS: Integer = source.value->size()
in if iterators->size() =1 then
Sequence{2..SS}->forA1T(i: Integer
bodyEvals->at(i).environment = bodyEvals->at(i-1).environment
->replace(NameValueBinding(iterators->at(1l).varName,
source.value->asSequence()->at(i))))
else -- iterators->size() = 2
Sequence{2..SS*SS}->forA11(i: Integer

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 5-23

SEMANTICS DESCRIBED USING UML

bodyEvals->at(i).environment = bodyEvals->at(i-1).environment
->replace(NameValueBinding(iterators->at(l).varName,
source->asSequence()->at(i.div(SS) + 1)))
->replace(NameValueBinding(iterators->at(2).varName,
source.value->asSequence()->at(i.mod(SS)))))))
endif

ModelPropertyCallExpEval

Result value is determined by its subtypes.

[1] The environment of an ModelPropertyCall expression is equal to the environment of its source.
context ModelPropertyCallExpEval inv:
environment = source.environment

NavigationCallExpEval
[1] When the navigation call expression has qualifiers, the result value is limited to those elements for which the
qualifier value equals the value of the attribute.

-- To be done.

NumericLiteralExpEval
No extra well-formedness rules. Result value is determined by its subtypes.

OclExpEval

The result value of an ocl expression is determined by its subtypes.

[1] The environment of an OclExpEval is determined by its context, i.e. the ExpressionInOclEval.

context OclExpEval
inv: environment = context.environment

[2] Every OclExpEval has an environment in which at most one self instance is known.

context OclExpEval
inv: environment->select(name = ’self’)->size() =1

OclMessageExpEval

[1] The result value of an ocl message expression is an ocl message value.

context OclMessageExpEval
inv: resultValue->isTypeOf(OcIMessageValue)

[2] The result value of an ocl message expression is the sequence of the outgoing messages of the ‘self” object
that matches the expression. Note that this may result in an empty sequence when the expression does not
match to any of the outgoing messages.

context OclMessageExpEval
inv: resultValue =
environment.getValueOf(’self’).outgoingMessages->select(m |

m.target = target.resultValue and

m.name = self.name and

self.arguments->forAl1(expArg: OclMessageArgEval |

not expArg.resultValue.oclIsUndefined() implies
m.arguments->exists(messArg | messArg.value = expArg.value))

[3] The source of the resulting ocl message value is equal to the ‘self” object of the ocl message expression.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 5-24

SEMANTICS DESCRIBED USING UML

context OclMessageExpEval
inv: resultValue.source = environment.getValueOf(’self’”)

[4] The isSent attribute of the resulting ocl message value is true only if the message value is in the outgoing
messages of the ‘self” object.

context OclMessageExpEval
inv:
if resultValue.oclIsUndefined()
resultValue.isSent = false
else
resultValue.isSent = true
endif

[5] The target of an ocl message expression is an object value.

context OclMessageExpEval
inv: target.resultValue->isTypeOf(ObjectValue)

[6] The environment of all arguments, and the environment of the target expression are equal to the environment
of this ocl message value.

context OclMessageExpEval
inv: arguments->forAl1(a | a.environment = self.environment)
inv: target.environment = self.environment

OclMessageArgEval

[1] An ocl message argument evaluation has either an ocl expression evaluation, or an unspecified value expres-
sion evaluation, not both.
context OclMessageArgEval inv:

expression->size() =1 implies unspecified->size() =0
expression->size() = 0 implies unspecified->size() 1

[2] The result value of an ocl message argument is determined by the result value of its expression, or its unspec-
ified value expression.

context OclMessageArgEval inv:

if expression->size() =1

then resultValue = expression.resultValue
else resultValue = unspecified.resultValue
endif

[3] The environment of the expression and unspecified value are equal to the environment of this ocl message
argument.

context OclMessageArgEval
inv: expression.environment = self.environment
inv: unspecified.environment = self.environment

OperationCallExpEval

The definition of the semantics of the operation call expression depends on the definition of operation call execu-
tion in the UML semantics. This is part of the UML infrastructure specification, and will not be defined here. For
the semantics of the OperationCallExp it suffices to know that the execution of an operation call will produce a
result of the correct type. The latter will be specified in section 5.4 (“The AS-Domain-Mapping Package”).

[1] The environments of the arguments of an operation call expression are equal to the environment of this call.
context OperationCallExpEval inv:
arguments->forall(a | a.environment = self.environment)

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 5-25

SEMANTICS DESCRIBED USING UML

PropertyCallExpEval

The result value and environment are determined by its subtypes.

[1] The environment of the source of an property call expression is equal to the environment of this call.
context PropertyCallExpEval inv:
source.environment = self.environment

PrimitiveLiteralExpEval
No extra well-formedness rules. The result value is determined by its subtypes.

RealLiteralExpEval

No extra well-formedness rules. The manner in which the resultValue is determined is given in section 5.4.3
(“Well-formedness rules for the AS-Domain-Mapping.exp-eval Package”).

StringLiteralExpEval

No extra well-formedness rules. The manner in which the resultValue is determined is given in section 5.4.3
(“Well-formedness rules for the AS-Domain-Mapping.exp-eval Package”).

TupleLiteralExpEval
[1] The result value of a tuple literal expression evaluation is a tuple value whose elements correspond to the
parts of the tuple literal expression evaluation.

context TupleliteralExpEval inv:
resultValue.isOclType(TupleValue) and
tuplePart->size() = resultValue.elements->size() and
Sequence{l..tuplePart->size()}->forAl11(i: Integer
resultValue.elements->at(i).name = tuplePart.name and
resultValue.elements->at(i).value = tuplePart.initExpression.resultValue)

UnspecifiedValueExpEval

The result of an unspecified value expression is a randomly picked instance of the type of the expression. This
rule will be defined in 5.4.3 (“Well-formedness rules for the AS-Domain-Mapping.exp-eval Package”).

VariableDeclEval
No extra well-formedness rules.

VariableExpEval

[1] The result of a VariableExpEval is the value bound to the name of the variable to which it refers.

context VariableExpEval inv:
resultValue = environment.getValueOf(referredVariable.varName)

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 5-26

SEMANTICS DESCRIBED USING UML

5.3.8 Additional operations of the Evaluations package

EvalEnvironment

[1] The operation getValueOf results in the value that is bound to the name parameter in the bindings of a name
space. Note that the value may be the UndefinedValue.

context EvalEnvironment::getValueOf(n: String): Value
pre: -- none
post: result = bindings->any(name = n).value

[2] The operation replace replaces the value of a name, by the value given in the nvb parameter.

context EvalEnvironment::replace(nvb: NameValueBinding): EvalEnvironment
pre: -- none
post: result.bindings = self.bindings
->excluding(self.bindings->any(name = nvb.name))->including(nvb)

[3] The operation add adds the name and value indicated by the NameValueBinding given by the nvb parameter.

context EvalEnvironment::add(nvb: NameValueBinding): EvalEnvironment
pre: -- none
post: result.bindings = self.bindings->including(nvb)

[4] The operation addAll adds all NameValueBindings in the nvbs parameter.

context EvalEnvironment::add(nvbs: Collection(NameValueBinding)): EvalEnvironment
pre: -- none
post: result.bindings = self.bindings->union(nvbs)

CollectionRangeEval

[1] The operation getRange() returns a sequence of integers that contains all integer in the collection range.

context CollectionRangeEval::getRange(first, last: Integer): Sequence(Integer)
pre: -- none
post: result = if first = Tast then
first->asSequence()
else
first->asSequence()->union(getRange(first + 1, last))

endif

5.3.9 Overview of the Values package

Figure 5-13 on page 5-28 shows an overview of the inheritance relationships between the classes in the Values
package.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 5-27

SEMANTICS DESCRIBED USING UML

Dom ainElement
(from Values)

1

CollectionLiteralPartEval

TupleLiteralExpPartEval

ExpressionInOclEval

b

CollectionltemEval

CollectionRangeEval

EvalNam eSpace

Unspe cifiedValue ExpEval

OclExpEval

OclMessageArgEval

&

PropertyCallExpEval

-

ModelPropertyCallExpEval

Loop ExpEval

VariableExpEval

LetExp Eval

IfExpEval

LiteralExpEval

OclMessageExpEval

e

B

L

AttributeCallExpEval

OperationCallExpEval

TupleLiteral ExpEval

CollectionLiteralExpEval

IterateExpEval

IteratorExpEval

PrimitiveLiteralExpEval

EnumlLiteralExpEval

.

NavigationCallExpEval

AssociationClassCallExpEval

AssociationEndCallExpEval

BooleanLiteralExpEval

StringLiteralExpEval

Num ericLiteralExpEval

T

IntegerLiteralExpEval

ReallLiteralExpEval

Figure 5-13 The inheritance tree of classes in the Evaluations package

OCL 2.0 REVISED SUBMISSION

VERSION 1.6, JANUARY 6, 2003

5-28

SEMANTICS DESCRIBED USING UML

5.4 THE AS-DOMAIN-MAPPING PACKAGE

The figures 5-15 on page 5-30 and 5-14 on page 5-29 show the associations between the abstract syntax concepts
and the domain concepts defined in this chapter. Each domain concept has a counterpart called model in the
abstract syntax. Each model has one or more instances in the semantic domain. Note that in particular every OCL
expression can have more than one evaluation. Still every evaluation has only one value. For example, the "asSe-
quence" applied to a Set may have n! evaluations, which each give a different permutation of the elements in the

set, but each evaluation has exactly one result value.

+instances

+model BagType

BagTypeValue on

CollectionValue +instances

1 | (from Types)

+*model | collectionType

..n

EnumValue | +instances

(from Types)

1

+model

0..n
+instances

Enumeration

(from Core)

1

+model Class

ObjectValue

0..n

OclMessageValue [tinstances

(from Core)

1

+model| OclMessage(T)

. 0..n
+instances

OclVoidValue

(from StandardLibrary)

1 del
mode VoidType

0..n
+instances

PrimitiveValue

(from Types)

1

+model| Prmitive

0.1
SequenceTypeValue

+instances

1| (from Core)

+model| SequenceType

(from Types)

..n 1
+instances +model
SetTypeValue SetType
(from Types)
10..n 1
; +instances +model
StaticValue DataType
Q'_'-n t . ol 1 (from Core)
instances mode .
- String
SN o 1 (from StandardLibrary)
..n
T Evare +instances +model | TupleType
(from Types)
0..n 1
+instances +model | CJassifier
Value
(from Core)
0..n 1

Figure 5-14 Associations between values and the types defined in the abstract syntax.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003

5-29

SEMANTICS DESCRIBED USING UML

‘ AssociationClassCallExpEval i tinstances +mode1l i AssociationClassCallExp ‘
‘ AssociationEndCallExpEval }+(;nstances +mode1I} AssociationEndCallExp ‘
.n
AttributeCallExpEval g.i.':f‘a“ces +m°d$' AttributeCallExp
|*instances +mod<:| BooleanLiteralExp

‘ BooleanLiteralExpEval ‘0

CollectionitemEval | *instances
0.n

CollectionLiteralExpEval |*instances

+model | Collectionitem
1

+model | CollectionLiteralExp

.n
| [finstances

‘ CollectionLiteralPartEva

‘0..n

+m0de1| CollectionLiteralPart

i

+model | CollectionRange

CollectionRangeEval | *instances
0..n

|

1

+model | EnumLiteralExp

EnumLiteralExpEval +0instances
.n

i

+model HExp

FExpEval | tinstances
0..n

4

1

+model
mode IntegerLiteralExp

- +instances
IntegerLiteralExpEval o
.n

|

1
+model

lterateExpE val *instances

0.n

lterateExp

1
+model | jteratorE xp

lteratorExpEval | *instances

+inftamces
LetExpEval

il

+mddel

0.n
LiteralExpE val frinstances

LetExp

§

1
+model | LiteralExp

i

+motel LoopEp

LoopExpEval ifistainces

0..n

i

1
+m0d+| ModelPropertyCallExp

‘ ModelP ropertyCaIIExpEvaﬁITStanceS
|

|
+thodel

— TinsthBes
NavigationCallExpEval ‘

0..n
Instances

NavigationCallExp

1
*+model NumericLiteralExp

‘ NumericLiteralExpEval

- 0..n
+instances

i

OclExpE val
0.n 0.n

1
+model | oc/Expression

OclMessageArgEval +instances

11
OclMessageArg
+model
1 | OclMessageExp

+model (0] tionCallE
+model perationCallExp

0..n
OclMessageExpEval ‘ +instances
- r—instances
‘ OperationCallExpEval
‘ 0..n
instances

PrimitiveLiteralExpEval

+model | PrimitiveLiteralE xp

PropertyCallE.
+model1 pery P

Tin..&mes
PropertyCallExpEval
fstances

+iodel ‘ ReallLiteralExp ‘

-
ReallLiteralExpEval
Owistances

+modeél ‘ String LiteralExp ‘
StringLiteralExpEval -
hdlances +modd ‘ TupleLiteralExp ‘
TupleLiteralExpEval ,
0..n +instances +mod1el UnspecifiedValueExp ‘

Unspecified Value ExpE val l

+instances

VariableExpEval
! o 0.n

1 -
+model VariableExp

1

Figure 5-15 Associations between evaluations and abstract syntax concepts

OCL 2.0 REVISED SUBMISSION

VERSION 1.6, JANUARY 6, 2003

5-30

SEMANTICS DESCRIBED USING UML

5.4.1 Well-formedness rules for the AS-Domain-Mapping.type-value Package

CollectionValue

[1] All elements in a collection value must have a type that conforms to the elementType of its corresponding
CollectionType.

context CollectionValue inv:
elements->forA11(e: Element | e.value.model.conformsTo(model.elementType))

DomainElement
No additional well-formedness rules.

Element
No additional well-formedness rules.

EnumValue
No additional well-formedness rules.

ObjectValue

[1] All bindings in an object value must correspond to attributes or associations defined in the object’s Classifier.

context ObjectValue inv:

history->forAl1(snapshot | snapshot.bindings->forAl11(b |
self.model.allAttributes()->exists (attr | b.name = attr.name)
or
self.model.allAssociationEnds()->exists (role | b.name = role.name)))

OclMessageValue
No additional well-formedness rules.

PrimitiveValue
No additional well-formedness rules.

SequenceTypeValue
No additional well-formedness rules.

SetTypeValue

No additional well-formedness rules.

StaticValue
No additional well-formedness rules.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 5-31

SEMANTICS DESCRIBED USING UML

TupleValue

[1] The elements in a tuple value must have a type that conforms to the type of the corresponding tuple parts.

context TupleValue inv:
elements->forAl1(elem |
let correspondingPart: Attribute =
self.model.allAttributes()->select(part | part.name = elem.name) in
elem.value.model.conformsTo(correspondingPart.type))

UndefinedValue
No additional well-formedness rules.

Value
No additional well-formedness rules.

5.4.2 Additional operations for the AS-Domain-Mapping.type-value Package

Value

[1] The additional operation isInstanceOf returns true if this value is an instance of the parameter classifier.

context Value::isInstanceOf(c: Classifier): Boolean
pre: -- none
post: result = self.model.conformsTo(¢)

5.4.3 Well-formedness rules for the AS-Domain-Mapping.exp-eval Package

AssociationClassCallExpEval

[1] The string that represents the referredAssociationClass in the evaluation must be equal to the name of the
referred AssociationClass in the corresponding expression.

context AssociationClassCallExpEval inv:
referredAssociationClass = model.referredAssociationClass.name

[2] The result value of an association class call expression evaluation that has qualifiers, is determined according
to the following rule. The ‘normal’ determination of result value is already given in section 5.3.7 (“Well-
formedness Rules of the Evaluations package”).
let
-- the attributes that are the formal qualifiers. Because and association class has two or
-- more association ends, we must select the qualifiers from the other end(s), not from
-- the source of this expression. We allow only 2-ary associations.

formalQualifiers : Sequence(Attribute) =
self.model.referredAssociationClass.connection->any(c |
c <> self.navigationSource).qualifier.asSequence()

-- the attributes of the class at the qualified end. Here we already assume that an
-- AssociationEnd will be owned by a Classifier, as will most likely be the case in the
-- UML 2.0 Infrastructure.
objectAttributes: Sequence(Attribute) =
self.model.referredAssociationClass.connection->any(c |
c <> self.navigationSource).owner.feature->select(f |
f.is0c1Type(Attribute).asSequence()

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 5-32

SEMANTICS DESCRIBED USING UML

-- the rolename of the qualified association end
qualifiedEnd: String = self.model.referredAssociationClass.connection->any(c |
c <> self.navigationSource).name ,

-- the values for the qualifiers given in the ocl expression
qualifierValues : Sequence(Value) = self.qualifiers.asSequence()

-- the objects from which a subset must be selected through the qualifiers
normalResult =
source.resultValue.getCurrentValueOf(referredAssociationClass.name)

-- if name of attribute of object at qualified end equals name of formal qualifier then
-- if value of attribute of object at qualified end equals the value given in the exp
-- then select this object and put it in the resultValue of this expression.

qualifiers->size <> 0 implies
normalResult->select(obj |
Sequence{l..formalQualifiers->size()}->forA11(i |
objectAttributes->at(i).name = formalQualifiers->at(i).name and
obj.qualifiedEnd.getCurrentValueOf(objectAttributes->at(i).name) =

qualifiersValues->at(i)))

AssociationEndCallExpEval

[1] The string that represents the referredAssociationEnd in the evaluation must be equal to the name of the
referredAssociationEnd in the corresponding expression.

context AssociationEndCallExpEval inv:
referredAssociationEnd = model.referredAssociationEnd.name

[2] The result value of an association end call expression evaluation that has qualifiers, is determined according
to the following rule. The ‘normal’ determination of result value is already given in section 5.3.7 (“Well-

formedness Rules of the Evaluations package”).
let
-- the attributes that are the formal qualifiers
formalQualifiers : Sequence(Attribute) = self.model.referredAssociationkEnd.qualifier

-- the attributes of the class at the qualified end
objectAttributes: Sequence(Attribute) =
(if self.resultValue.model.isOclKind(Collection) implies
then self.resultValue.model.oclAsType(Collection).elementType->
collect(feature->asOclType(Attribute))
else self.resultValue.model->collect(feature->asOclType(Attribute))
endif).asSequence()

-- the values for the qualifiers given in the ocl expression
qualifierValues : Sequence(Value) = self.qualifiers.asSequence()

-- the objects from which a subset must be selected through the qualifiers
normalResult =
source.resultValue.getCurrentValueOf(referredAssociationEnd.name)

-- if name of attribute of object at qualified end equals name of formal qualifier then
-- if value of attribute of object at qualified end equals the value given in the exp
-- then select this object and put it in the resultValue of this expression.

qualifiers->size <> 0 implies
normalResult->select(obj |

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 5-33

SEMANTICS DESCRIBED USING UML

Sequence{l..formalQualifiers->size()}->forA11(1 |
objectAttributes->at(i).name = formalQualifiers->at(i).name and
obj.getCurrentValueOf(objectAttributes->at(i).name) =

qualifiersValues->at(i)))

AttributeCallExpEval

[1] The string that represents the referredAttribute in the evaluation must be equal to the name of the referred At-
tribute in the corresponding expression.

context AttributeCallExpEval inv:
referredAttribute = model.referredAttribute.name

BooleanLiteralExpEval

[1] The result value of a boolean literal expression is equal to the literal expression itself (‘true’ or ‘false’).
Because the booleanSymbol attribute in the abstract syntax is of type Boolean as defined in the MOF, and
resultValue is of type Primitive as defined in this chapter, a conversion is neccessary. For the moment, we
assume the additional operation MOFbooleanToOCLboolean() exists. This will need to be re-examined when
the MOF and/or UML Infrastructure submissions are finalised.

context BooleanlLiteralExpEval inv:
resultValue = model.booleanSymbol.MOFbooleanToOCLboolean()

CollectionltemEval
No extra well-formedness rules.

CollectionLiteralExpEval
No extra well-formedness rules.

CollectionLiteralPartEval
No extra well-formedness rules.

CollectionRangeEval
No extra well-formedness rules.

EvalEnvironment

Because there is no mapping of name space to an abstract syntax concept, there are no extra well-formedness
rules.

LiteralExpEval

No extra well-formedness rules.

LoopExpEval

No extra well-formedness rules.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 5-34

SEMANTICS DESCRIBED USING UML

EnumLiteralExpEval

[1] The result value of an EnumLiteralExpEval must be equal to one of the literals defined in its type.

context EnumlLiteralExpEval inv:
model.type->includes(self.resultValue)

IfExpEval
[1] The condition evaluation corresponds with the condition of the expression, and likewise for the thenExpres-
sion and the else Expression.

context IfExpEval inv:

condition.model = model.condition
thenExpression.model = model.thenkExpression
elsekExpression.model = model.elseExpression

IntegerLiteralExpEval

context IntegerlLiteralExpEval inv:
resultValue = model.integerSymbol

IterateExpEval

[1] The model of the result of an iterate expression evaluation is equal to the model of the result of the associated
IterateExp.

context IteratekExpEval
inv: result.model = model.result)

IteratorExpEval
No extra well-formedness rules.

LetExpEval

[1] All parts of a let expression evaluation correspond to the parts of its associated LetExp.

context LetExpEval inv:

in.model = model.in and

initExpression.model = model.initExpression and
variable = model.variable.varName

LoopExpEval

[1] All sub evaluations have the same model, which is the body of the associated LoopExp.

context LoopExpEval
inv: bodyEvals->forAl1(model = self.model)

ModelPropertyCallExpEval

No extra well-formedness rules.

NumericLiteralExpEval
No extra well-formedness rules.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 5-35

SEMANTICS DESCRIBED USING UML

NavigationCallExpEval

[1] The string that represents the navigation source in the evaluation must be equal to the name of the navigation-
Source in the corresponding expression.

context NavigationCallExpEval inv:
navigationSource = model.navigationSource.name

[2] The qualifiers of a navigation call expression evaluation must correspond with the qualifiers of the associated
expression.

context NavigationCallExpEval inv:
Sequence{l..qualifiers->size()}->forA11(i |
qualifiers->at(i).model = model.qualifiers->at(i).type)

OclExpEval

[1] The result value of the evaluation of an ocl expression must be an instance of the type of that expression.

context OclExpEval
inv: resultValue.isInstanceOf(model.type)

OclMessageExpEval

[1] An ocl message expression evaluation must correspond with its message expression.

context OclMessageExpEval
inv: target.model = model.target
inv: Set{l..arguments->size()}->forall (i | arguments->at(i) = model.arguments->at(i))

[2] The name of the resulting ocl message value must be equal to the name of the operation or signal indicated in
the message expression.

context OclMessageExpEval inv:

if model.operation->size() =1

then resultValue.name = model.operation.name
else resultValue.name = model.signal.name
endif

[3] The isSignal, isSyncOperation, and isAsyncOperation attributes of the result value of an ocl message expres-
sion evaluation must correspond to the operation indicated in the ocl message expression.

context OclMessageExpEval
inv: if model.calledOperation->size() =1
then model.calledOperation.isAsynchronous = true implies
resultValue.isAsyncOperation = true
else -- message represents sending a signal
resultValue.isSignal = true
endif

[4] The arguments of an ocl message expression evaluation must correspond to the formal input parameters of
the operation, or the attributes of the signal indicated in the ocl message expression.

context OclMessageExpEval
inv: model.calledOperation->size() =1 implies
Sequence{l.. arguments->size()} ->forAl1(i |
arguments->at(i).variable->size() =1 implies
model.calledOperation.operation.parameter->
select(kind = ParameterDirectionKind::in)->at(i).name =
arguments->at(i).variable
and
arguments->at(i).expression->size() =1 implies
model.calledOperation.operation.parameter->
select(kind = ParameterDirectionKind::in)at(i).type =

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 5-36

SEMANTICS DESCRIBED USING UML

arguments->at(i).expression.model
inv: model.sentSignal->size() = 1 implies

Sequencef{l.. arguments->size()} ->forAl1(i |
arguments->at(i).variable->size() 1 implies
model.sentSignal.signal.feature->select(

arguments->at(i).variable)->notEmpty()

and
arguments->at(i).expression->size() =1 implies
model.sentSignal.signal.feature.oclAsType(StructuralFeature).type =
arguments->at(i).expression.model

[5] The arguments of the return message of an ocl message expression evaluation must correspond to the names

given by the formal output parameters, and the result type of the operation indicated in the ocl message
expression. Note that the Parameter type is defined in the UML 1.4 foundation package.

context OclMessageExpEval
inv: let returnArguments: Sequence{ NameValueBindings)

resultValue.returnMessage.arguments
formalParameters: Sequence{ Parameter } =

model.calledOperation.operation.parameter

resultValue.returnMessage->size() =

1 and model.calledOperation->size() =1 implies
"result’ must be present and have correct type

returnArguments->any(name = ’result’).value.model
formalParameters->select(kind = ParameterDirectionKind::return).type

and

--all ’out’ parameters must be present and have correct type
Sequence{l.. returnArguments->size()} ->forAl1(i |
returnArguments->at(i).name

formalParameters->select(kind = ParameterDirectionKind::out)->at(i).name

and
returnArguments->at(i).value.model =
formalParameters->select(kind = ParameterDirectionKind::out)->at(i).type)

OclMessageArgEval

[1] An ocl message argument evaluation must correspond with its argument expression.
context OclMessageArgkval
inv: model.variable->size() =1

implies variable->size() =1 and variable.symbol =
inv: model.expression->size() =1

implies expression and expression.model =

model.variable.name

model.expression

OperationCallExpEval

[1] The result value of an operation call expression will have the type given by the Operation being called, if the

operation has no out or in/out parmeters, else the type will be a tuple containing all out, in/out parameters and
the result value.
context OperationCallEval inv:

let outparameters : Set(Parameter) = referedOperation.parameter->select(p |

p.kind = ParameterDirectionKind::in/out or
p.kind = ParameterDirectionKind::out)
in
if outparameters->istmpty()
then resultValue.model = model.referredOperation.parameter
->select(kind = ParameterDirectionKind::result).type
else resultValue.model.oclIsType(TupleType) and
outparameters->forAl1(p |

resultValue.model.attribute->exist(a | a.name = p.name and a.type

p.type))

OCL 2.0 REVISED SUBMISSION

VERSION 1.6, JANUARY 6, 2003 5-37

SEMANTICS DESCRIBED USING UML

endif

[2] The string that represents the referred operation in the evaluation must be equal to the name of the referred-

Operation in the corresponding expression.

context OperationCallExpEval inv:
referredOperation = model.referredOperation.name

[3] The arguments of an operation call expression evaluation must correspond with the arguments of its associ-

ated expression.

context OperationCallExpEval inv:
Sequence{l..arguments->size}->forAl1(i |
arguments->at(i).model = model.arguments->at(i))

PropertyCallExpEval

[1] The source of the evaluation of a property call corresponds to the source of its associated expression.

context PropertyCallExpEval inv:
source.model = model.source

PrimitiveLiteralExpEval
No extra well-formedness rules.

ReallLiteralExpEval

context RealliteralExpEval inv:
resultValue = model.realSymbol

StringLiteralExpEval

context StringliteralExpEval inv:
resultValue = model.stringSymbol

TupleLiteralExpEval

context TupleliteralExpEval inv:
model.tuplePart = tuplePart.model

UnspecifiedValueExpEval

[1] The result of an unspecified value expression is a randomly picked instance of the type of the expression.

context UnspecifiedValueExpEval
inv: resultValue = model.type.alllnstances()->any(true)
inv: resultValue.model = model.type

VariableDeclEval

context VariableDeclEval inv:
model.initExpression = initExpression.model

VariableExpEval

No extra well-formedness rules.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003

5-38

The OCL Standard Library

This section describes the OCL Standard Library of predefined types, their operations, and predefined expression
templates in the OCL. This section contains all standard types defined within OCL, including all the operations
defined on those types. For each operation the signature and a description of the semantics is given. Within the
description, the reserved word ‘result’ is used to refer to the value that results from evaluating the operation. In
several places, post conditions are used to describe properties of the result. When there is more than one postcon-
dition, all postconditions must be true. A similar thing is true for multiple preconditions. If these are used, the
operation is only defined if all preconditions evaluate to true.

6.1 INTRODUCTION

The structure, syntax and semantics of the OCL is defined in the sections 3 (“Abstract Syntax™), 4 (“Concrete
Syntax) and 5 (“Semantics Described using UML”). This section adds another part to the OCL definition: a
library of predefined types and operations. Any implementation of OCL must include this library package. This
approach has also been taken by e.g. the Java definition, where the language definition and the standard libraries
are both mandatory parts of the complete language definition.

The OCL standard library defines a number of types, which are shown in figure 6-1 on page 6-2. It includes
several primitive types: Integer, Real, String and Boolean. These are familiar from many other languages. The
second part of the standard library consists of the collection types. They are Bag, Set, Sequence and Collection,
where Collection is an abstract type. Note that all types defined in the OCL standard library are instances of an
abstract syntax class. The OCL standard library exists at the modeling level, also referred to as the M1 level,
where the abstract syntax is the metalevel or M2 level.

Next to definitions of types the OCL standard library defines a number of template expressions. Many opera-
tions defined on collections, map not on the abstract syntax metaclass ModelPropertyCallExp, but on the Iterato-
rExp. For each of these a template expression that defines the name and format of the expression, is defined in
section 6.6 (“Predefined Iterator Expressions™).

6.2 THE OcLANY, OcLVoID, AND OCLMESSAGE TYPES

OclAny

The type OclAny is the supertype of all types in the UML model and the primitive types in the OCL Standard
Library. The collection types from the OCL Standard Library are not subtypes of OclAny. Properties of OclAny
are available on each object in all OCL expressions. OclAny is itself an instance of the metatype Classifier.

All classes in a UML model inherit all operations defined on OclAny. To avoid name conflicts between proper-
ties in the model and the properties inherited from OclAny, all names on the properties of OclAny start with ‘ocl.’

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 6-1

THE OCL STANDARD LIBRARY

—[T] [T

OclMessage Collection

OclAny

T T [T

OclType OclModelElement Real Set Bag Sequence

Boolean String

OclS tate

Integer

N

OclVoid

Figure 6-1 The types defined in the OCL standard library

Although theoretically there may still be name conflicts, they can be avoided. One can also use the oclAsType()
operation to explicitly refer to the OclAny properties.
Operations of OclAny, where the instance of OclAny is called object.

OclMessage

This section contains the definition of the standard type OclMessage. As defined in this section, each ocl message
type is actually a template type with one parameter. ‘T’ denotes the parameter. A concrete ocl message type is
created by substituting an operation or signal for the T.

The predefined type OciMessage is an instance of Oc/MessageType. Every OciMessage is fully determined by
either the operation, or signal given as parameter. Note that there is conceptually an undefined (infinite) number
of these types, as each is determined by a different operation or signal. These types are unnamed. Every type has
as attributes the name of the operation or signal, and either all formal parameters of the operation, or all attributes
of the signal. OclMessage is itself an instance of the metatype OclMessageType.

OclMessage has a number of predefined operations, as shown in the OCL Standard Library.

OclVoid

The type OclVoid is a type that conforms to all other types. It has one single instance called OclUndefined. Any
propertycall applied on OclUndefined results in OclUndefined, except for the operation ocllsUndefined(). Ocl-
Void is itself an instance of the metatype Classifier.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 6-2

THE OCL STANDARD LIBRARY

6.2.1 Operations and well-formedness rules

OclAny

= (object2 : OclAny) : Boolean
True if self is the same object as object2. Infix operator.
post: result = (self = object2)

<> (object2 : OclAny) : Boolean
True if self is a different object from object2. Infix operator.
post: result = not (self = object2)

oclisNew() : Boolean

Can only be used in a postcondition. Evaluates to true if the selfis created during performing the opera-
tion. Le. it didn’t exist at precondition time.
post: self@pre.oclIsUndefined()

oclisUndefined() : Boolean

Evaluates to true if the selfis equal to OclUndefined.
post: result = self.isTypeOf(OclVoid)

oclAsType(typename : OclType) : T

Evaluates to self, where self is of the type identified by typename. Typename may be in the format
Package::subPackage::classifier.
post: (result = self) and result.oclIsTypeOf(typeName)

oclisTypeOf(typename : OclType) : Boolean

Evaluates to true if the self is of the type identified by typename. Typename may be in the format
Package::subPackage::classifier.

post: -- TBD

oclisKindOf(typename : OciType) : Boolean

Evaluates to true if the self conforms to the type identified by typename. Typename may be in the for-
mat Package::subPackage::classifier.

post: -- TBD

oclisinState(statename : OclState) : Boolean
Evaluates to true if the self is in the state indentified by statename. Statename may be in the format
Class::State::subState.
post: -- TBD

allinstances() : Set(T)
Returns all instances of self. Type T is equal to self. May only be used for classifiers that have a finite
number of instances. This is the case for, for instance, user defined classes because instances need to be
created explicitly. This is not the case for, for instance, the standard String, Integer, and Real types.

pre: self.isKindOf(Classifier) -- self must be a Classifier
and -- TBD -- self must have a finite number of instances
-- it depends on the UML 2.0 metamodel how this can be
-- expressed

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 6-3

THE OCL STANDARD LIBRARY

post: -- TBD

OclMessage

hasReturned() : Boolean

True if type of template parameter is an operation call, and the called operation has returned a value.
This implies the fact that the message has been sent. False in all other cases.
post: --

result() : <<The return type of the called operation>>

Returns the result of the called operation, if type of template parameter is an operation call, and the cal-
led operation has returned a value. Otherwise the undefined value is returned.
pre: hasReturned()

isSignalSent() : Boolean
Returns true if the OclMessage represents the sending of a UML Signal.

isOperationCali() : Boolean
Returns true if the OclMessage represents the sending of a UML Operation call.

OclVoid

oclisUndefined() : Boolean
Evaluates to true if the object is equal to OclUndefined.
post: result = true

[1] OclVoid has only one instance.

context OclVoid inv:
OclVoid.allinstances()->size() =1

6.3 MODELELEMENT TYPES

This section defines several enumeration types that allow the modeler to refer to elements defined in the UML
model.

OclModelElement

An OclModelElement is an enumeration. For each element in a UML model there is a corresponding enumera-
tion literal. OclModelElement is itself an instance of the metatype Enumeration (from UML Core).

OclType

An OclType is an enumeration. For each Classifier in a UML model there is a corresponding enumeration literal.
OclType is itself an instance of the metatype Enumeration (from UML Core).

OclState

An OclState is an enumeration. For each State in a UML model there is a corresponding enumeration literal.
OclState is itself an instance of the metatype Enumeration (from UML Core).

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 6-4

THE OCL STANDARD LIBRARY

6.3.1 Operations and well-formedness rules

This section contains thye operatiins and well-formedness rules of the model element types.

OclModelElement
= (object : OclType) : Boolean

True if self is the same object as object.
<> (object : OclType) : Boolean

True if self is a different object from object.
post: result = not (self = object)

OclType
= (object : OclType) : Boolean

True if self is the same object as object.
<> (object : OclType) : Boolean

True if self is a different object from object.
post: result = not (self = object)

OclState
= (object : OclState) : Boolean

True if self is the same object as object.
<> (object : OclState) : Boolean

True if self is a different object from object.
post: result = not (self = object)

6.4 PRIMITIVE TYPES

The primitive types defined in the OCL standard library are Integer, Real, String and Boolean. They are all
instance of the metaclass Primitive from the UML core package.

Real

The standard type Real represents the mathematical concept of real. Note that Integer is a subclass of Real, so for
each parameter of type Real, you can use an integer as the actual parameter. Real is itself an instance of the
metatype Primitive (from UML Core).

Integer

The standard type Integer represents the mathematical concept of integer. Integer is itself an instance of the
metatype Primitive (from UML Core).

String
The standard type String represents strings, which can be both ASCII or Unicode. String is itself an instance of
the metatype Primitive (from UML Core).

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 6-5

THE OCL STANDARD LIBRARY

Boolean

The standard type Boolean represents the common true/false values. Boolean is itself an instance of the metatype
Primitive (from UML Core).

6.4.1 Operations and well-formedness rules

This section contains the operatiins and well-formedness rules of the primitive types.

Real
Note that Integer is a subclass of Real, so for each parameter of type Real, you can use an integer as the actual
parameter.
+ (r : Real) : Real
The value of the addition of self and r.
- (r : Real) : Real
The value of the subtraction of r from self.
* (r : Real) : Real
The value of the multiplication of self and r.
- : Real
The negative value of self.
/ (r : Real) : Real
The value of self divided by r.
abs() : Real
The absolute value of self.
post: if self < 0 then result = - self else result = self endif
floor() : Integer
The largest integer which is less than or equal to self.
post: (result <= self) and (result + 1 > self)
round() : Integer
The integer which is closest to self. When there are two such integers, the largest one.
post: ((self - result).abs() < 0.5) or ((self - result).abs() = 0.5 and (result > self))
max(r : Real) : Real
The maximum of self and .
post: if self >= r then result = self else result = r endif
min(r : Real) : Real
The minimum of self and r.
post: if self <= r then result = self else result = r endif
< (r : Real) : Boolean
True if selfis less than r.

> (r : Real) : Boolean
True if self is greater than .
post: result = not (self <= r)
<= (r : Real) : Boolean
True if selfis less than or equal to r.
post: result = ((self = r) or (self < r))

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 6-6

THE OCL STANDARD LIBRARY

>= (r : Real) : Boolean
True if self is greater than or equal to r.
post: result = ((self = r) or (self > r))

Integer
- : Integer
The negative value of self.
+ (i : Integer) : Integer
The value of the addition of self and i.
- (i : Integer) : Integer
The value of the subtraction of i from self.
* (i : Integer) : Integer
The value of the multiplication of self and i.
/ (i : Integer) : Real
The value of self divided by i.
abs() : Integer
The absolute value of self.
post: if self < 0 then result = - self else result = self endif
div(i : Integer) : Integer
The number of times that i fits completely within self.
pre : i <> 0

post: if self / i >= 0 then result = (self / i).floor()
else result -((-self/i).floor())

endif
mod(i : Integer) : Integer
The result is self modulo i.
post: result = self - (self.div(i) * i)
max(i : Integer) : Integer
The maximum of self an i.

post: if self >= 1 then result = self else result i endif
min(i : Integer) : Integer

The minimum of self an i.

post: if self <=1 then result = self else result =1 endif

String
size() : Integer
The number of characters in self.
concat(s : String) : String
The concatenation of self and s.
post: result.size() = self.size() + string.size()
post: result.substring(l, self.size()) = self
post: result.substring(self.size() + 1, result.size()) = s
substring(lower : Integer, upper : Integer) : String

The sub-string of self starting at character number lower, up to and including character number upper.
Character numbers run from 1 to self.size().

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 6-7

THE OCL STANDARD LIBRARY

pre: 1 <= Tower
pre: lower <= upper
pre: upper <= self.size()

tolnteger() : Integer

Converts self to an Integer value.
toReal() : Real

Converts self to a Real value.

Boolean
or (b : Boolean) : Boolean
True if either self or b is true.
xor (b : Boolean) : Boolean
True if either self or b is true, but not both.
post: (self or b) and not (self = b)
and (b : Boolean) : Boolean
True if both b7 and b are true.
not : Boolean
True if selfis false.
post: if self then result = false else result = true endif
implies (b : Boolean) : Boolean

True if selfis false, or if selfis true and b is true.
post: (not self) or (self and b)

6.5 COLLECTION-RELATED TYPES

This section defines the collection types and their operations. As defined in this section, each collection type is
actually a template type with one parameter. “T” denotes the parameter. A concrete collection type is created by
substituting a type for the T. So Set (Integer) and Bag (Person) are collection types.

Collection

Collection is the abstract supertype of all collection types in the OCL Standard Library. Each occurrence of an
object in a collection is called an element. If an object occurs twice in a collection, there are two elements. This
section defines the properties on Collections that have identical semantics for all collection subtypes. Some oper-
ations may be defined within the subtype as well, which means that there is an additional postcondition or a more
specialized return value. Collection is itself an instance of the metatype CollectionType.

The definition of several common operations is different for each subtype. These operations are not mentioned
in this section.

The semantics of the collection operations is given in the form of a postcondtion that uses the IterateExp ot the
IteratorExp construct. The semantics of those constructs is defined in chapter 5 (“Semantics Described using
UML”). In several cases the postcondtion refers to other collection operations, which in turn are defined in terms
of the IterateExp or IteratorExp constructs.

Set

The Set is the mathematical set. It contains elements without duplicates. Set is itself an instance of the metatype
SetType.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 6-8

THE OCL STANDARD LIBRARY

OrderedSet

The OrderedSet is a Set the elements of which are ordered. It contains no duplicates. OrderedSet is itself an

instance of the metatype OrderedSetType.

Bag

A bag is a collection with duplicates allowed. That is, one object can be an element of a bag many times. There is

no ordering defined on the elements in a bag. Bag is itself an instance of the metatype BagType.

Sequence

A sequence is a collection where the elements are ordered. An element may be part of a sequence more than

once. Sequence is itself an instance of the metatype SequenceType.

6.5.1 Operations and well-formedness rules

This section contains the operations and well-formedness rules of the collection types.

Collection
size() : Integer

The number of elements in the collection self.

post: result = self->iterate(elem; acc : Integer = 0 | acc + 1)
includes(object : T) : Boolean

True if object is an element of self, false otherwise.

post: result = (self->count(object) > 0)
excludes(object : T) : Boolean

True if object is not an element of self, false otherwise.

post: result = (self->count(object) = 0)
count(object : T) : Integer

The number of times that object occurs in the collection self.

post: result = self->iterate(elem; acc : Integer = 0 |
if elem = object then acc + 1 else acc endif)

includesAll(c2 : Collection(T)) : Boolean

Does self contain all the elements of c2 ?

post: result = c2->forAll(elem | self->includes(elem))
excludesAll(c2 : Collection(T)) : Boolean

Does self contain none of the elements of ¢2 ?

post: result = c2->forAll(elem | self->excludes(elem))
isEmpty() : Boolean

Is self the empty collection?

post: result = (self->size() =0)
notEmpty() : Boolean

Is self not the empty collection?

post: result = (self->size() <> 0)
sum(): T

The addition of all elements in self. Elements must be of a type supporting the + operation. The + ope-

ration must take one parameter of type T and be both associative: (a+b)+c = a+(b+c), and commutative:
a+b = b+a. Integer and Real fulfill this condition.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003

6-9

THE OCL STANDARD LIBRARY

post: result = self->iterate(elem; acc : T =0 | acc + elem)
product(c2: Collection(T2)) : Set(Tuple(first: T, second: T2))

The cartesian product operation of self and c2.

post: result = self->iterate (el; acc: Set(Tuple(first: T, second: T2)) = Seti{} |
c2->iterate (e2; acc2: Set(Tuple(first: T, second: T2)) = acc |
acc2->including (Tuple{first = el, second = e2})))

Set
union(s : Set(T)) : Set(T)
The union of self and s.
post: result->forAll(elem | self->includes(elem) or s->includes(elem))
post: self ->forAll(elem | result->includes(elem))
post: s ->forAll(elem | result->includes(elem))
union(bag : Bag(T)) : Bag(T)
The union of self and bag.
post: result->forAll(elem | result->count(elem) = self->count(elem) + bag->count(elem))
post: self->forAll(elem | result->includes(elem))
post: bag ->forAll(elem | result->includes(elem))
= (s : Set(T)) : Boolean
Evaluates to true if self and s contain the same elements.
post: result = (self->forAll(elem | s->includes(elem)) and
s->forAll(elem | self->includes(elem)))
intersection(s : Set(T)) : Set(T)
The intersection of self and s (i.e, the set of all elements that are in both self and s).
post: result->forAll(elem | self->includes(elem) and s->includes(elem))
post: self->forAll(elem | s ->includes(elem) = result->includes(elem))
post: s ->forAll(elem | self->includes(elem) = result->includes(elem))
intersection(bag : Bag(T)) : Set(T)
The intersection of self and bag.
post: result = self->intersection(bag->asSet)
—(s : Set(T)) : Set(T)
The elements of self, which are not in s.
post: result->forAll(elem | self->includes(elem) and s->excludes(elem))
post: self ->forAll(elem | result->includes(elem) = s->excludes(elem))
including(object : T) : Set(T)
The set containing all elements of self plus object.
post: result->forAll(elem | self->includes(elem) or (elem = object))
post: self- >forAll(elem | result->includes(elem))
post: result->includes(object)
excluding(object : T) : Set{(T)
The set containing all elements of self without object.

post: result->forAll(elem | self->includes(elem) and (elem <> object))
post: self- >forAll(elem | result->includes(elem) = (object <> elem))
post: result->excludes(object)

symmetricDifference(s : Set(T)) : Set(T)
The sets containing all the elements that are in self or s, but not in both.

post: result->forAll(elem | self->includes(elem) xor s->includes(elem))
post: self->forAll(elem | result->includes(elem) = s ->excludes(elem))
post: s ->forAll(elem | result->includes(elem) = self->excludes(elem))

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003

THE OCL STANDARD LIBRARY

count(object : T) : Integer
The number of occurrences of object in self.
post: result <=1
flatten() : Set(T2)
If the element type is not a collection type this result in the same self. If the element type is a collection
type, the result is the set containing all the elements of all the elements of self.

post: result = if self.type.elementType.oclIsKindOf(CollectionType) then
self->iterate(c; acc : Set() = Set{} |
acc-»union(c->asSet()))
else
self
endif
asSet() : Set(T)
A Set identical to self. This operation exists for convenience reasons.
post: result = self

asOrderedSet() : OrderedSet(T)

An OrderedSet that contains all the elements from self, in undefined order.
post: result->forAll(elem | self->includes(elem))
asSequence() : Sequence(T)
A Sequence that contains all the elements from self, in undefined order.
post: result->forAll(elem | self->includes(elem))
post: self->forAll(elem | result->count(elem) = 1)
asBag() : Bag(T)
The Bag that contains all the elements from self.

post: result->forAll(elem | self->includes(elem))
post: self->forAll(elem | result->count(elem) = 1)

OrderedSet
append (object: T) : OrderedSet(T)

The set of elements, consisting of all elements of self, followed by object.

post: result->size() = self->size() + 1

post: result->at(result->size()) = object

post: Sequencef{l..self->size() }->forAll(index : Integer |
result->at(index) = self ->at(index))

prepend(object : T) : OrderedSet(T)
The sequence consisting of object, followed by all elements in self.

post: result->size = self->size() + 1

post: result->at(l) = object

post: Sequencef{l..self->size()}->forAll(index : Integer |
self->at(index) = result->at(index + 1))

insertAt(index : Integer, object : T) : OrderedSet(T)

The set consisting of self with object inserted at position index.

post: result->size = self->size() + 1

post: result->at(index) = object

post: Sequence{l..(index - 1)}->forAl1(i : Integer |
self->at(i) = result->at(i))

post: Sequence{(index + 1)..self->size()}->forA11(i : Integer |
self->at(i) = result->at(i + 1))

subOrderedSet(lower : Integer, upper : Integer) : OrderedSet(T)

The sub-set of self starting at number lower, up to and including element number upper.
pre : 1 <= lower

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003

THE OCL STANDARD LIBRARY

pre : lower <= upper

pre : upper <= self->size()

post: result->size() = upper -lower + 1

post: Sequence{lower..upper}->forAll1(index |

result->at(index - lower + 1) =
self->at(index))

at(i : Integer) : T

The i-th element of self.

pre : 1 >=1 and i <= self->size()
indexOf(obj : T) : Integer

The index of object obj in the sequence.

pre : self->includes(obj)

post : self->at(i) = obj
first(): T

The first element in self.

post: result = self->at(1l)

last() : T
The last element in self.
post: result = self->at(self->size())

Bag
= (bag : Bag(T)) : Boolean
True if self and bag contain the same elements, the same number of times.
post: result = (self->forAll(elem | self->count(elem) = bag->count(elem)) and
bag->forAll(elem | bag->count(elem) = self->count(elem)))
union(bag : Bag(T)) : Bag(T)
The union of self and bag.
post: result->forAl1(elem | result->count(elem) = self->count(elem) + bag->count(elem))
post: self ->forAl1(elem | result->count(elem) self->count(elem) + bag->count(elem))
post: bag ->forA11(elem | result->count(elem) self->count(elem) + bag->count(elem))
union(set : Set(T)) : Bag(T)
The union of self and set.

post: result->forAll(elem | result->count(elem) = self->count(elem) + set->count(elem))
post: self ->forAll(elem | result->count(elem) = self->count(elem) + set->count(elem))
post: set ->forAll(elem | result->count(elem) self->count(elem) + set->count(elem))

intersection(bag : Bag(T)) : Bag(T)
The intersection of self and bag.

post: result->forAll(elem |

result->count(elem) = self->count(elem).min(bag->count(elem)))
post: self->forAll(elem |

result->count(elem) = self->count(elem).min(bag->count(elem)))
post: bag->forAll(elem |

result->count(elem) = self->count(elem).min(bag->count(elem)))

intersection(set : Set(T)) : Set(T)
The intersection of self and set.

post: result->forAll(elem|result->count(elem) = self->count(elem).min(set->count(elem)))
post: self ->forAll(elem|result->count(elem) self->count(elem).min(set->count(elem)))
post: set ->forAll(elem|result->count(elem) = self->count(elem).min(set->count(elem)))

including(object : T) : Bag(T)
The bag containing all elements of self plus object.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 6-12

THE OCL STANDARD LIBRARY

post: result->forAll(elem |
if elem = object then
result->count(elem)
else
result->count(elem) = self->count(elem)
endif)
post: self->forAll(elem |
if elem = object then
result->count(elem)
else
result->count(elem)
endif)

excluding(object : T) : Bag(T)
The bag containing all elements of self apart from all occurrences of object.

post: result->forAll(elem |
if elem = object then
result->count(elem)
else
result->count(elem) = self->count(elem)
endif)
post: self->forAll(elem |
if elem = object then
result->count(elem)
else
result->count(elem) = self->count(elem)
endif)

count(object : T) : Integer
The number of occurrences of object in self.

flatten() : Bag(T2)
If the element type is not a collection type this result in the same bag. If the element type is a collection
type, the result is the bag containing all the elements of all the elements of self.

post: result = if self.type.elementType.oclIsKindOf(CollectionType) then
self->iterate(c; acc : Bag() = Bag{} |
acc->union(c->asBag()))

self->count(elem) + 1

self->count(elem) + 1

self->count(elem)

0

0

else
self
endif
asBag() : Bag(T)
A Bag identical to self. This operation exists for convenience reasons.
post: result = self

asSequence() : Sequence(T)

A Sequence that contains all the elements from self, in undefined order.

post: result->forAll(elem | self->count(elem) = result->count(elem))
post: self ->forAll(elem | self->count(elem) = result->count(elem))

asSet() : Set(T)
The Set containing all the elements from self, with duplicates removed.

post: result->forAll(elem | self ->includes(elem))
post: self ->forAll(elem | result->includes(elem))

asOrderedSet() : OrderedSet(T)

An OrderedSet that contains all the elements from self, in undefined order, with duplicates removed.

post: result->forAll(elem | self ->includes(elem))
post: self ->forAll(elem | result->includes(elem))
post: self ->forAll(elem | result->count(elem) = 1)

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003

6-13

THE OCL STANDARD LIBRARY

Sequence
count(object : T) : Integer
The number of occurrences of object in self.
= (s : Sequence(T)) : Boolean
True if self contains the same elements as s in the same order.

post: result = Sequencef{l..self->size()}->forAll(index : Integer |
self->at(index) = s->at(index))
and
self->size() = s->size()

union (s : Sequence(T)) : Sequence(T)
The sequence consisting of all elements in self, followed by all elements in s.
post: result->size() = self->size() + s->size()
post: Sequence{l..self->size()}->forAl1(index : Integer |

self->at(index) = result->at(index))
post: Sequence{l..s->size()}->forAll(index : Integer |
s->at(index) = result->at(index + self->size())))

flatten() : Sequence(T2)

If the element type is not a collection type this result in the same self. If the element type is a collection

type, the result is the seuqnce containing all the elements of all the elements of self. The order of the
elements is partial.

post: result = if self.type.elementType.oclIsKindOf(CollectionType) then
self->iterate(c; acc : Sequence() = Sequence{} |
acc->union(c->asSequence()))
else
self
endif

append (object: T) : Sequence(T)
The sequence of elements, consisting of all elements of self, followed by object.
post: result->size() = self->size() + 1
post: result->at(result->size()) = object

post: Sequencef{l..self->size() }->forAll(index : Integer |
result->at(index) = self ->at(index))

prepend(object : T) : Sequence(T)
The sequence consisting of object, followed by all elements in self.
post: result->size = self->size() + 1
post: result->at(l) = object

post: Sequence{l..self->size()}->forAl1(index : Integer |
self->at(index) = result->at(index + 1))

insertAt(index : Integer, object : T) : Sequence(T)
The sequence consisting of self with object inserted at position index.
post: result->size = self->size() + 1
post: result->at(index) = object
post: Sequence{l..(index - 1)}->forAl1(i : Integer |
self->at(i) = result->at(i))

post: Sequence{(index + 1)..self->size()}->forAl1(i : Integer |
self->at(i) = result->at(i + 1))

subSequence(lower : Integer, upper : Integer) : Sequence(T)

The sub-sequence of self starting at number lower, up to and including element number upper.
pre : 1 <= lower

pre : lower <= upper

pre : upper <= self->size()

post: result->size() = upper -lower + 1

post: Sequence{lower..upper}->forAl1(index |

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 6-14

THE OCL STANDARD LIBRARY

result->at(index - Tower + 1) =
self->at(index))

at(i : Integer) : T
The i-th element of sequence.
pre : i >=1 and i <= self->size()
indexOf(obj : T) : Integer
The index of object 0bj in the sequence.
pre : self->includes(obj)
post : self->at(i) = obj
first(): T
The first element in self.
post: result = self->at(1l)
last(): T
The last element in self.
post: result = self->at(self->size())
including(object : T) : Sequence(T)
The sequence containing all elements of self plus object added as the last element.
post: result = self.append(object)
excluding(object : T) : Sequence(T)
The sequence containing all elements of self apart from all occurrences of object.
The order of the remaining elements is not changed.

post:result->includes(object) = false
post: result->size() = self->size() - self->count(object)
post: result = self->iterate(elem; acc : Sequence(T)
= Sequence(} |
if elem = object then acc else acc->append(elem) endif)

asBag() : Bag(T)
The Bag containing all the elements from self, including duplicates.

post: result->forAll(elem | self->count(elem) = result->count(elem))
post: self->forAll(elem | self->count(elem) = result->count(elem))

asSequence() : Sequence(T)

The Sequence identical to the object itself. This operation exists for convenience reasons.
post: result = self

asSet() : Set(T)

The Set containing all the elements from self, with duplicated removed.

post: result->forAll(elem | self ->includes(elem))
post: self ->forAll(elem | result->includes(elem))

asOrderedSet() : OrderedSet(T)

An OrderedSet that contains all the elements from self, in the same order, with duplicates removed.

post: result->forAll(elem | self ->includes(elem))
post: self ->forAll(elem | result->includes(elem))
post: self ->forAll(elem | result->count(elem) = 1)
post: self ->forAll(eleml, elem?2
self->index0f(eleml) < self->index0f(elem2)

implies result->indexOf(eleml) < result->index0f(elem2))

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003

6-15

THE OCL STANDARD LIBRARY

6.6 PREDEFINED ITERATOR EXPRESSIONS

This section defines the standard OCL iterator expressions. In the abstract syntax these are all instances of Iterat-
orExp. These iterator expressions always have a collection expression as their source, as is defined in the well-
formedness rules in section 3 (“Abstract Syntax”). The defined iterator expressions are shown per source collec-
tion type. The semantics of each iterator expression is defined through a mapping from the iterator to the ’iterate’
construct. this means that the semantics of the iterator expressions does not need to be defined seperately in the
sementics sections.

Whenever a new itertor is added to the library, the mapping to the iterate expression must be defined. If this is
not done, the semantics of the new iterator is undefined.

In all of the following OCL expressions, the lefthand side of the equals sign is the IteratorExp to be defined,
and the righthand side of the equals sign is the equivalent as an IterateExp. The names source, body and iterator
refer to the role names in the abstract syntax:

source The source expression of the IteratorExp
body The body expression of the IteratorExp
iterator The iterator variable of the IteratorExp
result The result variable of the IterateExp

Extending the standard library with iterator expressions

When new iterator expressions are added to the standard library, there mapping to existing constructs should be
fully defines. If this is done, the semantics of the new iterator expression will be defined.

6.6.1 Mapping rules for predefined iterator expressions

This section contains the operations and well-formedness rules of the collection types.

Collection
exists
Results in true if body evaluates to true for at least one element in the source collection.

source->exists(iterators | body) =
source->iterate(iterators; result : Boolean = false | result or body)

forAll

Results in true if the body expression evaluates to true for each element in the source collection; other-
wise, result is false.

source->forAll(iterators | body) =
source->iterate(iterators; result : Boolean = true | result and body)
isUnique
Results in true if body evaluates to a different value for each element in the source collection; otherwise,
result is false.

source->isUnique (iterators | body) =
source->collect (iterators | Tuple{iter = Tuple{iterators}, value = body})
->forAll (x, y | (x.iter <> y.iter) implies (x.value <> y.value))
isUnique may have at most one iterator variable.

any
Returns any element in the source collection for which body evaluates to true. If there is more than one

element for which body is true, one of them is returned. There must be at least one element fulfilling
body, otherwise the result of this IteratorExp is OclUndefined.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 6-16

THE OCL STANDARD LIBRARY

source->any(iterator | body) =
source->select(iterator | body)->asSequence()->first()

any may have at most one iterator variable.

one
Results in true if there is exactly one element in the source collection for which body is true.
source->one(iterator | body) =
source->select(iterator | body)->size() =1
one may have at most one iterator variable.

collect
The Collection of elements which results from applying body to every member of the source set. The
result is flattened. Notice that this is based on collectNested, which can be of different type depending
on the type of source. collectNested is defined individually for each subclass of CollectionType.

source->collect (iterators | body) = source->collectNested (iterators | body)->flatten()
collect may have at most one iterator variable.

Set
The standard iterator expression with source of type Set(T) are:

select
The subset of set for which expr is true.

source->select(iterator | body) =
source->iterate(iterator; result : Set(T) = Set{} |
if body then result->including(iterator)
else result
endif)

select may have at most one iterator variable.
reject
The subset of the source set for which body is false.

source->reject(iterator | body) =
source->select(iterator | not body)

reject may have at most one iterator variable.

collectNested
The Bag of elements which results from applying body to every member of the source set.

source->collect(iterators | body) =
source->iterate(iterators; result : Bag(body.type) = Bagi{!} |
result->including(body))
collectNested may have at most one iterator variable.

sortedBy

Results in the OrderedSet containing all elements of the source collection. The element for which body
has the lowest value comes first, and so on. The type of the body expression must have the < operation
defined. The < operation must return a Boolean value and must be transitive i.e. if a<b and b < c then a
<c.

source->sortedBy(iterator | body) =
iterate(iterator ; result : OrderedSet(T) : OrderedSet {} |

if result->iskmpty() then
result.append(iterator)

else
let position : Integer = result->index0f (

result->select (item | body (item) > body (iterator)) ->first())
in
result.insertAt(position, iterator)

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 6-17

THE OCL STANDARD LIBRARY

endif
sortedBy may have at most one iterator variable.

Bag
The standard iterator expression with source of type Bag(T) are:
select

The sub-bag of the source bag for which body is true.

source->select(iterator | body) =
source->iterate(iterator; result : Bag(T) = Bagi{} |
if body then result->including(iterator)
else result
endif)

select may have at most one iterator variable.
reject
The sub-bag of the source bag for which body is false.

source->reject(iterator | body) =
source->select(iterator | not body)

reject may have at most one iterator variable.
collectNested
The Bag of elements which results from applying body to every member of the source bag.

source->collect(iterators | body) =
source->iterate(iterators; result : Bag(body.type) = Bagi{} |
result->including(body))
collectNested may have at most one iterator variable.

sortedBy

Results in the Sequence containing all elements of the source collection. The element for which body
has the lowest value comes first, and so on. The type of the body expression must have the < operation

defined. The < operation must return a Boolean value and must be transitive i.e. if a<b and b < c then a
<c.

source->sortedBy(iterator | body) =
iterate(iterator ; result : Sequence(T) : Sequence {} |

if result->iskmpty() then
result.append(iterator)

else
let position : Integer = result->index0f (

result->select (item | body (item) > body (iterator)) ->first())
in
result.insertAt(position, iterator)
endif

sortedBy may have at most one iterator variable.

Sequence
The standard iterator expressions with source of type Sequence(T) are:
select(expression : OclExpression) : Sequence(T)

The subsequence of the source sequence for which body is true.

source->select(iterator | body) =
source->iterate(iterator; result : Sequence(T) = Sequence{} |
if body then result->including(iterator)
else result
endif)

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 6-18

THE OCL STANDARD LIBRARY

select may have at most one iterator variable.
reject
The subsequence of the source sequence for which body is false.
source->reject(iterator | body) =
source->select(iterator | not body)
reject may have at most one iterator variable.

collectNested
The Sequence of elements which results from applying body to every member of the source sequence.

source->collect(iterators | body) =
source->iterate(iterators; result : Sequence(body.type) = Sequence{} |
result->append(body))

collectNested may have at most one iterator variable.
sortedBy

Results in the Sequence containing all elements of the source collection. The element for which body
has the lowest value comes first, and so on. The type of the body expression must have the < operation
defined. The < operation must return a Boolean value and must be transitive i.e. if a<b and b < c then a
<c.

source->sortedBy(iterator | body) =
iterate(iterator ; result : Sequence(T) : Sequence {} |
if result->isEmpty() then
result.append(iterator)
else
let position : Integer = result->index0f (

result->select (item | body (item) > body (iterator)) ->first())

in
result.insertAt(position, iterator)
endif

sortedBy may have at most one iterator variable.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003

The Use of Ocl Expressions in UML Models

This section describes the various manners in which OCL expressions can be used in UML models.

7.1 INTRODUCTION

In principle, everywhere in the UML specification where the term expression is used, an OCL expression can be
used. In UML 1.4 OCL expressions could be used e.g. for invariants, preconditions and postconditons, but other
placements are possible too. The meaning of the value, which results from the evaluation of the OCL expression,
depends on its placement within the UML model.

In this specification the structure of an expression, and its evaluation are separated from the usage of the
expression. Chapter 3 (“Abstract Syntax™) defines the structure of an expression, and chapter A (“Semantics”)
defines the evaluation. In chapter 4 (“Concrete Syntax”) it was allready noted that the contents of the name space
environment of an OCL expression are fully determined by the placement of the OCL expression in the model. In
that chapter an inherited attribute env was introduced for every production rule in the attribute grammar to repre-
sent this name space environment.

This section specifies a number of predefined places where OCL expressions can be used, their associated
meaning, and the contents of the name space environment. The modeler has to define her/his own meaning, if
OCL is used at a place in the UML model which is not defined in this section.

For every occurence of an OCL expression three things need to be separated: the placement, the contextual
classifier, and the self instance of an OCL expression.

The placement is the position where the OCL expression is used in the UML model, e.g. as invariant con-
nected to class Person.

The contextual classifier defines the namespace in which the expression is evaluated. For example, the contex-
tual classifier of a precondition is the classifier that is the owner of the operation for which the precondition is
defined. Visible within the precondition are all model element that are visible in the contextual classifier.

The self instance is the reference to the object that evaluates the expression. It is always an instance of the con-
textual classifier. Note that evaluation of an OCL expression may result in a different value for every instance
of the contextual classifier.

In the next section a number of placements are stated explicitly. For each the contextual classifier is defined, and
well-formedness rules are given, that exactly define the place where the OCL expression is attached to the UML
model.

UML 2.0 Alignment

The definition of the contextualClassifier and ExpressionInOcl depends to a large extend on the UML 2.0 defini-
tion. Therefore this section will need to be finished after the UML 2.0 definition has been frozen. Therefore not
all rules in this section are completely finished, they need to be re-done anyway.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 7-1

THE USE oF OcL ExPRESSIONS IN UML MoDELS

Expression
(from DataTypes)
+ language
+ body : String

+bodyExpression ;
E xpressionlnOcl yEXP OclE xpression

0.1 +contextualClassifier

Classifier
(from Core)

Figure 7-1 Metaclass ExpressionIlnOcl added to the UML metamodel

7.2 THE EXPRESSIONINOCL TYPE

Because in the abstract syntax OclExpression is defined recursively, we need a new metaclass to represent the top
of the abstract syntax tree that represents an OCL expression. This metaclass is called ExpressionInOcl, and it is
defined to be a subclass of the Expression metaclass from the UML core, as shown in figure 7-1. In UML (1.4)
the Expression metaclass has an attribute language which may have the value ’OCL’. The body attribute contains
a text representation of the actual expression. The bodyExpression association of ExpressionInOcl is an associa-
tion to the OCL expression as represented by the OCL Abstract syntax metamodel. The body attribute (inherited
from Expression) may still be used to store the string representation of the OCL expression. The language
attribute (also inherited form Expression) has the value ‘OCL’.

ExpressioninOcl
An expression in OCL is an expression that is written in OCL. The value of the language attribute is therefore
always equal to ‘OCL".
Associations
contextualClassifier The classifier that is the context of the OCL expression. Self is always an
instance of this classifier. The contextualClassifier is always a derived associa-
tion. In the remainder of this chapter many derivations will be given.
bodyExpression The bodyExpression is an OclExpression that is the root of the actual OCL
expression, which is described fully by the OCL abstract syntax metamodel.

7.2.1 Well-formedness rules

ExpressioninOcl

[1] This expression is always written in OCL

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 7-2

THE USE oF OcL ExPRESSIONS IN UML MoDELS

context ExpressionInOcl
inv: language = *0CL’

7.3 STANDARD PLACEMENTS OF OCL EXPRESSIONS

This section defines the standard places where OCL expressions may occur, and defines for each case the value
for the contextual classifier. Note that this list of places is not exhausting, and can be enhanced.

How to extend the use of OCL at other places

At many places in the UML where an Expression is used, one can write this expression in OCL. To define the use
of OCL at such a place, the main task is to define what the contextual classifier is. When that is given, the OCL
expression is fully defined. This section defines a number of often used placements of OCL expressions.

7.3.1 Definition

A definition constraint is a constraint that is linked to a Classifier. It may only consist of one or more LetExps.
The variable or function defined by the Let expression can be used in an identical way as an attribute or operation
of the Classifier. Their visibility is equal to that of a public attribute or operation. The purpose of a definition con-
straint is to define reusable sub-expressions for use in other OCL expressions.

The placement of a definition constraint in the UML metamodel is shown in figure 7-2. The following well-
formedness rule must hold. This rule also defines the value of the contextual Classifier.

Well-formedness rules

[1] The ExpressinlnOcl is a definition constraint if it has the stereotype <<definition>> (A) and the constraint is
attached to only one model element (B) and the constraint is attached to a Classifier (C).

context ExpressionInOcl
def: isDefinitionConstraint : Boolean =

self.constraint.stereotype.name = “definition’ -- A

and

self.constraint.constrainedElement->size() =1 -- B

and

self.constraint.constrainedElement.any(true).oclIsKindOf(Classifier) -- C
ModelElement | 0.n +constraint constraint

(from Core) (from Core)

tconstrainedElement 0..n

0..1T
1 | +body

Classifier Expression
(from Core) (from DataTypes)

i

ExpressioninOcl

+bodyExpression
1

OclExpression

Figure 7-2 Situation of Ocl expression used as definition or invariant

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 7-3

THE USE oF OcL ExPRESSIONS IN UML MoDELS

[2] For a definition constraint the contextual classifier is the constrained element.

context ExpressionInOcl
inv: isDefinitionConstraint implies
contextualClassifier =
self.constraint.constrainedElement.any(true).oclAsType(Classifier)

[3] Inside a definition constraint the use of @pre is not allowed.

context ExpressionInOcl
inv: --

7.3.2 Invariant

An invariant constraint is a constraint that is linked to a Classifier. The purpose of an invariant constraint is to
specify invariants for the Classifier. An invariant constraint consists of an OCL expression of type Boolean. The
expression must be true for each instance of the classifier at any moment in time. Only when an instance is exe-
cuting an operation, this does not need to evaluate to true.

The placement of an invariant constraint in the UML metamodel is equal to the placement of a definition con-
straint, which is shown in figure 7-2. The following well-formedness rule must hold. This rule also defines the
value of the contextual Classifier.

Well-formedness rules

[1] The constraint has the stereotype <<invariant>> (A) and the constraint is attached to only one model element
(B) the constraint is attached to a Classifier (C). The contextual classifier is the constrained element and the
type of the OCL expression must be Boolean.

context ExpressionInOcl

inv: self.constraint.stereotype.name = “invariant’ -- A
and
self.constraint.constrainedElement->size() =1 -- B
and
self.constraint.constrainedElement.any(true).oclIsKindOf(Classifier) -- C
implies

contextualClassifier =
self.constraint.constrainedElement->any(true).oclAsType(Classifier)

and

self.bodyExpression.type.name = ’Boolean’

[2] Inside an invariant constraint the use of @pre is not allowed.

context ExpressionInOcl
inv: --

7.3.3 Precondition

A precondition is a constraint that may be linked to an Operation of a Classifier. The purpose of a precondition is
to specify the conditions that must hold before the operation executes. A precondition consists of an OCL expres-
sion of type Boolean. The expression must evaluate to true whenever the operation starts executing, but only for
the instance that will execute the operation.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 7-4

THE USE oF OcL ExPRESSIONS IN UML MoDELS

The placement of a precondition in the UML metamodel is shown in figure 7-3. The following well-formed-
ness rule must hold. This rule also defines the value of the contextual Classifier.

ModelElement |0..n +constraint| Constraint
(from Core) 4 4onstrainedElement 0.n | (from Core)
0.1
{ordered
Feature o n. rowner £ 11 *body
0.n_ " g Classifier Expression
(from Core)yfeature 0..1| (from Core) (from DataTypes)

1

+bodyExpression

BehavioralFeature

(from Core) ExpressioninOcl

OclExpression

Figure 7-3 An OCL ExpressionlnOcl used as a pre- or post-condition.

Well-formedness rules

[1] The Constraint has the stereotype <<precondition>> (A), and is attached to only one model element (B), and
to a BehavioralFeature (C), which has an owner (D). The contextual classifier is the owner of the operation to
which the constraint is attached, and the type of the OCL expression must be Boolean

context Expression

inv: self.constraint.stereotype.name = ’precondition’ -- A
22$f.constraint.constrainedﬂement7>s1‘ze() =1 -- B
saenqu.constraint.constrainedE]ement->any(true).oclIsKindOf(Behaviora]Feature) --C
22?f.constraint.constrainedE]ement->any(true) -- D

.0clAsType(BehavioralFeature).owner->size() =1
implies
contextualClassifier =
self.constraint.constrainedElement->any(true)
.oclAsType(BehavioralFeature).owner
and
self.bodyExpression.type.name = ’Boolean’

[2] Inside a precondtion constraint the use of @pre is not allowed.

context ExpressionInOcl
inv: --

7.3.4 Postcondition

Like a precondition, a postcondition is a constraint that may be linked to an Operation of a Classifier. The pur-
pose of a postcondition is to specify the conditions that must hold after the operation executes. A postcondition
consists of an OCL expression of type Boolean. The expression must evaluate to true at the moment that the oper-
ation stops executing, but only for the instance that has just executed the operation. Within an OCL expression
used in a postcondition, the "@pre" mark can be used to refer to values at precondition time. The variable result
refers to the return value of the operation if there is any.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 7-5

THE USE oF OcL ExPRESSIONS IN UML MoDELS

The placement of a postcondition in the UML metamodel is equal to the placement of a precondition, which is
shown in figure 7-3. The following well-formedness rule must hold. This rule also defines the value of the con-
textual Classifier.

Wellformedness rules

[1] The Constraint has the stereotype <<postcondition>> (A), and it is attached to only one model element (B),
that is an BehavioralFeature (C), which has an owner (D). The contextual classifier is the owner of the opera-
tion to which the constraint is attached, and the type of the OCL expression must be Boolean

context Expression

inv: self.constraint.stereotype.name = ’postcondition’ -- A
22?f.constraint.constrainedE]ement->s1’ze() =1 -- B
sagldf.constraint.constrainedETement&any(true).oc?IsKindOf(BehavioraTFeature) -- C
gg?f.constraint.constrainedE]ement->any(true) -- D

.oclAsType(BehavioralFeature).owner->size() =1
implies
contextualClassifier =
self.constraint.constrainedElement->any().oclAsType(BehavioralFeature).owner
and
self.bodyExpression.type.name = ’Boolean’

7.3.5 Initial value expression

An initial value expression is an expression that may be linked to an Attribute of a Classifier, or to an Associatio-
nEnd. An OCL expression acting as the initial value of an attribute must conform to the defined type of the
attribute. An OCL expression acting as the initial value of an association end must conform to the type of the
association end, i.e. the type of the attached Classifier when the multiplicity is maximum one, or OrderedSet with
element type the type of the attached Classifier when the multiplicity is maximum more than one.

The OCL expression is evaluated at the creation time of the instance that owns the attribute for this created
instance in the case of an inital value for an attribute. In the case of an inital value for an association end, the OCL
expression is evaluated at the creation time of the instance of the Classifier at the other end(s) of the association.

The placement of an attribute initial value in the UML metamodel is shown in figure 7-4. The following well-
formedness rule must hold. This rule also defines the value of the contextual Classifier.

Comment — The placement of an intial value of an association end is dependent upon the UML 2.0
metamodel. So are the well-formedness rules for this case.

Well-formedness rules

[1] The Expression is the initial value of an attribute (A), and the Attribute has an owner (B). The contextual clas-
sifier is the owner of the attribute, and the type of the OCL expression must conform to the type of the
attribute.

context ExpressionInOcl

inv: self.attribute->notEmpty() -- A
and
self.attribute.owner->size() =1 -- B
implies
contextualClassifier = self.attribute.owner
and

self.bodyExpression.type.conformsTo(self.attribute.type)

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 7-6

THE USE oF OcL ExPRESSIONS IN UML MoDELS

Feature |feature townes, Classifier
0..n f c
(from Core) {ordered} 0.1 (from Core)
1 +type
StructuralFeature
(from Core) 0.n
Attribute Hattribute 0.1 | Expression

(from Core) |0..1 +initialValue| (from DataTypes)

]

ExpressioninOcl

+bodyExpression
1

OclExpression

Figure 7-4 Expression used to define the inital value of an attribute

[2] Inside an initial attribute value the use of @pre is not allowed.

context ExpressionInOcl
inv: -- TBD

7.3.6 Derived value expression

A derived value expressionis an expression that may be linked to to an Attribute of a Classifier, or to an Associa-
tionEnd. An OCL expression acting as the derived value of an attribute must conform to the defined type of the
attribute. An OCL expression acting as the derived value of an association end must conform to the type of the
association end, i.e. the type of the attached Classifier when the multiplicity is maximum one, or OrderedSet with
element type the type of the attached Classifier when the multiplicity is maximum more than one.

A derived value expression is an invariant that states that the value of the attribute or association end must
always be equal to the value obtained from evaluating the expression.

Comment — The placement of a derived value expression is dependent upon the UML 2.0 meta-
model. So are the well-formedness rules for this case.

7.3.7 Operation body expression

A body expression is an expression that may be linked to to an Operation of a Classifier, that is marked Query
operation. An OCL expression acting as the body of an operation must conform to the result type of the opera-
tion. Evaluating the body expression gives the result of the operation at a certain point in time.

Comment — The placement of an operation body expression is dependent upon the UML 2.0 meta-
model. So are the well-formedness rules for this case.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 7-7

THE USE oF OcL ExPRESSIONS IN UML MoDELS

ModelElement
(from Core)

0..1

+context

0..n +behavior

StateMachine
(from State Machines)

0..1

0..n

Transition

+statemachine

+transitions

0.n +state

(from State Machines)

+internalTransition Q.1

19 +transition

+guard | 0..1

Guard

0..1
(from State Machines) gt

Classifier
(from Core)

OclExpression

+bodyExpression/|* 1

ExpressioninOcl

State
(from State Machines)

+expression

Expression

+guard

Figure 7-5 An OCL expression used as a Guard expression

7.3.8 Guard

A guard is an expression that may be linked to a Transition in a StateMachine. An OCL expression acting as the
guard of a transition restricts the transition. An OCL expression acting as value of a guard is of type Boolean. The

1 (from DataTypes)

expresion is evaluated at the moment that the transition attached to the guard is attempted.

The placement of a guard in the UML metamodel is shown in figure 7-5. The following well-formedness rule
must hold. In order to state the rule a number of additional operations are defined. The rule also defines the value

of the contextual Classifier.

Well-formedness rules

[1] The statemachine in which the guard appears must have a context (A), that is a Classifier (B). The contextual

classifier is the owner of the statemachine, and the type of the OCL expression must be Boolean.

context ExpressionInOcl

inv:

contextualClassif

ier =

not self.guard.transition.getStateMachine().context.oclIsUndefined()
and
self.guard.transition.getStateMachine().context.oclIsKindOf(Classifier)
implies

self.guard.transition.getStateMachine().context.oclAsType(Classifier)

and
self.bodyExpressi

on.type.name =

[2] Inside an guard the use of @pre is not allowed.

context ExpressionInOcl

inv:

>Boolean’

OCL 2.0 REVISED SUBMISSION

VERSION 1.6, JANUARY 6, 2003

THE USE oF OcL ExPRESSIONS IN UML MoDELS

7.4 CONCRETE SYNTAX OF CONTEXT DECLARATIONS

This section describes the concrete syntax for specifying the context of the different types of usage of OCL
expressions. It makes use of grammar rules defined in chapter 4 (“Concrete Syntax”). Here too, every production
rule is associated to the abstract syntax by the type of the attribute ast. However, we must sometimes refer to the
abstract syntax of the UML to find the right type for each production.

Visibility rules etc. must be defined in the UML metamodel. Here we assume that every classifier has an oper-
ation visibleElements(), which returns an instance of type Environment, as defined in chapter 4 (“Concrete Syn-
tax”).

NB Note that the context declarations as described in this section are not needed when the OCL expressions
are attached directly to the UML model. This concerete syntax for context declarations is only there to facilitate
separate OCI expressions in text files.

Because of the assumption that the concrete syntax below is used separate from the UML model, we assume
the existence of an operation getClassifier() on the UML model that allows us to find a Classifier anywhere in the
corresponding model. The signature of this operation is defined as follows:

context Model::findClassifier(pathName : Sequence(String)) : Classifier

The pathName needs not be a fully qualified name (it may be), as long as it can uniquely identify the classifier
siomewhere in the UML model. If a classifier name occurs more than once, it needs to be qualified with its
owning package (recusiveley) until the qualified name is unique. If more than one classifier is found, the opera-
tion returns OclUndefined. The variable Model is used to refer to the UML Model. It is used as Model.findClassi-
fier().

Lisewise, we assume the existence of an operation getPackage() on the UML model that allows us to find a
Package anywhere in the corresponding model. The signature of this operation is defined as follows:

context Model::findPackage(pathName : Sequence(String)) : Package

In this case the pathName needs be a fully qualified name.

Comment - The rules for the synthesized and inherited attributes associated with the grammar all
depend upon the UML 2.0 metamodel. They cannot be written until this metamodel has been sta-
blelized. Therefore only the grammar rules are given.

packageDeclarationCS
This production rule represents a package declaration.

[A] packageDeclarationCS "package’ pathNameCS contextDeclCS*
“endpackage’

contextDeclCS*

[B] packageDeclarationCS

contextDeclarationCS
This production rule represents all different context declarations.
[A] contextDeclarationCS ::= attrOrAssocContextCsS

[C] contextDeclarationCS classifierContextDeclCS
[D] contextDeclarationCS operationContextDeclCS

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 7-9

THE USE oF OcL ExPRESSIONS IN UML MoDELS

attrOrAssocContextCS

This production rule represents a context declaration for expressions that can be coupled to an attribute or associ-
ation end. The path name refers to the "owner" of the attribute or association end, the simple name refers to its
name, the type states its type.

attrOrAssocContextCS ::= ’context’ pathNameCS ’::” simpleName’:’ typeCS
initOrDerValueCS

initOrDerValueCS

This production rule represents an initial or derived value expression.

LAl initOrDerValueCS[1]

init’ OclExpression
initOrDerValueCS[2]?
[B] initOrDerValueCS[1] ::= "derive’ ’:” (OclExpression

initOrDerValueCS[2]?

classifierContextDeclICS
This production rule represents a context declaration for expressions that can be coupled to classifiers.

classifierContextDeclICS ::= ’“context’ pathNameCS invOrDefCS

invOrDefCS

This production rule represents an invariant or definition.

[A] invOrDefCS[1] ::= "inv’ (simpleNameCS)? *:” OclExpressionCS
invOrDefCSL2]

[B] invOrDefCS[1] ::= "def’ (simpleNameCS)? *:’ defExpressionCS
invOrDefCSL2]

defExpressionCS

This production rule represents a definition expression. The defExpressionCS nonterminal has the purpose of
defining additional attributes or operations in OCL. They map directly to a UML attribute or operation with a
constraint that defines the derivation of the attribute or operation result value. Note that VariableDeclarationCS
has been defined in chapter 4.

[A] defExpressionCS ::= VariableDeclarationCS =" 0OclExpression

]]

[B] defExpressionCS ::= operationCS =" OclExpression

operationContextDecICS
This production rule represents a context declaration for expressions that can be coupled to an operation.

operationContextDeclCS ::= ’“context’ operationCS prePostOrBodyDeclCS

prePostOrBodyDecICS

This production rule represents a pre- or postcondition or body expression.

[A] prePostOrBodyDecl1CS[1]

s, 0

‘pre’ (simpleNameCS)?
prePostOrBodyDecl1CS[2]7?
"post’ (simpleNameCS)? ’*:’
prePostOrBodyDeclICS[2]17

OclExpressionCS

[B] prePostOrBodyDeclCS[1]

OclExpressionCS

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 7-10

THE USE oF OcL ExPRESSIONS IN UML MoDELS

[C] prePostOrBodyDeclCS[1] ::= ’"body’ (simpleNameCS)? ’:’ OclExpressionCS
prePostOrBodyDeclCS[2]7?

operationCS

This production rule represents an operation in a context declaration or definition expression.

[A] operationCS = pathNameCS *::’ simpleNameCS " (' parametersCS? *)" ’:~
typeCS?

[B] operationCS = simpleNameCS " (° parametersCS? *)° *:7 typeCS?

parametersCS

This production rule represents the formal parameters of an operation .

parametersCS[1] ::= VariableDeclarationCS (’,” parametersCS[2])?

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 7-11

Alignment of OCL, UML and MOF
Metamodels

This section describes the connections between the OCL and UML metamodels.

8.1 INTRODUCTION

This chapter provides the neccesary information to align the OCL and UML 2.0 metamodels. It is meant to be a
useful reference to the dependencies between the UML and OCL documents that make part of the UML 2.0
standard.

All references made to metaclasses in the UML 1.4 metamodel that are used in the current definition of the
abstract syntax of OCL (in chapter 3) are listed. These or similar metaclasses are expected to be part of the UML
2.0 metamodel. The references need to be aligned with the UML 2.0 metamodel as soon as that metamodel is sta-
ble.

As described in section 1.8 (“OCL 2.0 Compliance Points”) the OCL specification will define a subset that is
MOF compliant, while the complete specification is UML compliant. Because the MOF 2.0 Core and the UML
2.0 Infrastructure are devleoped in parallel with this OCL 2.0 submission, the exact MOF compliant subset of
OCL cannot be defined in this document. This needs to be done during alignment when all submission are stable.

Another issue in alignment is where in a model OCL expressions may be used. These placements are governed
by the references made in the UML 2.0 metamodel to the metaclasses Expression, Constraint, and similar meta-
classes. In chapter 7 a number of placements in the model where OCL expressions can be useful, have been
described, but others may be added. The UML 2.0 metamodel should provide a way to link to an OCL expression
in these cases. This chapter lists the contexts already foreseen, and indicates the expectations on the UML 2.0
metamodel in each case.

Finally, this chapter lists a number of aspects of the UML 2.0 metamodel that are not required but convenient
in the specification of OCL.

8.2 USE OF THE UML METAMODEL

The metaclasses from the UML 1.4 metamodel that are listed in table 6, are referenced in the abstract syntax of
this submission. These or similar classes are expected to be part of the UML 2.0 metamodel. The list is divided
into classes that should be present in a core metamodel, and metaclasses that should be present in an extension to
this core that deals with states and messaging. Preferably the core metaclasses are present in the infrastructure of
UML, and in the core of the MOF.

Potentially there is an overlap between the UML 2.0 infrastructure submissions and this submission in the def-
inition of literal expressions. A final issue is that this submission would be helped if there is a way in the UML to

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 8-1

ALIGNMENT oF OCL, UML AND MOF METAMODELS

define template classes. This feature is used in the definition of the OCL standard library to define collection
types..

Table 6. Overview of UML 1.4. metaclasses used in this submission

Needed for
Expected in Expected in state and

Metaclass MOF and UML | UML message values | Assumptions

AssociationClass X

AssociationEnd X

Attribute X

Classifier X

DataType X

Enumeration X

EnumLiteral X

ModelElement X

Primitive X

StructuralFeature | X

Operation X X Operations have Parameters and
each parameter has a direction kind
(ParameterDirectionKind).

CallAction X

SendAction X

Signal X Signals have attributes.

8.3 USE OoF THE OCL METAMODEL IN THE UML METAMODEL

OCL expressions can be used anywhere in the model where a value needs to be specified. Table 7 lists a number
of places in a model, where we expect OCL expressions will be useful. This list is not exhaustive, other uses of
OCL expressions can be added. For some cases this submission defines a special concrete syntax, in case the
OCL expression is added to the model not in a diagram, but in another (text) file. The UML 2.0 metamodel needs
to link the mentioned metaclasses in some manner to the metaclass Expression, or to another metaclass suitable
to hold an OCL expression.

Table 7. Overview of places in a model where an OCL expression may be used

Concrete syntax defined in

Related UML metaclasses Function of expression OCL 2.0 submission
Attribute inital value X
Attribute derivation rule X
AssociationEnd inital value X
AssociationEnd derivation rule X
Classifier invariant X
Classifier, Attribute definition of new attribute X
Classifier, Operation definition of new operation X
Operation precondition X
Operation postcondition X

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 8-2

ALIGNMENT oF OCL, UML AND MOF METAMODELS

Table 7. Overview of places in a model where an OCL expression may be used

Concrete syntax defined in

Related UML metaclasses Function of expression OCL 2.0 submission
Operation body expression X
AssociationEnd value of multiplicity

Guard specification of condition
Message specification of source

Message specification of target

Message specification of condition
Message actual parameter value

Action specification of target

Action actual parameter value

Change Event condition

Use Case precondition

Use Case postcondition

8.4 WISHLIST

This section lists a number of items that would be convenient for this submission, if present in the UML 2.0 met-
amodel.

1. It would be convenient if there is a way to learn from a Classifier whether it uses value identity or reference
identity.

2. This submission defines a number of additional operations to metaclasses in the UML 1.4 metamodel. It
would be convenient if the UML 2.0 metamodel would provide those operations, specially they appear to be

useful in other submissions, like the Superstructure submission. In this submission the following additional
operations are defined on Classifier:

commonSuperType: results in the most specific common supertype of two classifiers
lookupAttribute

lookupAssociationEnd

lookupAssociationClass

lookupOperation

lookupSignal

allRecptions
On Operation:
hasMatchingSignature

On Parameter:
asAttribute

make

On Signal
hasMatchingSignature

On State and on Transition:

getStateMachine

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 8-3

ALIGNMENT oF OCL, UML AND MOF METAMODELS

OCL 2.0 REVISED SUBMISSION

VERSION 1.6, JANUARY 6, 2003

8-4

SEMANTICS

A SEMANTICS

This section formally defines the syntax and semantics of OCL. Most of the material in this section is based on
work presented in7]. This section is organized as follows. Section A.1 defines the concept of object models.
Object models provide information used as context for OCL expressions and constraints. Section A.2 defines the
type system of OCL and the set of standard operations. Finally, Section A.3 defines the syntax and semantics ¢
OCL expressions.

A.1 OBJECT MODELS

In this section, the notion of ambject models formally defined. An object model provides the context for OCL
expressions and constraints. A precise understanding of object models is required before a formal definition o
OCL expressions can be given. Section A.1.1 proceeds with a formal definition of the syntax of object models.
The semantics of object models is defined in Section A.1.2. This section also defines the notion of system state
as snapshots of a running system.

A.1.1 SYNTAX OF OBJECT MODELS

In this section, we formally define the syntax of object models. Such a model has the following components:

e aset of classes,

e a set of attributes for each class,

e a set of operations for each class,

e a set of associations with role names and multiplicities,

e a generalization hierarchy over classes.

Additionally, types such almteger, String Se{Rea) are available for describing types of attributes and operation
parameters. In the following, each of the model components is considered in detail. The following definitions are
combined in Section A.1.1.7 to give a complete definition of the syntax of object models. For naming model com-
ponents, we assume in this section an alphabahd a set of finite, non-empty nam&sC A* over alphabetd

to be given.

A.1.1.1 TYPES

Types are considered in depth in Section A.2. For now, we assume that there is a signatufg, ?) with T
being a set of type names, afidbeing a set of operations over typesiin The setl” includes the basic types
Integer, Real Boolean andString These are the predefined basic types of OCL. All type domains include an
undefined value that allows to operate with unknown or “null” values. Operatiofisiiclude, for example, the
usual arithmetic operations, —, *, /, etc. for integers. Furthermore, collection types are available for describing
collections of values, for exampl8g{String), Bag(Integel, andSequend®ea). Structured values are described
by tuple types with named components, for examplglgname:String, age:Integgr

OCL 2.0 REVISED SUBMISSION VERSION1.6, ANUARY 6, 2003 A-1

SEMANTICS

A.1.1.2 CLASSES

The central concept of UML for modeling entities of the problem domain is the class. A class provides a common
description for a set of objects sharing the same properties.

DEFINITION A.1 (CLASSES)
The set of classes is a finite set of names€s C . O

Each clasg € CLASS induces arobject typet. € T having the same name as the class. A value of an object type
refers to an object of the corresponding class. The main difference between classes and object types is that tt
interpretation of the latter includes a special undefined value.

Note that for a definition of the semantics of OCL, UML'’s distinction between classes and interfaces does not
matter. OCL specifies constraints for instances of a given interface specification. Whether this specification is
stated in the form of a class or interface definition makes no difference.

A.1.1.3 ATTRIBUTES

Attributes are part of a class declaration in UML. Objects are associated with attribute values describing properties
of the object. An attribute has a name and a type specifying the domain of attribute values.

DEFINITION A.2 (ATTRIBUTES)
Lett € T be a type. The attributes of a class CLASS are defined as a settA, of signatures: : t. — t where
the attribute name is an element o\, andt. € T is the type of class. O

All attributes of a class have distinct names. In particular, an attribute name may not be used again to define anothe
attribute with a different type.

Vt,t'eT:(a:t.—teATT.,anda : t. —t' € ATT,) = t =1t
Attributes with the same name may, however, appear in different classes that are not related by generalizatior

Details are given in Section A.1.1.6 where we discuss generalization. The set of attribute names and class nam:
need not be disjoint.

A.1.1.4 OPERATIONS

Operations are part of a class definition. They are used to describe behavioral properties of objects. The effect of a
operation may be specified in a declarative way with OCL pre- and postconditions. Section A.3 discusses pre- an
postconditions in detail. Furthermore, operations performing computations without side effects can be specifiec
with OCL. In this case, the computation is determined by an explicit OCL expression. This is also discussed
in Section A.3. Here, we focus on the syntax of operation signatures declaring the interface of user-definec
operations. In contrast, other kinds of operations which are not explicitly defined by a modeler are, for example,
navigation operations derived from associations. These are discussed in the next section and in Section A.2.

DEFINITION A.3 (OPERATIONS)
Lett andtq,...,t, be typesinl’. Operations of a classe CLASS with typet. € T are defined by a set® of
signaturesv : t. x t; x --- x t,, — t with operation symbols being elements aof/. O

The name of an operation is determined by the symbolThe first parametet. denotes the type of the class
instance to which the operation is applied. An operation may have any number of parameters but only a single
return type. In general, UML allows multiple return values. We currently do not support this feature in OCL.

OCL 2.0 REVISED SUBMISSION VERSION1.6, ANUARY 6, 2003 A-2

SEMANTICS

A.1.1.5 ASSOCIATIONS

Assaociations describe structural relationships between classes. Generally, classes may participate in any numb
of associations, and associations may connect two or more classes.

DEFINITION A.4 (ASSOCIATIONS)
The set of associations is given by

i. afinite set of names #socC N/,

Assoc— CLASST

ii. afunctionassociates :]
as — (c1,...,cp) With (n > 2)

0

The functionassociates maps each association namec Assocto a finite list{(cy, .. ., ¢,) of classes participat-

ing in the association. The numbebf participating classes is also called thegreeof an association; associations
with degreen are calledn-ary associations. For many problems the use of binary associations is often sufficient.
A self-associatiorfor recursive association}): is a binary association where both ends of the association are at-
tached to the same classuch thatissociates(sa) = (c, ¢). The functionassociates does not have to be injective.
Multiple associations over the same set of classes are possible.

ROLE NAMES

Classes may appear more than once in an association each time playing a different role. For example, in a sel
association PhoneCall on a cldssonwe need to distinguish between the person having the role of a caller and
another person being the callee. Therefore we assign each class participating in an association a unique role nan
Role names are also important for OCL navigation expressions. A role name of a class is used to determine th
navigation path in this kind of expressions.

DEFINITION A.5 (ROLE NAMES)
Letas € Assocbe an association witlissociates(as) = (cy, ..., ¢,). Role names for an association are defined
by a function

Assoc— Nt
roles : .
as — (ri,...,ry) With (n > 2)

where all role names must be distinct, i.e.,
Vi,jE{l,...,n}:i#j - ’l‘i#’l"j .

O

The functionroles(as) = (r1,...,r,) assigns each classfor 1 < i < n participating in the association a unique

role namer;. If role names are omitted in a class diagram, implicit names are constructed in UML by using the
name of the class at the target end and changing its first letter to lower case. As mentioned above, explicit role
names are mandatory for self-associations.

OCL 2.0 REVISED SUBMISSION VERSION1.6, ANUARY 6, 2003 A-3

SEMANTICS

Additional syntactical constraints are required for ensuring the uniqueness of role names when a class is part ¢
many associations. We first define a functignrticipating that gives the set of associations a class participates
in.
CLASS — P(Ass0Q
participating : ¢ ¢ — {as | as € ASSOCA associates(as) = (c1, ..., Cn)

ANFie{l,....,n}:¢ =c}

The following functionnavends gives the set of all role names reachabler(@vigablg from a class over a given
association.

CLASS x Assoc— P(N)
(c,as) — {r | associates(as) = (c1,...,cn)
navends :
Aroles(as) = (ri,...,Tn)

ANTi,je{l,...,n}:(i#jNci=cArj=r)}

The set of role names that are reachable from a class along all associations the class participates in can then
determined by the following function.

navends(c) : {CLASS —PW)

cr— Uaseparticipating(c) navends(c, CLS)

MULTIPLICITIES

An association specifies the possible existence of links between objects of associated classes. The number of linl
that an object can be part of is specified withltiplicities A multiplicity specification in UML can be represented
by a set of natural numbers.

DEFINITION A.6 (MULTIPLICITIES)

Let as € Assocbhe an association withssociates(as) = (ci,...,c,). The functionmultiplicities(as) =
(M, ..., M,) assigns each classparticipating in the association a non-empty 85tC N, with AZ; # {0} for
alll1 <7< n. O

The precise meaning of multiplicities is defined as part of the interpretation of object models in Section A.1.2.

REMARK: AGGREGATION AND COMPOSITION

Special forms of associations are aggregation and composition. In general, aggregations and compositions impo:
additional restrictions on relationships. An aggregation is a special kind of binary association represgating a

of relationship. The aggregate is marked with a hollow diamond at the association end in class diagrams. An
aggregation implies the constraint that an object cannot be part of itself. Therefore, a link of an aggregation may
not connect the same object. In case of chained aggregations, the chain may not contain cycles.

An even stronger form of aggregation is composition. The composite is marked with a filled diamond at the
association end in class diagrams. In addition to the requirements for aggregations, a part may only belong to &
most one composite.

These seemingly simple concepts can have quite complex semantic 8se? [?, ?, ?, ?]. Here, we are con-
cerned only with syntax. The syntax of aggregations and compositions is very similar to associations. Therefore
we do not add an extra concept to our formalism. As a convention, we always use the first component in an assoc
ation for a class playing the role of an aggregate or composite. The semantic restrictions then have to be express
as an explicit constraint. A systematic way for mapping aggregations and compositions to simple associations plu
OCL constraints is presented i#][

OCL 2.0 REVISED SUBMISSION VERSION1.6, ANUARY 6, 2003 A-4

SEMANTICS

A.1.1.6 GENERALIZATION

A generalization is a taxonomic relationship between two classes. This relationship specializes a general class int
a more specific class. Specialization and generalization are different views of the same concept. Generalizatio
relationships form a hierarchy over the set of classes.

DEFINITION A.7 (GENERALIZATION HIERARCHY)
A generalization hierarchy is a partial order on the set of classesASs. O

Pairs in< describe generalization relationships between two classes. For adasses CLASS with ¢; < c¢o,
the class; is called achild classof ¢o, andes is called gparent clasf ¢;.

FULL DESCRIPTOR OF A CLASS

A child class implicitly inherits attributes, operations and associations of its parent classes. The set of properties
defined in a class together with its inherited properties is callledl @escriptorin UML. We can formalize the
full descriptor in our framework as follows. First, we define a convenience function for collecting all parents of a
given class.
{CLASS — P(CLASS)
parents :

c—{d|d eCLassAnc =<}

The full set of attributes of classis the set AT} containing all inherited attributes and those that are defined
directly in the class.
ATT:=ATT. U) ATT,

¢’ eparents(c)
We define the set of inherited user-defined operations analogously.

or;=0p, U |J Opry

¢ €parents(c)

Finally, the set of navigable role names for a class and all of its parents is given as follows.

navends®(c) = navends(c) U U navends(c’)

¢’ €parents(c)

DEFINITION A.8 (FULL DESCRIPTOR OF A CLASS)
The full descriptor of a class€ CLASS s a structure FD= (ATT}, OP}, navends™(c)) containing all attributes,
user-defined operations, and navigable role names defined for the class and all of its parents. O

The UML standard requires that properties of a full descriptor must be distinct. For example, a class may not
define an attribute that is already defined in one of its parent classes. These constraints are captured more precist
by the following well-formedness rules in our framework. Each constraint must hold for eacls elaSsAsS.

1. Attributes are defined in exactly one class.

V(a:t.—t, a1ty —t € ATT)) :
(a=d = te=tuo Nt=1t) (WF-1)

OCL 2.0 REVISED SUBMISSION VERSION1.6, ANUARY 6, 2003 A-5

SEMANTICS

2. Inafull class descriptor, an operation may only be defined once. The first parameter of an operation signatur:
indicates the class in which the operation is defined. The following condition guarantees that each operatior
in a full class descriptor is defined in a single class.

V(w:ite Xty X oo Xty —t, witey Xty X - Xt, =t €OP):
(tc:tc/) (WF-2)

3. Role names are defined in exactly one class.

Veq, e € parents(c) U {c} :
(c1 # ¢ = navends(c1) N navends(cz) = 0) (WF-3)

4. Attribute names and role names must not conflict. This is necessary because in OCL the same notation i
used for attribute access and navigation by role name. For example, the expsedision may either be
a reference to an attribuieor a reference to a role name

V(a:t. —t € ATT,) : Vr € navends™(c) :
(a#7) (WF-4)

Note that operations may have the same name as attributes or role names because the concrete syntax of O
allows us to distinguish between these cases. For example, the expsedtimge is either an attribute or role
name reference, but a call to an operation age without parameters is writteli.age()

A.1.1.7 FORMAL SYNTAX

We combine the components introduced in the previous section to formally define the syntax of object models.

DEFINITION A.9 (SYNTAX OF OBJECT MODELS)
The syntax of an object model is a structure

M = (CLASS, ATT,, OP., ASSOG associates, roles, multiplicities, <)

where

i. CLASSIs a set of classes (Definition A.1).

ii. ATT.is a set of operation signatures for functions mapping an object of ctasan associated attribute
value (Definition A.2).

iii. OP. is a set of signatures for user-defined operations of a elé3sfinition A.3).

iv. Associs a set of association names (Definition A.4).

(a) associates is a function mapping each association name to a list of participating classes
(Definition A.4).
(b) roles is a function assigning each end of an association a role name (Definition A.5).

(c) multiplicities is a function assigning each end of an association a multiplicity specification
(Definition A.6).

v. < is a partial order on Cass reflecting the generalization hierarchy of classes (Definitions A.7 and A.8).

O

OCL 2.0 REVISED SUBMISSION VERSION1.6, ANUARY 6, 2003 A-6

SEMANTICS

A.1.2 INTERPRETATION OF OBJECT MODELS

In the previous section, the syntax of object models has been defined. An interpretation of object models is
presented in the following.

A.1.2.1 OBJECTS

The domain of a class € CLASS is the set of objects that can be created by this class and all of its child classes.
Objects are referred to by unique object identifiers. In the following, we will make no conceptual distinction
between objects and their identifiers. Each object is uniquely determined by its identifier and vice versa. Therefore
the actual representation of an object is not important for our purposes.

DEFINITION A.10 (OBJECT IDENTIFIERS)
i. The set of object identifiers of a class CLASs is defined by an infinite sefid(c) = {¢;, ¢, ... }-

ii. The domain of a clase € CLASs is defined adciass(c) = [J{oid(¢') | ¢ € CLASSA ¢ < ¢}.

O

In the following, we will omit the index for a mappingwhen the context is obvious. The concrete scheme for
naming objects is not important as long as every object can be uniquely identified, i.e., there are no different object:
having the same name. We sometimes use single letters combined with increasing indexes to name objects if it |
clear from the context to which class these objects belong.

GENERALIZATION

The above definition implies that a generalization hierarchy induces a subset relation on the semantic domain o
classes. The set of object identifiers of a child class is a subset of the set of object identifiers of its parent classe:
With other words, we have

Ver,c0 € CLASS: ¢ < o = I(c1) C I(co) .

From the perspective of programming languages this closely corresponds to the domain-inclusion semantics cor
monly associated with subtyping and inheritar®e Pata models for object-oriented databases such as the generic
OODB model presented ir?] also assume an inclusion semantics for class extensions. This requirement guaran-
tees two fundamental properties of generalizations. First, an object of a child class has (inherits) all the propertie:
of its parent classes becausésiin instance of the parent classes. Second, this implies that an object of a more
specialized class can be used anywhere where an object of a more general class is expected (principle of subs
tutability) because it has at least all the properties of the parent classes. In general, the interpretation of classes
pairwise disjoint if two classifiers are not related by generalization and do not have a common child.

A.1.2.2 LINKS

An association describes possible connections between objects of the classes participating in the association.
connection is also called a link in UML terminology. The interpretation of an association is a relation describing
the set of all possible links between objects of the associated classes and their children.

OCL 2.0 REVISED SUBMISSION VERSION1.6, ANUARY 6, 2003 A-7

SEMANTICS

DEFINITION A.11 (LINKS)

Each associations € Assocwith associates(as) = (ci,...,cy) iS interpreted as the Cartesian product of the
sets of object identifiers of the participating classgssocd(as) = Iciass(c1) X - -+ X Iciass(cn). A link denoting
a connection between objects is an elenignt Iassodas). O

A.1.2.3 SYSTEM STATE

Objects, links and attribute values constitute the state of a system at a particular moment in time. A system is ir
different states as it changes over time. Therefore, a system state is also called a snapshot of a running systel
With respect to OCL, we can in many cases concentrate on a single system state given at a discrete point in time
For example, a system state provides the complete context for the evaluation of OCL invariants. For pre- anc
postconditions, however, it is necessary to consider two consecutive states.

DEFINITION A.12 (SYSTEM STATE)
A system state for a modél is a structurer(M) = (ociass, TATT; TASSOC) -

i. The finite setsrc ass(c) contain all objects of a clagse CLASS existing in the system state:
ocLass(c) C oid(c).

ii. Functionsoarr assign attribute values to each objetiir(a) : ociass(c) — I(t) for each
a:t.—1teATT,.

iii. The finite setsrassoccontain links connecting objects. For eache ASSOC oassodas) C Iassodas).
A link set must satisfy all multiplicity specifications defined for an association (the funeti@hprojects
theith component of a tuple or ligt whereas the functiof; (1) projectsall but the ith component):

Vi € {1, e ,n},Vl S UAssoc(aS) :
HU'| I € oassodas) A (7 (') = 7;(1))}| € m;(multiplicities(as))

OCL 2.0 REVISED SUBMISSION VERSION1.6, ANUARY 6, 2003 A-8

SEMANTICS

A.2 OCL TYPES AND OPERATIONS

OCL is a strongly typed language. A type is assigned to every OCL expression and typing rules determine in
which ways well-formed expressions can be constructed. In addition to those types introduced by UML models,
there are a number of predefined OCL types and operations available for use with any UML model. This section
formally defines the type system of OCL. Types and their domains are fixed, and the abstract syntax and semantic
of operations is defined.

Our general approach to defining the type system is as follows. Types are associated with a set of operation:
These operations describe functions combining or operating on values of the type domains. In our approach, w
use a data signatu® = (7',() to describe the syntax of types and operations. The semantics of tyfies in

and operations if is defined by a mapping that assigns each type a domain and each operation a function. The
definition of the syntax and semantics of types and operations will be developed and extended in several steps. £
the end of this section, the complete set of types is defined in a single data signature.

Section A.2.1 defines the basic typdeseger, Real Booleanand String Enumeration types are defined in Sec-

tion A.2.3. Section A.2.4 introduces object types that correspond to classes in a model. Collection and tuple
types are discussed in Section A.2.5. The special typadny and OclStateare considered in Section A.2.6.
Section A.2.7 introduces subtype relationships forming a type hierarchy. All types and operations are finally
summarized in a data signature defined in Section A.2.8.

A.2.1 BAsIC TYPES

Basic types arénteger, Real BooleanandString The syntax of basic types and their operations is defined by a
signatureXp = (TB,2p). T is the set of basic type§) 5 is the set of signatures describing operations over basic
types.

DEFINITION A.13 (SYNTAX OF BASIC TYPES)
The set of basic typeBg is defined ag's = {Integer, Real Boolean String}. O

Next we define the semantics of basic types by mapping each type to a domain.

DEFINITION A.14 (SEMANTICS OF BASIC TYPES)
Let . 4* be the set of finite sequences of characters from a finite alpbbBbe semantics of a basic types T
is a function/ mapping each type to a set:

e I(Integen =Z U {L}

e /(Rea) =RU{L}

e I(Boolean = {true false} U {L}
e I(String) = A*U{L}.

O

The basic typdntegerrepresents the set of integeRgalthe set of real number8ooleanthe truth values true
and false, anétringall finite strings over a given alphabet. Each domain also contains a special undefined value
which is motivated in the next section.

OCL 2.0 REVISED SUBMISSION VERSION1.6, ANUARY 6, 2003 A-9

SEMANTICS

A.2.1.1 ERROR HANDLING

Each domain of a basic typecontains a special value. This value represents an undefined value which is useful
for two purposes.

1. An undefined value may, for example, be assigned to an attribute of an object. In this case the undefinec
value helps to model the situation where the attribute value is not yet known (for example, the email address
of a customer is unknown at the time of the first contact, but will be added later) or does not apply to this
specific object instance (e.g., the customer does not have an email address). This usage of undefined valu
is well-known in database modeling and querying with SQL?]), in the Extended ER-ModeP], and in
the object specification language TROLlgiht [?].

2. An undefined value can signal an error in the evaluation of an expression. An example for an expression
that is defined by a partial function is the division of integers. The result of a division by zero is undefined.
The problems with partial functions can be eliminated by including an undefined valu® the domains
of types. For all operations we can then extend their interpretation to total functions.

The interpretation of operations is considered strict unless there is an explicit statement in the following. Hence, ar
undefined argument value causes an undefined operation result. This ensures the propagation of error condition:

A.2.1.2 OPERATIONS

There are a number of predefined operations on basic types. Thg sentains the signatures of these operations.
An operation signature describes the name, the parameter types, and the result type of an operation.

DEFINITION A.15 (SYNTAX OF OPERATIONS)
The syntax of an operation is defined by a signaturet; x --- x ¢, — t. The signature contains the operation
symbolw, a list of parameter types, ... ,t, € T, and aresult typec T. O

Table A.1 shows a schema defining most predefined operations over basic types. The left column contains partiall
parameterized signatures . The right column specifies variations for the operation symbols or types in the
left column.

The set of predefined operations includes the usual arithmetic operationsx, /, etc. for integers and real
numbers, division (div) and modulo (mod) of integers, sign manipulatigraps), conversion dRealvalues to
Integervalues (floor, round), and comparison operaticns¥, <, >).

Operations for equality and inequality are presented later in Section A.2.2, since they apply to all types. Boolear
values can be combined in different ways (and, or, xor, implies), and they can be negated (not). For strings
the length of a string (size) can be determined, a string can be projected to a substring and two strings can b
concatenated (concat). Finally, assuming a standard alphabet like ASCII or Unicode, case translations are possib
with toUpper and toLower.

Some operation symbols (such-asnd—) are overloaded, that is there are signatures having the same operation
symbol but different parameters (concerning number or type) and possibly different result types. Thus in general
the full argument list has to be considered in order to identify a signature unambiguously.

The operations in Table A.1 all have at least one parameter. There is another set of oper&tipmghich do not

have parameters. These operations are used to produce constant values of basic types. For example, the inte
value12 can be generated by the operatiéh:— Integer. Similar operations exist for the other basic types. For
each value, there is an operation with no parameters and an operation symbol that corresponds to the commc
notational representation of this value.

OCL 2.0 REVISED SUBMISSION VERSION1.6, ANUARY 6, 2003 A-10

SEMANTICS

Signature Schema parameters
w : Integer x Integer— Integer w € {4+, —, %, max min}
Integerx Real— Real
Realx Integer— Real
Realx Real— Real

w : Integerx Integer— Integer w € {div, mod}

/it Xty — Real t1,t2 € {Integer, Real}

—it—t t € {Integer, Real}
abs:t — ¢

floor : t — Integer
round :t — Integer

w:t; X ty — Boolean we {<,>,<, >},
t1,t2 € {Integer, Real
String Boolear}
w : Booleanx Boolean— Boolean w € {and or,
xor, implies}

not : Boolean— Boolean
size : String — Integer
concat :String x String— String
toUpper :String— String
toLower : String — String
substring :String x Integer x Integer— String

Table A.1: Schema for operations on basic types

A.2.1.3 SEMANTICS OF OPERATIONS

DEFINITION A.16 (SEMANTICS OF OPERATIONS)
The semantics of an operation with signaturet; x --- x ¢, — tis a total functionl/ (w : t; X -+ X t, — t) :
I(ty) x - x I(ty,) — I(t). O

When we refer to an operation, we usually omit the specification of the parameter and result types and only use
the operation symbol if the full signature can be derived from the context.

The next example shows the interpretation of the operatidor adding two integers. The operation has two
argumentsi;,io € I(Integer). This example also demonstrates the strict evaluation semantics for undefined
arguments.
L 11 + 19 ifil#LandiQ;&J_,
I(4)(i1,d2) = .
€ otherwise.
We can define the semantics of the other operations in Table A.1 analogously. The usual semantics of the boolee
operations and, or, xor, implies, and not, is extended for dealing with undefined argument values. Table A.2 show:
the interpretation of boolean operations following the proposa]ibdsed on three-valued logic.

Since the semantics of the other basic operationBiteger, Real andStringvalues is rather obvious, we will not
further elaborate on them here.

OCL 2.0 REVISED SUBMISSION VERSION1.6, ANUARY 6, 2003 A-11

SEMANTICS

by b by andby by orby by Xorbs by impliesb, notby
false false false false false true true
false true false true true true true
true false false true true false false
true true true true false true false
false L false L 1L true true
true L 1L true 1L 1L false

il false false s il € il

L true L true L true L

1 1 1 1 1 1 1

Table A.2: Semantics of boolean operations

A.2.2 CoMMON OPERATIONS ON ALL TYPES

At this point, we introduce some operations that are defined on all types (including those which are defined in
subsequent sections). The equality of values of the same type can be checked with the operdtient —
Boolean Furthermore, the semantics-ef is defined to be strict. For two values, v, € I(t), we have

true ifvy = vy, andv; # L andwy # L,
I(:t)(vl,vg) =4 L if vy = Lorvg =1,
false otherwise

A test for inequality#;: ¢ x t — Booleancan be defined analogously. It is also useful to have an operation that
allows to check whether an arbitrary value is well-defined or undefined. This can be done with the operations
isDefined : ¢ — Booleanand isUndefined: ¢ — Booleanfor any typet € T. The semantics of these operations

is given for anyv € I(t) by:

I(isDefined)(v) = (v # 1)
I(isUndefined)(v) = (v = 1)

A.2.3 ENUMERATION TYPES

Enumeration types are user-defined types. An enumeration type is defined by specifying a name and a set ¢
literals. An enumeration value is one of the literals used for its type definition.

The syntax of enumeration types and their operations is defined by a sighatute(Tg,2g). Tk is the set of
enumeration types arfdg, the set of signatures describing the operations on enumeration types.

DEFINITION A.17 (SYNTAX OF ENUMERATION TYPES)
An enumeration type € Tg is associated with a finite non-empty set of enumeration literals by a function

literals(t) = {e1,,- .-, €n; }- O

An enumeration type is interpreted by the set of literals used for its declaration.

DEFINITION A.18 (SEMANTICS OF ENUMERATION TYPES)
The semantics of an enumeration type T is a function! (t) = literals(¢) U { L}. O

OCL 2.0 REVISED SUBMISSION VERSION1.6, ANUARY 6, 2003 A-12

SEMANTICS

A.2.3.1 OPERATIONS

There is only a small number of operations defined on enumeration types: the test for equality or inequality of
two enumeration values. The syntax and semantics of these general operations was defined in Section A.2.2 ar
applies to enumeration types as well.

In addition, the operation allinstanges— Seft) is defined for eachh € T to return the set of all literals of the
enumeration:
Vt € Tg : I(allinstancey))) = literals(t)

A.2.4 OBJECT TYPES

A central part of a UML model are classes that describe the structure of objects in a system. For each class, w
define a corresponding object type describing the set of possible object instances. The syntax of object types ar
their operations is defined by a signatite = (7¢,Q¢). Tc is the set of object types, arfel- is the set of
signatures describing operations on object types.

DEFINITION A.19 (SYNTAX OF OBJECT TYPES)
Let M be a model with a setiss of class names. The sét of object types is defined such that for each class
c € CLASSthere is a type € T having the same name as the class O

We define the following two functions for mapping a class to its type and vice versa.

typeOf : CLASS — T¢
classOf : T — CLASS

The interpretation of classes is used for defining the semantics of object types. The set of object identifiers
Iciass(c) was introduced in Definition A.10 on page 7.

DEFINITION A.20 (SEMANTICS OF OBJECT TYPES)
The semantics of an object types T with classOf(¢) = cis defined ad (t) = Iciass(c) U {L}. O

In summary, the domain of an object type is the set of object identifiers defined for the class and its children. The
undefined value that is only available with the type — not the class — allows us to work with values not referring
to any existing object. This is useful, for example, when we have a navigation expression pointing to a class with
multiplicity 0..1 . The result of the navigation expression is a value referring to the actual object only if a target
object exists. Otherwise, the result is the undefined value.

A.2.4.1 OPERATIONS

There are four different kinds of operations that are specific to object types.

e Predefined operationd hese are operations which are implicitly defined in OCL for all object types.

o Attribute operationsAn attribute operation allows access to the attribute value of an object in a given system
state.

OCL 2.0 REVISED SUBMISSION VERSION1.6, ANUARY 6, 2003 A-13

SEMANTICS

e Object operationsA class may have operations that do not have side effects. These operations are marked in
the UML model with the tagsQuery In general, OCL expressions could be used to define object operations.
The semantics of an object operation is therefore given by the semantics of the associated OCL expression

e Navigation operations An object may be connected to other objects via association links. A navigation
expression allows to follow these links and to retrieve connected objects.

PREDEFINED OPERATIONS

For all classes € CLASS with object typet. = typeOf(c) the operations
allinstances : — Seft.)
are inQ)¢. The semantics is defined as

I(allinstanceg : — Seft.)) = ociass(c) .

This interpretation of allinstances is safe in the sense that its result is always limited to a finite set. The extensior
of a class is always a finite set of objects.

ATTRIBUTE OPERATIONS

Attribute operations are declared in a model specification by the sget #or each class. The set contains
signatures: : t. — t with a being the name of an attribute defined in the clasehe type of the attribute is All
attribute operations in &, are elements df?. The semantics of an attribute operation is a function mapping an
object identifier to a value of the attribute domain. An attribute value depends on the current system state.

DEFINITION A.21 (SEMANTICS OF ATTRIBUTE OPERATIONS)
An attribute signature : t. — t in Q¢ is interpreted by an attribute value functifyr(a : t. — t) : I(t.) — I(t)
mapping objects of classto a value of type.

IATT(G tte — t)(Q) =

oarr(a)(c) if ¢ € ocrass(c),
otherwise.

]

Note that attribute functions are defined for all possible objects. The attempt to access an attribute of a non-exister
object results in an undefined value.

OBJECT OPERATIONS

Object operations are declared in a model specification. For side effect-free operations the computation can ofte
be described with an OCL expression. The semantics of a side effect-free object operation can then be given b
the semantics of the OCL expression associated with the operation. We give a semantics for object operations i
Section A.3 when OCL expressions are introduced.

OCL 2.0 REVISED SUBMISSION VERSION1.6, ANUARY 6, 2003 A-14

SEMANTICS

NAVIGATION OPERATIONS

A fundamental concept of OCL is navigation along associations. Navigation operations start from an object of
a source class and retrieve all connected objects of a target class. In generah-avg@ssociation induces a

total ofn - (n — 1) directed navigation operations, because OCL navigation operations only consider two classes
of an association at a time. For defining the set of navigation operations of a given class, we have to consider al
associations the class is participating in. A corresponding function nameitipating was defined on page 4.

DEFINITION A.22 (SYNTAX OF NAVIGATION OPERATIONS)
Let M be a model

M = (CLASS, ATT,, OP., ASSOC associates, roles, multiplicities, <) .

The setQna(c) of navigation operations for a clags € CLASs is defined such that for each association
as € participating(c) with associates(as) = (c1,...,cy), roles(as) = (r1,...,r,), andmultiplicities(as) =
(M, ..., M,) the following signatures are fpa(c).

Foralli,j € {1,...,n} withi # j, ¢; = ¢, t., = typeOf(c;), andt., = typeOf(c;)

i if n =2 ande — {0, 1} = @them“j(as) : tci — tcj € Qnav(c),

i. if n>2o0rM; —{0,1} #0 thenrj() te; — Seft.,) € Qnav(c).

as,r;

All navigation operations are elements(g:. O

As discussed in Section A.1, we use unique role names instead of class hames for navigation operations in orde
to avoid ambiguities. The index of the navigation operation name specifies the association to be navigated alon
as well as the source role name of the navigation path. The result type of a navigation over binary associations i
the type of the target class if the multiplicity of the target is give@as or 1 (i). All other multiplicities allow

an object of the source class to be linked with multiple objects of the target class. Therefore, we need a set type t
represent the navigation result (ii). Non-binary associations always induce set-valued results since a multiplicity
at the target end is interpreted in termsatif source objects. However, for a navigation operation, only a single
source object is considered.

Navigation operations are interpreted by navigation functions. Such a function has the effect of first selecting all
those links of an association where the source object occurs in the link component corresponding to the role of the
source class. The resulting links are then projected onto those objects that correspond to the role of the target clas

DEFINITION A.23 (SEMANTICS OF NAVIGATION OPERATIONS)
The set of objects of clagg linked to an object; via associatioms is defined as

L(as)(¢;) = {gj | (C1yeeeyCiye-- s Ciye e ,Cpn) € Oassodas)}

The semantics of operationsihay(c) is then defined as

i. I('rj(asm Phe; = te;) (¢ 1 otherwise.

- {gj if ¢; € L(as)(c;),

i 1(rjgqs) * e — S€lte))(c:) = L(as)(c).

as,r;)

OCL 2.0 REVISED SUBMISSION VERSION1.6, ANUARY 6, 2003 A-15

SEMANTICS

A.2.5 COLLECTION AND TUPLE TYPES

We call a type that allows the aggregation of several values into a single value a complex type. OCL provides
the complex typesett), Sequenag), andBag(t) for describing collections of values of tyge There is also

a supertypeCollection(t) which describes common properties of these types. The OCL collection types are ho-
mogeneous in the sense that all elements of a collection must be of the sanie Type restriction is slightly
relaxed by the substitution rule for subtypes in OCL (see Section A.2.7). The rule says that the actual elements o
a collection must have a type which is a subtype of the declared element type. For exaBg{Peesorn may

contain elements of typ€ustomeror Employee

A.2.5.1 SYNTAX AND SEMANTICS
Since complex types are parameterized types, we define their syntax recursively by means of type expressions.

DEFINITION A.24 (TYPE EXPRESSIONS) R)
LetT be a set of types ar, ..., [,, € NV a set of disjoint names. The set of type expressing:(1') overT is
defined as follows.

ii. If ¢ € Texpe(T) thenSett), Sequendg), Bad(t) € Texpr(T).

iii. If ¢ € Texpr(T') thenCollection(t) € Texpr(T).

N

(]

The definition says that every types 7' can be used as an element type for constructing a set, sequence, bag, or
collection type. The components of a tuple type are marked with lahels. , I,,. Complex types may again be

used as element types for constructing other complex types. The recursive definition allows unlimited nesting of
type expressions.

For the definition of the semantics of type expressions we make the following conventiorsg($etlenote the
set of all finite subsets of a given sgt.S* is the set of all finite sequences ovgrand53(5) is the set of all finite
multisets (bags) oves.

DEFINITION A.25 (SEMANTICS OF TYPE EXPRESSIONS)
Let T be a set of types where the domain of eaeh7" is I(¢). The semantics of type expressidfis,(1') over
T is defined for alk € 7" as follows.

i. I(t) is defined as given.

I(Sett)) = F(I(t)) U{L},
I(Sequenc®)) = (I(t))* U {L},
I(Bag(t)) = B(I(t)) U {L}.

iii. I(Collection(t)) = I(Seft)) U I(Sequendg)) U I(Bagt)).
iv. I(Tuplely :ty,... 0l :ty)) =1(t1) x -+ x I(t,)U{L}.

OCL 2.0 REVISED SUBMISSION VERSION1.6, ANUARY 6, 2003 A-16

SEMANTICS

O

In this definition, we observe that the interpretation of the t@odlectiont) subsumes the semantics of the set,
sequence and bag type. In OCL, the collection type is described as a super8gi¢)pEequenag) andBag(t).

This construction greatly simplifies the definition of operations having a similar semantics for each of the concrete
collection types. Instead of explicitly repeating these operations for each collection type, they are defined once
for Collection(t). Examples for operations which are “inherited” in this way are the size and includes operations
which determine the number of elements in a collection or test for the presence of an element in a collection,
respectively.

A.2.5.2 OPERATIONS

CONSTRUCTORS

The most obvious way to create a collection value is by explicitly enumerating its element values. We therefore
define a set of generic operations which allow us to construct sets, sequences, and bags from an enumeration
element values. For example, the §&t2,5} can be described in OCL by the express®&et {1,2,5 }, the list

(1,2,5) by Sequence {1,2,5 }, and the bad{2,2,7} by Bag{2,2,7 }. A shorthand notation for collections
containing integer intervals can be used by specifying lower and upper bounds of the interval. For example, the
expressiorSequence {3..6 } denotes the sequen¢® 4, 5,6). This is only syntactic sugar because the same
collection can be described by explicitly enumerating all values of the interval.

Operations for constructing collection values by enumerating their element values arecoalétaictors For

typest € Texpr(1') cOnstructors imTEXp,(T) are defined below. A parameter lisk --- x ¢t denotes: (n > 0)
parameters of the same typeWe define constructors mk$emkSequenge and mkBag not only for any type
but also for any finite number of parameters.

e mkSet:t x --- xt— Seft)
e mkSequence: t x --- x t — Sequendg)

e mkBag : t x --- x t — Bag(t)
The semantics of constructors is defined for values. . , v, € I(t) by the following functions.
o I(mkSet)(vi,...,vn) = {v1,...,vn}
e I(mkSequencg(vi,...,vn) = (V1,...,vp)
o I(mkBag)(vi,...,v,) = {v1,..., o0}

A tuple constructor in OCL specifies values and labels for all components, for exahuplke {number:3,
fruit’apple’, flag:true }. A constructor for a tuple with component types...,t, € Texpr(T)
(n > 1) is given in abstract syntax by the following operation.

e mKTuple: Iy :t1 X --- X I, 1 t,, — Tuplely : t1, ..., 0, : ty)
The semantics of tuple constructors is defined for valyes (¢;) with i = 1,. .., n by the following function.
o I(mKTuple)(ly : v1,...,0ln) = (V1,...,Un)

Note that constructors having element values as arguments are deliberately defined not to be strict. A collectiol
value therefore may contain undefined values while still being well-defined.

OCL 2.0 REVISED SUBMISSION VERSION1.6, ANUARY 6, 2003 A-17

SEMANTICS

COLLECTION OPERATIONS

The definition of operations of collection types comprises the set of all predefined collection operations. Operations
common to the typeSe(t), Sequenag), andBagt) are defined for the superty@ollection(t). Table A.3 shows

the operation schema for these operations. Fot &IITEXpr(T), the signatures resulting from instantiating the
schema are included mTExpr(T)' The right column of the table illustrates the intended set-theoretic interpretation.

For this purpose(’, C1, Cs are values of typ€ollection(t), andwv is a value of type.

Signature Semantics
size : Collection(t) — Integer |C|
count :Collection(t) x t — Integer |C N {v}
includes :Collectiont) x t — Boolean vedl
excludes Collection(t) x t — Boolean ve¢C

includesAll : Collectior(t) x Collectior(t) — Boolean C5 C C}
excludesAll :Collection(t) x Collection(t) — Boolean C;NCy =0

iISEmpty : Collection(t) — Boolean Cc=0
notEmpty :Collection(t) — Boolean C#0
sum : Collection(t) — ¢ ZLZ‘l 1

Table A.3: Operations for typ&€ollectior(t)

The operation schema in Table A.3 can be applied to sets (sequences, bags) by sulSH{tlifGequendg),

Bag(t)) for all occurrences of typ€ollection(t). A semantics for the operations in Table A.3 can be easily defined

for each of the concrete collection typ8g(t), Sequendg), andBagt). The semantics for the operations of
Collection(t) can then be reduced to one of the three cases of the concrete types because every collection type |
either a set, a sequence, or a bag. Consider, for example, the operation 8etit< ¢t — Integerthat counts the
number of occurrences of an elemerin a sets. The semantics of count is

1 ifves,
I(count: Seft) x t — Integen(s,v) =0 ifv ¢ s,
1 ifs=1.

Note that count is not strict. A set may contain the undefined value so that the result of count is 1 if the undefined
value is passed as the second argument, for example,(§duntL) = 1 and counf{1}, L) = 0.

For bags (and very similar for sequences), the meaning of count is
I(count: Bagt) x t — Integen({v1,...,vn},v)
0 if n =0,

= 4 I(cound({ve,...,vn},v) if n > 0andv; # v,
I(count({v,...,vn}},v)+1 if n>0andv; =wv.

As explained before, the semantics of count for values of §pkectiont) can now be defined in terms of the
semantics of count for sets, sequences, and bags.

I(count: Collectior(t) x t — Integen(c,v)

I(count: Seft) x t — Integen(c,v) if ¢ € I(Seft)),
_J I(count: Sequendg) x t — Integen(c,v) if c € I(Sequendg)),
| I(count: Bag(t) x ¢t — Integed(c, v) if ¢ € I(Bag(t)),

1 otherwise

OCL 2.0 REVISED SUBMISSION VERSION1.6, ANUARY 6, 2003 A-18

SEMANTICS

SET OPERATIONS

Operations on sets include the operations listed in Table A.3. These are inherite@dtaation(t). Operations
which are specific to sets are shown in Table A.4 wherg,, S, are values of typ&elt), B is a value of type
Bag(t) andv is a value of type.

Signature Semantics
union : Seft) x Se(t) — Sett) S1U S
union : Se{t) x Bagt) — Bagt) SUB
intersection Seft) x Seft) — Seft) S1N Sy
intersection Seft) x Bagt) — Seft) SnNB
—: Seft) x Seft) — Sett) S1— 5o
symmetricDifference Sef{t) x Se{t) — Seft) (S1US2) — (51 NSy)
including : Seft) x t — Seft) SuU{v}
excluding :Seft) x t — Seft) S —{v}
asSequenceSeft) — Sequendg)
asBag :Seft) — Bag(t)

Table A.4: Operations for typ&ett)

Note that the semantics of the operation asSequence is nondeterministic. Any sequence containing only the el
ments of the source set (in arbitrary order) satisfies the operation specification in OCL.

BAG OPERATIONS

Operations for bags are shown in Table A.5. The operation asSequence is nondeterministic also for bags.

Signature Semantics
union : Bag(t) x Bagt) — Bagt) B U Bs
union :Bag(t) x Seft) — Bagt) BUS

intersection Bag(t) x Bagt) — Bagt) Bi N By
intersection Bag(t) x Sett) — Seft) BNS
including : Bag(t) x t — Badt) BuU{v}
excluding :Bag(t) x t — Badt) B— {v}
asSequenceBagt) — Sequendg)
asSet Bagt) — Seft)

Table A.5: Operations for typ8ag(t)

SEQUENCE OPERATIONS

Sequence operations are displayed in Table A.6. The intended semantics again is shown in the right column c
the table. S, S1, Se are sequences occurring as argument valuésa value of type, andq, j are arguments of

type Integer. The length of sequencg is n. The operator denotes the concatenation of lists(S) projects

theith element of a sequencg and; ;(.S) results in a subsequence $fstarting with theith element up to and
including thejth element. The result is if an index is out of rangeS — (v) produces a sequence equabtbut

with all elements equal to removed. Note that the operations append and including are also defined identically
in the OCL standard.

OCL 2.0 REVISED SUBMISSION VERSION1.6, ANUARY 6, 2003 A-19

SEMANTICS

Signature Semantics

union : Sequendg) x Sequendg) — Sequenag) 5105
append Sequendg) x t — Sequendg) S o {e)
prepend Sequendg) x t — Sequendg) (e)o S
subSequenceSequenadg) x Integerx Integer— Sequendg) 7 ;(S5)

at : Sequenag) x Integer— ¢ i (S)

first : Sequendg) — t m1(S)

last : Sequendg) — ¢ T (S)
including : Sequendg) x ¢t — Sequendg) So{e)
excluding :Sequendg) x t — Sequendg) S — (e)

asSet Sequenag) — Seft)
asBag :Sequendg) — Badt)

Table A.6: Operations for typ&equenag)

FLATTENING OF COLLECTIONS

Type expressions as introduced in Definition A.24 allow arbitrarily deep nested collection types. We pursue the
following approach for giving a precise meaning to collection flattening. First, we keep nested collection types
because they do not only make the type system more orthogonal, but they are also necessary for describing tt
input of the flattening process. Second, we define flattening by means of an explicit function making the effect of
the flattening process clear. There may be a shorthand notation omitting the flatten operation in concrete synta
which would expand in abstract syntax to an expression with an explicit flattening function.

Flattening in OCL does apply to all collection types. We have to consider all possible combinations first. Table A.7
shows all possibilities for combininget Bag andSequencato a nested collection type. For each of the different
cases, the collection type resulting from flattening is shown in the right column. Note that the elemértaype

be any type. In particular, ifis also a collection type the indicated rules for flattening can be applied recursively
until the element type of the result is a non-collection type.

Nested collection type Type after flattening

SefSequendg)) Seft)
SetSe(t)) Seft)
Se{Bagt)) Seft)
Bag(Sequenag)) Bag(t)
Bag(Seft)) Bag(t)
BagBagt)) Bag(t)
Sequend&equendg)) Sequendg)
Sequendsett)) Sequendg)
Sequend@®agt)) Sequendg)

Table A.7: Flattening of nested collections.

A signature schema for a flatten operation that removes one level of nesting can be defined as
flatten: C1 (Cg(t)) — C1 (t)

whereC; andC, denote any collection type nanget Sequenceor Bag The meaning of the flatten operations
can be defined by the following generic iterate expression. The semantics of OCL iterate expressions is defined i
Section A.3.1.2.

OCL 2.0 REVISED SUBMISSION VERSION1.6, ANUARY 6, 2003 A-20

SEMANTICS

<collection-of-type-C1(C2(t))>->iterate(el : C2(t);
accl : CL(t) = C1 {} |
el->iterate(v : t;
acc2 : Cl(t) = accl |
acc2->including(v)))

The following example shows how this expression schema is instantiated for a bag of sets of integers, that is
C, = Bag Cy; = Set andt = Integer. The result of flattening the valugag{Set {3,2 },Set {1,2,4 }}is
Bag{1,2,2,34 }.

Bag{Set {3,2 },Set {1,2,4 }}->iterate(el : Set(Integer);
accl : Bag(Integer) = Bag {} |
el->iterate(v : Integer;
acc2 : Bag(Integer) = accl |
acc2->including(v)))

It is important to note that flattening sequences of sets and bags (see the last two rows in Table A.7) is potentially
nondeterministic. For these two cases, the flatten operation would have to map each element of the (multi-) se
to a distinct position in the resulting sequence, thus imposing an order on the elements which did not exist in the
first place. Since there are types (e.g. object types) which do not define an order on their domain elements, ther
is no obvious mapping for these types. Fortunately, these problematic cases do not occur in standard navigatio
expressions. Furthermore, these kinds of collections can be flattened if the criteria for ordering the elements i
explicitly specified.

TUPLE OPERATIONS
An essential operation for tuple types is the projection of a tuple value onto one of its components. An element of
a tuple with labeled components can be accessed by specifying its label.

o element : Tuplg(ly : t1,..., 0 ti,..., 0, 1 ty) =t

o I(element : Tuple(ly : t1,..., L tiy. .. 1y i ty) = ti)(v1, .. 0, o0 U,) = 0

A.2.6 SPECIAL TYPES

Special types in OCL that do not fit into the categories discussed so f@chay OclStateandOclVoid

e OclAnyis the supertype of all other types except for the collection types. The exception has been introduced
in UML 1.3 because it considerably simplifies the type syst@n A simple set inclusion semantics for
subtype relationships as proposed in the next section would not be possible due to cyclic domain definitions
if OclAnywere the supertype @&ef{OclAny).

¢ OclStates atype very similar to an enumeration type. Itis only used in the operation oclinState for referring
to state names in a state machine. There are no operations defined on thi®¢|{pteis therefore not
treated specially.

e OclVoidis the subtype of all other types. The only value of this type is the undefined value. Notice that there
is no problem with cyclic domain definitions dsis an instance of every type.

OCL 2.0 REVISED SUBMISSION VERSION1.6, ANUARY 6, 2003 A-21

SEMANTICS

DEFINITION A.26 (SPECIAL TYPES)
The set of special types & = {OclAny, Ocl\Void}.

Let 7' be the set of basic, enumeration, and object types Tz U Tz U Tc. The domain of OclAny is given as
I(OclAny) = (U;eq I(t)) U{L}.
The domain of OclVoid id (OclVoid) = {L}. O

Operations orOclAnyinclude equality €) and inequality €>) which already have been defined for all types

in Section A.2.2. The operations oclisKindOf, oclisTypeOf, and oclAsType expect a type as argument. We
define them as part of the OCL expression syntax in the next section. The operation oclisNew is only allowed in
postconditions and will be discussed in Section A.3.2.

For OclVoid, the constant operation undefined: OclVoid results in the undefined value. The semantics is
given byI(undefined = L.

A.2.7 TYPE HIERARCHY

The type system of OCL supports inclusion polymorphi&pb introducing the concept oftstpe hierarchy The

type hierarchy is used to define the notiortygfe conformanceType conformance is a relationship between two
types, expressed by tlwenformsTo (pperation from the abstract syntax metamodel. A valid OCL expression is
an expression in which all the types conform. The consequence of type conformance can be loosely stated as:
value of a conforming typ8 may be used wherever a value of typés required.

The type hierarchy reflects the subtype/supertype relationship between types. The following relationships are
defined in OCL.

. Integeris a subtype oReal
All types, except for the collection and tuple types, are subtyp&st#ny.
Sett), Sequendg), andBag(t) are subtypes afollection(t).

OclVoidis subtype of all other types.

a > w nNoE

The hierarchy of types introduced by UML model elements mirrors the generalization hierarchy in the UML
model.

Type conformance is a relation which is identical to the subtype relation introduced by the type hierarchy. The
relation is reflexive and transitive.

DEFINITION A.27 (TYPE HIERARCHY)

Let T be a set of types anfl- a set of object types witliz C T. The relation< is a partial order oA” and is
called thetype hierarchyoverT'. The type hierarchy is defined for allt’, ¢” € T'and allt., ¢, € T¢,n,m € Nas
follows.

i. <is (a) reflexive, (b) transitive, and (c) antisymmetric:

@t<t
) t"<tANt <t = t'<t
) ¢ <tAt<t = t=t.

ii. Integer< Real

OCL 2.0 REVISED SUBMISSION VERSION1.6, ANUARY 6, 2003 A-22

SEMANTICS

iii. ¢t <OclAnyforallt e (T UTrUTe).
iv. OclVoid< ¢.

v. Seft) < Collection(t),
Sequenadg) < Collection(t), and
Bagt) < Collectior(t).

vi. If ¢/ <tthenSe(t’) < Seft), Sequendg’) < Sequendg), Bagt’) < Bag(t), and
Collection(t’) < Collectior(t).

vii. If t; <t;fori=1,...,nandn < mthen
Tuple(ly :), ..o by it ool s) < Tuplely : t1, ..., 1y 5 ty).

viii. If classOf(t.) < classOf(¢.) thent. < t..

O

If atypet’ is a subtype of another tygdi.e. ' < t), we say that’ conformsto ¢. Type conformance is associated
with the principle of substitutability. A value of typé may be used wherever a value of typis expected. This
rule is defined more formally in Section A.3.1 which defines the syntax and semantics of expressions.

The principle of substitutability and the interpretation of types as sets suggest that the type hierarchy should be
defined as a subset relation on the type domains. Hence, for & tgpang a subtype of, we postulate that the
interpretation of’ is a subset of the interpretationfit follows that every operatiow accepting values of typie

has the same semantics for values of tipsincel (w) is already well-defined for values i(t'):

If ¢/ <t¢thenI(t') C I(t) for all typest’,t € T

A.2.8 DATA SIGNATURE

We now have available all elements necessary to define the final data signature for OCL expressions. The sighatu
provides the basic set of syntactic elements for building expressions. It defines the syntax and semantics of type
the type hierarchy, and the set of operations defined on types.

DEFINITION A.28 (DATA SIGNATURE)
Let T be the set of non-collection type$: = Tp U T U T U Tg. The syntax of a data signature over an object
modelM is a structure vy = (Taq, <, Qa¢) Where

i. TM = TExpr(T),
ii. <isatype hierarchy ovefy,,

iii. Qup = QTExpr(T) UQpUQEUQCcUQg.
The semantics af v, is a structurd (X) = (I(Tm), (<), I(20)) where

i. I(T\) assigns eache Ty an interpretatior ().
ii. I(<)implies for all types’,t € Ty thatI(t') C I(t) if ¢/ < t.

Q) assigns each operatian: t; x --- x t,, — t € Q¢ a total function

i, 1
I(w) s I(ty) % - x I(ty) — I(t).

OCL 2.0 REVISED SUBMISSION VERSION1.6, ANUARY 6, 2003 A-23

SEMANTICS

A.3 OCL EXPRESSIONS AND CONSTRAINTS

The core of OCL is given by an expression language. Expressions can be used in various contexts, for example
to define constraints such as class invariants and pre-/postconditions on operations. In this section, we formall
define the syntax and semantics of OCL expressions, and give precise meaning to notions like context, invarian
and pre-/postconditions.

Section A.3.1 defines the abstract syntax and semantics of OCL expressions and shows how other OCL construc
can be derived from this language core. The context of expressions and other important concepts such as invarian
queries, and shorthand notations are discussed. Section A.3.2 defines the meaning of operation specifications wi
pre- and postconditions.

A.3.1 EXPRESSIONS

In this section, we define the syntax and semantics of expressions. The definition of expressions is based upc
the data signature we developed in the previous section. A data sighature (7, <, () provides a set of
typesTv, a relation< on types reflecting the type hierarchy, and a set of operafins The signature contains

the initial set of syntactic elements upon which we build the expression syntax.

A.3.1.1 SYNTAX OF EXPRESSIONS

We define the syntax of expressions inductively so that more complex expressions are recursively built from simple
structures. For each expression the set of free occurrences of variables is also defined. Also, each section in tt
definition corresponds to a subclass of OCLExpression in the abstract syntax. The mapping is indicated.

DEFINITION A.29 (SYNTAX OF EXPRESSIONS)

Let X = (Tm, <, Q0m) be a data signature over an object model Let Var = {Var,},cr,, be a family of
variable sets where each variable set is indexed by attyple syntax of expressions over the signattyg is
given by a set Expe {Expr, };c1,, and a functiorfree : Expr — F(Var) that are defined as follows.

i. If v e Var; thenv € Expr, andfree(v) := {v}. This maps into th&ariableExp class in the abstract
syntax.

ii. If veVar,, e € Expr,, ,e2 € EXpr,, thenletv = e1 in e € Expr,, and
free(letv = e in eg) := free(e2) — {v}. This maps intd_etExpressionin the abstract syntax. = e; is
the VariableDeclaration referred through theariable associatione; is the OclExpressionreferred
through association end. e; is theOclExpressionreferred from thé/ariableDeclaration through the
initExpressiorassociation.

ii. (a) If t € Ty andw :— t € Qg thenw € Expr, andundefined € EXprogpig andfree(w) := () and
free(undefined := (). This maps into th€onstantExp class and its subclasses from the abstract
syntax.

(b) fw:ty x---xt, —tecQyande; € Expr, foralli=1,... ,nthenw(es,...,e,) € Expr, and
free(w(ei, ..., en)) := free(e;) U - -- U free(e,). This maps intdModelPropertyCallExp and its
subclasses, with; representing theourceande, to e, thearguments

OCL 2.0 REVISED SUBMISSION VERSION1.6, ANUARY 6, 2003 A-24

SEMANTICS

iv. If e1 € EXplgooiean@ndes, es € EXpr, thenif ey then eq elsees endif € Expr, and
free(if e; thenes elseez endif) := free(e;) U free(ez) U free(eg). This corresponds to tHéExpression in
the abstract syntax; is theOclExpressionreferred througttondition es corresponds to the
thenExpressioassociation, anes maps into theDclExpressionelseExpressian

v. If e € Expr, andt’ < tort < t' then(e asTypet’) € Expr,, (e isTypeOft’) € EXplgyoiean
(e isKindOf t') € Exprggoean@ndfree((e asTypet’)) := free(e), free((e isTypeOft’)) := free(e),
free((e isKindOft')) := free(e). This maps into some special instances of
OclOperationWithTypeArgument.

Vi. If e1 € EXPlegyectiont;) V1 € Vary,, v2 € Var,, andes, e € Expr,, thene; — iterate(vi; vz = ez | e3)
€ Expr,, andfree(e; —iteratgv; v2 = ez | e3)) := (free(e1) U free(ez) U free(es)) — {v1,v2}. Thisis a
representation of thikerateExp. e; is thesource vo = e2 is theVariableDeclaration which is referred to
through theresultassociation in the abstract syntax.corresponds to thigerator VariableDeclaration.
Finally, es is theOclExpressionbody: Instances ofteratorExp are defined in the OCL Standard Library.

An expression of typé is also an expression of a more general typeor allt’ < ¢: if e € Expr, thene € Expr,.
O

A variable expression (i) refers to the value of a variable. Variables (including the special vaeblé may
be introduced by the context of an expression, as part of an iterate expression, and by a let expression. Le
expressions (ii) do not add to the expressiveness of OCL but help to avoid repetitions of common sub-expression:
Constant expressions (iiia) refer to a value from the domain of a type. Operation expressions (iiib) apply an
operation from2 ,,. The set of operations includes:

e predefined data operations; - , *, <, >, size , max

e attribute operationsself.age , e.salary

¢ side effect-free operations defined by a class:
b.rentalsForDay(...)

e navigation by role nameself.employee

As demonstrated by the examples, an operation expression may also be written in OCL path syntax ac

er.w(es,...,e,). This notational style is common in many object-oriented languages. It emphasizes the role
of the first argument as the “receiver” of a “messagee;lflenotes a collection value, an arrow symbol is used in
OCL instead of the period; — w(es,. .., e,). Collections may be bags, sets, or lists.

An if-expression (iv) provides an alternative selection of two expressions depending on the result of a condition
given by a boolean expression.

An asType expression (v) can be used in cases where static type information is insufficient. It corresponds tc
the oclAsType operation in OCL and can be understood as a cast of a source expression to an equivalent ex:
pression of a (usually) more specific target type. The target type must be related to the source type, that is, on
must be a subtype of the other. The isTypeOf and isKindOf expressions correspondthisiigpeOf and
oclisKindOf operations, respectively. An expressiensTypeOft’) can be used to test whether the type of the
value resulting from the expressieras the type’ given as argument. An isKindOf expressi@nsKindOf t') is

not as strict in that it is sufficient for the expression to become trtigsfa supertype of the type of the valueeof

Note that in previous OCL versions these type casts and tests were defined as operations with parameters of tyj
OclType Here, we technically define them as first class expressions which has the benefit that we do not need th
metatypeOclType Thus the type system is kept simple while preserving compatibility with standard OCL syntax.

OCL 2.0 REVISED SUBMISSION VERSION1.6, ANUARY 6, 2003 A-25

SEMANTICS

An iterate expression (vi) is a general loop construct which evaluates an argument expsessiosatedly for
all elements of a collection which is given by a source expressioicach element of the collection is bound in
turn to the variable); for each evaluation of the argument expression. The argument expressitay contain
the variablev, to refer to the current element of the collection. The result variablés initialized with the
expressiore,. After each evaluation of the argument expresgigrhe result is bound to the variahle. The final
value ofwvs is the result of the whole iterate expression.

The iterate construct is probably the most important kind of expression in OCL. Many other OCL constructs (such
asselect ,reject ,collect ,exists ,forAll , andisUniqgue) can be equivalently defined in terms of
an iterate expression (see Section A.3.1.3).

Following the principle of substitutability, the syntax of expressions is defined such that wherever an expression
e € Expr, is expected as part of another expression, an expression with a more specital @pe t) may be

used. In particular, operation arguments and variable assignments in let and iterate expressions may be given |
expressions of more special types.

A.3.1.2 SEMANTICS OF EXPRESSIONS

The semantics of expressions is made precise in the following definition. A context for evaluation is given by an
environmentr = (o, 3) consisting of a system stateand a variable assignmefit: Var, — I(t). A system

states provides access to the set of currently existing objects, their attribute values, and association links betweel
objects. A variable assignmefitmaps variable names to values.

DEFINITION A.30 (SEMANTICS OF EXPRESSIONS)
Let Env be the set of environments= (o, 5). The semantics of an expressiere Expr, is a functionI[e] :
Env— I(t) that is defined as follows.

[v](7) = B(v).
[letv =erinex (1) = I[ex](o,B{v/I[e1](T)}).
iii. IJundefined(r) = LandI[w](7) = I(w)
iv. Iw(er,...,en)](T)=Iw)(r)I[e1](r),...,I[en](T)).

Ifex () if I[er](r) = true,
v. I[if eq theney elsees endif[(7) = ¢ I[es](r) if I[e;](7) = false,

T
i I

1 otherwise
st {1110 <

- true ifIfe](r) € I(t') — Uy I(t"),
Tl{eisTypeOtt) I(r) = {false oth[[er\]]\fis)e)= Uerae 10)
true ifIfe](r) € I(t),
false otherwise

I] (e isKindOf ¢/) | () = {

vii. I[e; —iteratdvi;ve = es | e3) (1) = I[e; —iteraté(vy | e3)](7') wherer’ = (o, 3") and7” = (o, 5)
are environments with modified variable assignments
B = B{vz/I[e2](7)}
B" = {va/I[e3](o, B'{v1/21})}

and iteratéis defined as:

OCL 2.0 REVISED SUBMISSION VERSION1.6, ANUARY 6, 2003 A-26

SEMANTICS

(@) Ifer € EXPrsequence,) then

IToa](7")
it I[ea]() = (),

I[mkSequence(zs, . .., z,) — iteraté(vy | e3) J(7")
if ITe1](7') = (x1,...,2n).

I[e; — iteraté(vy | e3) (7)) =

(b) If e1 € EXprgeq,) then
(1[v2](7)
if I[eq (') =0,
I[mkSet, (xo, . .., z,) — iteraté(vy | e3) (7")
if Ife1 (7)) = {z1,..., 20}

I[[el — iteraté(v1 ’ 63)]](7'/) =

(c) If er € EXplgaqy,) then
1217
if I[e1](7") =0,
I[mkBag (x2,...,z,) — iteraté(v; | e3) [(7")
if ITer](7") = {x1,..., 20}

I[e; — iteraté(vy | e3) (7)) =

O

The semantics of a variable expression (i) is the value assigned to the variable. A let expression (ii) results in the
value of the sub-expressi@n. Free occurrences of the variablén e; are bound to the value of the expressign

An operation expression (iv) is interpreted by the function associated with the operation. Each argument expressio
is evaluated separately. The statis passed to operations whose interpretation depends on the system state. These
include, for example, attribute and navigation operations as defined in Section A.2.4.

The computation of side effect-free operations can often be described with OCL expressions. We can extend th
definition to allow object operations whose effects are defined in terms of OCL expressions. The semantics of &
side effect-free operation can then be given by the semantics of the OCL expression associated with the operatio
Recall that object operations inFQ are declared in a model specification. leefexp : Op, — EXpr be a

partial function mapping object operations to OCL expressions. We define the semantics of an operation with ar
associated OCL expression as

I[w(pr i €1,...,pn i en)](7) = I[oclexp(w)](7)

wherep, ..., p, are parameter names, arfid= (o, 3') denotes an environment with a modified variable assign-
ment defined as

B = B{pi/Iler] (), ..,pn/Ien](7)} -

Argument expressions are evaluated and assigned to parameters that bind free occurggences pf in the ex-
pressioroclexp(w). For a well-defined semantics, we need to make sure that there is no infinite recursion resulting
from an expansion of the operation call. A strict solution that can be statically checked is to forbid any occurrences
of w in oclexp(w). However, allowing recursive operation calls considerably adds to the expressiveness of OCL.
We therefore allow recursive invocations as long as the recursion is finite. Unfortunately, this property is generally
undecidable.

The result of an if-expression (v) is given by the then-part if the condition is true. If the condition is false, the else-
part is the result of the expression. An undefined condition makes the whole expression undefined. Note that whe
an expression in one of the alternative branches is undefined, the whole expression may still have a well-define
result. For example, the result of the following expressioh is

OCL 2.0 REVISED SUBMISSION VERSION1.6, ANUARY 6, 2003 A-27

SEMANTICS

if true then 1 else 1 div 0 endif

The result of a cast expression (vi) using asType is the value of the expression, if the value lies within the domain
of the specified target type, otherwise it is undefined. A type test expression with isTypeOf is true if the expression
value lies exactly within the domain of the specified target type without considering subtypes. An isKindOf type
test expression is true if the expression value lies within the domain of the specified target type or one of its
subtypes. Note that these type cast and test expressions also work with undefined values since every value
including an undefined one — has a well-defined type.

An iterate expression (vii) loops over the elements of a collection and allows the application of a function to each
collection element. The function results are successively combined into a value that serves as the result of th
whole iterate expression. This kind of evaluation is also known in functional style programming langufmés as
operation (see, e.g.7]).

In Definition A.30, the semantics of iterate expressions is given by a recursive evaluation scheme. Information is
passed between different levels of recursion by modifying the variable assigpnagpropriately in each step.

The interpretation of iterate starts with the initialization of the accumulator variable. The recursive evaluation
following thereafter uses a simplified version of iterate, namely an expression’itehate the initialization of the
accumulator variable is left out, since this sub-expression needs to be evaluated only once. If the source collectio
is not empty, (1) an element from the collection is bound to the iteration variable, (2) the argument expression is
evaluated, and (3) the result is bound to the accumulator variable. These steps are all part of the definition of th
variable assignmerit’. The recursion terminates when there are no more elements in the collection to iterate over.
The constructor operations mkSequeno&kBag, and mkSet(see page 17) are 2, and provide the abstract
syntax for collection literals lik&et {1,2 } in concrete OCL syntax.

The result of an iterate expression applied to a set or bag is deterministic only if the inner expression is both
commutative and associative.

A.3.1.3 DERIVED EXPRESSIONS BASED ON ITERATE

A number of important OCL constructs such aexists , forAll , select , reject , collect , and
isUniqgue are defined in terms of iterate expressions. The following schema shows how these expressions cat
be translated to equivalent iterate expressions. A similar translation can be fo®hd in [

][[el —>eXiStE{U1 | 63)]](7') =
I ey —iteratvl; v2 = false| vy ores) [(7)
I[[e1 — forAll (1)1 ‘ 63)]](7') =
I[ey — iteratgvl; v2 = true| vy andes) (7)
I[e; —selectvy | e3) (1) =
I[ey —iteratdvl; v2 = e |
if e5 thenw, elsevy — excludingvy) endif)] (7)
I[ey —rejectvy | e3)](r) =
I[ey —iteratdvl; v2 = e |
if e5 thenvy, — excludingv;) elsev, endif) J(7)
I[e; —colleci(v; | e3) J(1) =
I[e; —iteratgvl; v2 = kaagype_ofeg() | vo —including(es))](7)

I[ex —isUniquev, | e3) () =

OCL 2.0 REVISED SUBMISSION VERSION1.6, ANUARY 6, 2003 A-28

SEMANTICS

I ey —iteratvl; v2 = true| vy ande; —counfvy) = 1) (1)

A.3.1.4 EXPRESSION CONTEXT

An OCL expression is always written in some syntactical context. Since the primary purpose of OCL is the
specification of constraints on a UML model, it is obvious that the model itself provides the most general kind
of context. In our approach, the signatite, contains types (e.g., object types) and operations (e.g., attribute
operations) that are “imported” from a model, thus providing a context for building expressions that depend on the
elements of a specific model.

On a much smaller scale, there is also a notion of context in OCL that simply introduces variable declarations.
This notion is closely related to the syntax for constraints written in OCL. A context clause declares variables in
invariants, and parameters in pre- and postconditions.

A context of an invariants a declaration of variables. The variable declaration may be implicit or explicit. In the
implicit form, the context is written as

context C inv :
<expression>

In this case, theexpression> may use the variablself of type C as a free variable. In the explicit form,
the context is written as

context v, :Cq,...,v,:C, inv
<expression>

The<expression> may use the variables, . .., v, of typesCy, ..., C, as free variables.

A context of a pre-/postconditida a declaration of variables. In this case, the context is written as

context C:op(pr:Th,. . ,pn:Tn): T

pre: P
post : @
This means that the variabdelf (of typeC) and the parameteys, . . ., p, may be used as free variables in the

preconditionP and the postconditiofy. Additionally, the postcondition may usesult (of typeT) as a free
variable. The details are explained in Section A.3.2.

A.3.1.5 INVARIANTS

An invariant is an expression with boolean result type and a set of (explicitly or implicitly declared) free variables
vy : Cq,...,v, : C, WhereCy, ..., C, are classifier types. An invariant

context v, :Cq,...,v,:C, Inv
<expression>

is equivalent to the following expression without free variables that must be valid in all system states.

OCL 2.0 REVISED SUBMISSION VERSION1.6, ANUARY 6, 2003 A-29

SEMANTICS

C1 .allinstances->forAll(vy ¢+ Cp |

C,,.allinstances->forAll(v ¢ Ch |
<expression>

)

A system state is called valid with respect to an invariant if the invariant evaluates to true. Invariants with undefined
result invalidate a system state.

A.3.2 PRE- AND POSTCONDITIONS

The definition of expressions in the previous section is sufficient for invariants and queries where we have to
consider only single system states. For pre- and postconditions, there are additional language constructs in OC
which enable references to the system state before the execution of an operation and to the system state that rest
from the operation execution. The general syntax of an operation specification with pre- and postconditions is
defined as

context C :op(pr:T1,.-,pn:Th)
pre: P
post : @

First, the context is determined by giving the signature of the operation for which pre- and postconditions are
to be specified. The operatiap which is defined as part of the classifiérhas a set of typed parameters
PARAMSqp = {p1,...,pn}. The UML model providing the definition of an operation signature also specifies the
direction kind of each parameter. We use a functignd : PARAMSo, — {in, out, inout return} to map each
parameter to one of these kinds. Although UML makes no restriction on the number of return parameters, there ic
usually only at most one return parameter considered in OCL which is referred to by the kegswoitd in a
postcondition. In this case, the signature is also writtefi asop (p1 : 11, - . ., Pn—1 : T—1) : T with T being the

type of theresult parameter.

The precondition of the operation is given by an expresgiomnd the postcondition is specified by an expres-
sion@. P and@ must have a boolean result type. If the precondition holds, the contract of the operation guarantees
that the postcondition is satisfied after completioopf Pre- and postconditions form a pair. A condition defaults

to true if it is not explicitly specified.

A.3.2.1 EXAMPLE

Before we give a formal definition of operation specifications with pre- and postconditions, we demonstrate the
fundamental concepts by means of an example. Figure A.1 shows a class diagram with twdcaskizthat are

related to each other by an association R. Chdsas an operatioop() but no attributes. Clagghas an attribute

and no operations. The implicit role nanseandb at the link ends allow navigation in OCL expressions froB a
object to the associatelobject and vice versa.

Figure A.2 shows an example for two consecutive states of a system corresponding to the given class model. Th
object diagrams show instances of clas&esdB and links of the association R. The left object diagram shows

the state before the execution of an operation, whereas the right diagram shows the state after the operation h
been executed. The effect of the operation can be described by the following changes in the post-state: (1) th

OCL 2.0 REVISED SUBMISSION VERSION1.6, ANUARY 6, 2003 A-30

SEMANTICS

A B
¢ Integer

op()

Figure A.1: Example class diagram

b2:B
R c=0
R ; X
a:A = bl:B a:A bl:B
- c=1 — c=2
(a) Pre-state with ob- (b) Post-state. Ob-
jectsa andp, . ject b, did not exist in

the pre-state.

Figure A.2: Object diagrams showing a pre- and a post-state

value of the attribute in objectb, has been incremented by one, (2) a new oldigtias been created, (3) the link
betweer: andb,; has been removed, and (4) a new link betwe@mdb, has been established.

For the following discussion, consider the OCL expressidnc wherea is a variable denoting the objegt

The expression navigates to the associated object of class B and results in the value of the atfFibertefore,

the expression evaluates 1dn the pre-state shown in Figure A.2(a). As an example of how the OCL modifier
@pre may be used in a postcondition to refer to properties of the previous state, we now look at some variations of
the expressioa.b.c that may appear as part of a postcondition. For each case, the result is given and explained.

e abc =0
Because the expression is completely evaluated in the post-state, the navigatiandanisi to theé, object.
The value of the attribute of b, is 0 in Figure A.2(b).

e a.b@pre.c = 2
This expression refers to both the pre- and the post-state. The previous vaue @& a reference to
objectb,. However, since th@pre modifier only applies to the expressiarb , the following reference to
the attributec is evaluated in the post-state igf even thougtb; is not connected anymore &0 Therefore,
the result i2.

e a.b@pre.c@pre = 1
In this case, the value of the attributef objectb, is taken from the pre-state. This expression is semantically
equivalent to the expressi@nb.c in a precondition.

e ab.c@pre = L
The expressioa.b evaluated in the post-state yields a reference to objewhich is now connected ta.
Sinceb, has just been created by the operation, there is no previous staje ldénce, a reference to the
previous value of attributeis undefined.

Note that the@pre modifier may only be applied to operations not to arbitrary expressions. An expression such
as(a.b)@pre is syntactically illegal.

OCL provides the standard operationllsNew for checking whether an object has been created during the
execution of an operation. This operation may only be used in postconditions. For our example, the following
conditions indicate that the objefet has just been created in the post-statelgralready existed in the pre-state.

OCL 2.0 REVISED SUBMISSION VERSION1.6, ANUARY 6, 2003 A-31

SEMANTICS

e a.b.oclisNew = true

e a.b@pre.oclisNew = false

A.3.2.2 SYNTAX AND SEMANTICS OF POSTCONDITIONS

All common OCL expressions can be used in a preconditoSyntax and semantics of preconditions are defined
exactly like those for plain OCL expressions in Section A.3.1. Also, all common OCL expressions can be used in
a postconditiorq). Additionally, the@pre construct, the special varialdesult , and the operatioaclisNew

may appear in a postcondition. In the following, we extend Definition A.29 for the syntax of OCL expressions to
provide these additional features.

DEFINITION A.31 (SYNTAX OF EXPRESSIONS IN POSTCONDITIONS)

Let op be an operation with a set of parametexsAMs,p. The set of parameters includes at most one parameter
of kind “return”. The basic set of expressions in postconditions is defined by repeating Definition A.29 while
substituting all occurrences of Exwith Post-Expy. Furthermore, we define that

e Each non-return parameterc PARAMSqp With a declared typeis available as variableg: € Var;.
o If PARAMSqp contains a parameter of kind “return” and typeenresult is a variableresult < Var;.

e The operatioroclisNew : ¢ — Booleanis in 2, for all object types: € T4.

The syntax of expressions in postconditions is extended by the following rule.

Vii. If w:ty x---xt, —te Qur ande; € Post-Expy foralli =1,...,nthen
waprd€1, - - -, en) € POSt-EXpy.

O

All general OCL expressions may be used in a postcondition. Moreover, the basic rules for recursively constructing
expressions do also apply. Operation parameters are added to the set of variables. For operations with a retu
type, the variableesult refers to the operation result. The set of operations is extendedsjNew which is

defined for all object types. Operationgreare added for allowing references to the previous state (vii). The rule
says that the@pre modifier may be applied to all operations, although, in general, not all operations do actually
depend on a system state (for example, operations on data types). The result of these operations will be the sar
in all states. Operations which do depend on a system state are, e.g., attribute access and navigation operations

For a definition of the semantics of postconditions, we will refeetwironmentslescribing the previous state
and the state resulting from executing the operation. An environmento, 3) is a pair consisting of a system
statec and a variable assignmefit(see Section A.3.1.2). The necessity of including variable assignments into
environments will be discussed shortly. We call an environmgat= (opre, Bpre) describing a system state and
variable assignments before the execution of an operatjme-anvironmentLikewise, an environmentost =

(opost Bpost) after the completion of an operation is callegast-environment

DEFINITION A.32 (SEMANTICS OF POSTCONDITION EXPRESSIONS)

Let Env be the set of environments. The semantics of an expressionPost-Expy is a functionI[e] :

Env x Env — I(t). The semantics of the basic set of expressions in postconditions is defined by repeating
Definition A.30 while substituting all occurrences of Exprith Post-Expy. References td[e](7) are replaced

by I[e](7pre, Tpost) to include the pre-environment. Occurrencesraire changed tepost Which is the default
environment in a postcondition.

OCL 2.0 REVISED SUBMISSION VERSION1.6, ANUARY 6, 2003 A-32

SEMANTICS

[] FOI’ a”p c PARAMSOp . I[[p]](Tpre, Tpost) = /Bposl(p)

— Input parameters may not be modified by an operation:
kind(p) = in implies Bpre(p) = Bpost(p)-

— Output parameters are undefined on entry:
kind(p) = out impliesfpre(p) = L.

[] I[[reSU|t]:I(Tpre7 Tpos[) — ﬁpos[(result)

true |f§ ¢ O'pre(C) andg € O’pos[(C),

* I[oclisNew]](Tpre’ Tpos&(g) - {false otherwise

vii. Ifwapreets - en) [(Tpre, Tpos) = I(w)(Tpre) ([€1 [(Tpre, Tpost)s - - - » 1] €n | (Tpre, Tpost))
O

Standard expressions are evaluated as defined in Definition A.30 with the post-environment determining the conte»
of evaluation. Input parameters do not change during the execution of the operation. Therefore, their values ar
equal in the pre- and post-environment. The value ofélsalt variable is determined by the variable assignment

of the post-environment. TheclisNew operation yields true if an object did not exist in the previous system
state. Operations referring to the previous state are evaluated in context of the pre-environment (vii). Note tha
the operation arguments may still be evaluated in the post-environment. Therefore, in a nested expression, th
environment only applies to the current operation, whereas deeper nested operations may evaluate in a differe
environment.

With these preparations, the semantics of an operation specification with pre- and postconditions can be precisel
defined as follows. We say that a preconditiBrsatisfiesa pre-environmentyre — Written asrpre = P — if the
expressionP evaluates to true according to Definition A.30. Similarly, a postcondificsatisfies a pair of pre-

and post-environments, if the express@revaluates to true according to Definition A.32:

Tpre): P |ﬁ: III P]](Tpre) = true
(Tpre, Tpost) = @ iff - I[Q [(7pre, Tpost) = true

DEFINITION A.33 (SEMANTICS OF OPERATION SPECIFICATIONS)
The semantics of an operation specification is a&ét Env x Env defined as

[context C:op(pr:Ti,....,pn:Th)
pre. P
post Q@] = R

whereR is the set of all pre- and post-environment pairs such that the pre-enviromgaesttisfies the precondi-
tion P and the pair of both environments satisfies the postcondigion

R = {(7pre, Tpost) | Tore = P A (Tpre; Tpos) = @}
U
The satisfaction relation fof) is defined in terms of both environments since the postcondition may contain

references to the previous state. The Bealefines all legal transitions between two states corresponding to the
effect of an operation. It therefore provides a framework for a correct implementation.

OCL 2.0 REVISED SUBMISSION VERSION1.6, ANUARY 6, 2003 A-33

SEMANTICS

DEFINITION A.34 (SATISFACTION OF OPERATION SPECIFICATIONS)
An operation specification with pre- and postconditions is satisfied by a progjiarie sense of total correctness
if the computation of5 is a total functionfs : dom(R) — im(R) and graplifs) C R. O

In other words, the prograrf accepts each environment satisfying the precondition as input and produces an
environment that satisfies the postcondition. The definitiof® @fllows us to make some statements about the
specification. In general, a reasonable specification implies a non-emptyadleiving one or more different im-
plementations of the operation. i = (), then there is obviously no implementation possible. We distinguish two
cases: (1) no environment satisfying the precondition exists, or (2) there are environments making the preconditiol
true, but no environments do satisfy the postcondition. Both cases indicate that the specification is inconsisten
with the model. Either the constraint or the model providing the context should be changed. A more restrictive
definition might even prohibit the second case.

OCL 2.0 REVISED SUBMISSION VERSION1.6, ANUARY 6, 2003 A-34

SEMANTICS

35

Bibliography

OCL 2.0 REVISED SUBMISSION

VERSION 1.6, JANUARY 6, 2003

SEMANTICS

36

OCL 2.0 REVISED SUBMISSION

VERSION 1.6, JANUARY 6, 2003

A-36

[4

Interchange Format

B.1 THIS APPENDIX IS INTENTIALLY LEFT BLANK.

This section contains the interchange format for OCL. This XMI DTD should be generated from the metamodel.

Comment — This needs to be done when the final submission is finished.

Comment — Note that even the concrete syntax could be used as a simple interchange format,
because it only consists of standard text strings. However. accepting tools would need to (re)parse
the concrete syntax. The benefit will be that tools that do not support OCL (it is a optional compli-
ance point within UML) can still create and interchange OCL as text.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 B-1

References

[Warmer98] Jos Warmer en Anneke Kleppe, The Object Constraint Language: precise modeling with UML,
Addison-Wesley, 1999

[Kleppe2000] Anneke Kleppe and Jos Warmer, Extending OCL to include Actions, in Andy Evans, Stuart Kent
and Bran Selic (editors), <<UML>>2000 - The Unified Modeling Language. Advancing the Standard. Third
International Conference, York, UK, October 2000, Proceedings, volume 1939 of LNCS. Springer, 2000

[Clark2000] Tony Clark, Andy Evans, Stuart Kent, Steve Brodsky, Steve Cook, A feasibility Study in Rearchi-
tecting UML as a Family of Languages using a Precise OO Meta-Modelling Approach, version 1.0, September
2000, available from www.puml.org

[Richters1999] Mark Richters and Martin Gogolla, A metamodel for OCL, in Robert France and Bernhard
Rumpe, editors, UML’99 - The Unified Modeling Language. Beyond the Standard. Second International Confer-
ence, Fort Collins, CO, USA, October 28-30. 1999, Proceedings, volume 1723 of LNCS. Springer, 1999.

[Richters1998] Mark Richters and Martin Gogolla. On formalizing the UML Object Constraint Language OCL.
In Tok Wang Ling, Sudha Ram, and Mong Li Lee, editors, Proc. 17th Int. Conf. Conceptual Modeling (ER’98),
volume 1507 of LNCS, pages 449—464. Springer, 1998.

[Kleppe2001] Anneke Kleppe and Jos Warmer, Unification of Static and Dynamic Semantics of UML: a Study in
redefining the Semantics of the UML using the pUML OO Meta Modelling Approach, available for download at:
http://www.klasse.nl/english/uml/uml-semantics.html

[Akehurst2001] D.H. Akehurst and B. Bordbar, On Querying UML Data Models with OCL, proceedings of the
UML 2001 conference

Comment — TBD: This list of references is not complete.

OCL 2.0 REVISED SUBMISSION VERSION 1.6, JANUARY 6, 2003 C-1

Symbols

> 2-4

@pre 2-8,2-18,4-21,4-24
«postcondition» 2-4
«precondition» 2-4

A
abstract syntax tree 4-1
actual parameters of message expression 3-14
Additional operations

AS-Domain-Mapping.type-value Package 5-32

Evaluations package 5-27

Values package 5-8
appliedProperty 3-10
arguments of message expression 3-13
arguments of ocl message 5-6, 5-17
arguments of operation call 3-12, 5-15
AssociationClassCallExp 3-12

concrete syntax 4-20

diagram 3-11
AssociationClassCallExpEval 5-14

diagram 5-15

well-formedness rules 5-20, 5-32
AssociationEndCallExp 3-11

concrete syntax 4-19

diagram 3-11
AssociationEndCallExpEval 5-14

diagram 5-15

well-formedness rules 5-20, 5-33
attribute grammar 4-1

inherited attributes 4-1

synthesized attributes 4-1
AttributeCallExp 3-12

concrete syntax 4-18

diagram 3-11

well-formedness rules 3-17
AttributeCallExpEval 5-14

diagram 5-15

well-formedness rules 5-20, 5-34

B
Bag 6-11, 6-18
BagType 3-2
diagram 3-2
type conformance 3-3
well-formedness rules 3-6
BagTypeValue 5-4
diagram 5-3
well-formedness rules 5-7
beforeEnvironment 5-13
bindings 5-4, 5-12
body of loop expression 3-9
Boolean 6-8
BooleanLiteralExp 3-15
concrete syntax 4-9
diagram 3-15
well-formedness rules 3-18

Index

BooleanLiteralExpEval 5-17
diagram 5-18
well-formedness rules 5-20, 5-34

C
calledOperation 3-13
casting 2-8
class features 2-16
class properties 2-16
Classifier
additional operations 3-22
type conformance 3-4
well-formedness rules 3-6
collect operation 2-21
shorthand 2-21
Collection 6-8
diagram 3-15
collection operations 2-19
collect 2-21
exists 2-22
reject 2-19
select 2-19
collection type hierarchy 2-17
Collectionltem 3-15
diagram 3-15
well-formedness rules 3-18
CollectionltemEval 5-17
well-formedness rules 5-20, 5-34
CollectionltemEvalEval
diagram 5-18
CollectionKind 3-15
CollectionLiteralExp 3-16
concrete syntax 4-6
diagram 3-15
well-formedness rules 3-18
CollectionLiteralExpEval 5-17
diagram 5-18
well-formedness rules 5-20, 5-34
CollectionLiteralPart 3-16
concrete syntax 4-7
diagram 3-15
well-formedness rules 3-18
CollectionLiteralPartEval 5-17
diagram 5-18
well-formedness rules 5-21, 5-34
CollectionRange 3-16
concrete syntax 4-7
diagram 3-15
well-formedness rules 3-18
CollectionRangeEval 5-18
additional operations 5-27
diagram 5-18
well-formedness rules 5-21, 5-34
Collection-Related Typed 6-8
collections 2-16
collections of collections 2-17
collections operations

OCL 2.0 REVISED SUBMISSION

VERSION 1.6, JANUARY 6, 2003 D-1

forAll 2-21
CollectionType 3-2
diagram 3-2
type conformance 3-4
well-formedness rules 3-6
CollectionValue 5-4
diagram 5-3
well-formedness rules 5-7, 5-31
combining properties 2-12
comment 2-9
condition 5-16
condition of if expression 3-13
Constraint metaclass 2-4

D
disambiguating rules 4-2
DomainElement 5-4
diagram 5-11, 5-16
well-formedness rules 5-7, 5-31

E

EBNF 4-1

Element 5-4
diagram 5-3
well-formedness rules 5-7, 5-31

elementType 3-2

elseExpression 3-13, 5-16

enumeration types 2-6

EnumLiteralExp 3-16
concrete syntax 4-6
diagram 3-15
well-formedness rules 3-18

EnumLiteralExpEval 5-18
diagram 5-18

well-formedness rules 5-21, 5-35

EnumValue
diagram 5-3
well-formedness rules 5-7, 5-31
Environment 4-1, 4-25
additional operations 4-25
diagram 4-2
environment 5-11, 5-13
EvalEnvironment 5-12
additional operations 5-27
diagram 5-11

well-formedness rules 5-21, 5-34

evaluation 5-1, 5-11

exists operation 2-22

ExpressionInOcICS 4-3

ExpressionInOclEval 5-12
diagram 5-11
well-formedness rules 5-21

Expressions package 3-1
abstract syntax 3-8

F
forAll operation 2-21

H

history 5-5

I

IfExp 3-9,3-13

concrete syntax 4-23

diagram 3-8, 3-13

well-formedness rules 3-18
IfExpEval 5-16

diagram 5-16

well-formedness rules
initExpression 3-10
initializedVariable 3-10

5-21

in-part of let expression 3-17

inputQ 5-4

Integer 6-5, 6-7

IntegerLiteralExp 3-16
concrete syntax 4-8
diagram 3-15
well-formedness rules

3-19

IntegerLiteralExpEval 5-18

diagram 5-18
well-formedness rules
integerSymbol 3-16
invariants 2-4
Iterate Operation 2-22
IterateExp 3-9
concrete syntax 4-13
diagram 3-8
well-formedness rules
IterateExpEval 5-12
diagram 5-12
well-formedness rules
IteratorExp 3-9
concrete syntax 4-10
diagram 3-8
well-formedness rules
IteratorExpEval 5-12
diagram 5-12
well-formedness rules
iterators 3-9

L

legend 2-2

let expression 2-7

LetExp 3-17
concrete syntax 4-21
diagram 3-17
well-formedness rules

LetExpEval 5-19
diagram 5-19
well-formedness rules

LiteralExp 3-9
concrete syntax 4-5
diagram 3-8, 3-15
well-formedness rules

LiteralExpEval 5-13
diagram 5-12, 5-18
well-formedness rules

LocalSnapshot 5-4

5-22,5-35

3-19

5-22,5-35

3-19

5-22,5-35

3-19

5-23,5-35

3-20

523, 5-34

additional operations 5-8

diagram 5-3, 5-5
LoopExp 3-9

concrete syntax 4-10

diagram 3-8

well-formedness rules
LoopExpEval 5-13

diagram 5-12

well-formedness rules

M
mapping

3-20

523, 5-34

abstract syntax to concrete syntax 4-27
abstract syntax to semantic domain 5-1, 5-29
concrete syntax to abstract syntax 4-1, 4-27

missing rolenames 2-12

OCL 2.0 REVISED SUBMISSION

VERSION 1.6, JANUARY 6, 2003

D-2

ModelPropertyCallExp 3-9
concrete syntax 4-16
diagram 3-8, 3-11
well-formedness rules 3-20
ModelPropertyCallExpEval 5-13
diagram 5-12, 5-15
well-formedness rules 5-24, 5-35

N
NamedElement 4-27
diagram 4-2
Namespace 4-27
NameValueBinding 5-5
diagram 5-3, 5-5, 5-11
well-formedness rules 5-7
navigation
associations with multiplicity zero or one 2-12
from association class 2-14
through qualified associations 2-14
to association class 2-13
NavigationCallExp 3-12
concrete syntax 4-19
diagram 3-11
NavigationCallExpEval 5-14
diagram 5-15
well-formedness rules 5-24, 5-36
navigationSource 3-12, 5-14
NumericLiteralExp 3-16
diagram 3-15
well-formedness rules 3-20
NumericLiteralExpEval 5-18
diagram 5-18
well-formedness rules 5-24, 5-35

(0]
ObjectValue 5-5
additional operations 5-9
diagram 5-3, 5-5
well-formedness rules 5-7, 5-31
OclAny 6-1
OclExpEval 5-13
diagram 5-11, 5-12, 5-15, 5-16, 5-18, 5-19
well-formedness rules 5-24, 5-36
OclExpression 3-10
additional operations 3-24
concrete syntax 4-4
diagram 3-8, 3-11, 3-13, 3-14, 3-15, 3-17
well-formedness rules 3-20
OclMessageArg 3-14
additional operations 3-25
concrete syntax 4-23
diagram 3-14
well-formedness rules 3-20
OclMessageArgEval 5-17
diagram 5-16
well-formedness rules 5-25, 5-37
OclMessageExp 3-10, 3-13
concrete syntax 4-22
diagram 3-8, 3-14
well-formedness rules 3-20
OclMessageExpEval 5-13, 5-17
diagram 5-12, 5-16
well-formedness rules 5-24, 5-36
OclMessageType 3-2
diagram 3-2
well-formedness rules 3-6
OclMessageValue 5-5

diagram 5-5
well-formedness rules 5-7, 5-31
OclModelElementType 3-3
diagram 3-2
OclVoidValue 5-6
diagram 5-3
well-formedness rules 5-8
Operation
additional operations 3-23
operation definition 2-7
OperationCallExp 3-12, 5-15
concrete syntax 4-16
diagram 3-11
well-formedness rules 3-21
OperationCallExpEval
diagram 5-15
well-formedness rules 5-25, 5-37
operator precedence 4-24
OrderedSetType 3-3
type conformance 3-5
well-formedness rules 3-6
outputQ 5-4

P
Parameter

additional operations 3-23
parentOperation 3-10
parsing 4-3
pathnames 2-14
pre and postconditions 2-4
precedence rules 2-8
predefined properties 2-15

previous values in postconditions 2-18

Primitive

type conformance 3-5
PrimitiveLiteralExp 3-16

concrete syntax 4-8

diagram 3-15
PrimitiveLiteralExpEval 5-18

diagram 5-18

well-formedness rules 5-26, 5-38
PrimitiveValue 5-6

diagram 5-3

well-formedness rules 5-8, 5-31
production rule 4-1
properties

association ends and navigation 2-11

attributes 2-10

operations 2-11
properties of object 2-10
PropertyCallExp 3-10

concrete syntax 4-9

diagram 3-8

well-formedness rules 3-21
PropertyCallExpEval 5-13

diagram 5-12

well-formedness rules 5-26, 5-38

Q

qualifiers of navigation call 3-12

R

Real 6-5, 6-6, 6-8, 6-9

RealLiteralExp 3-16
concrete syntax 4-9
diagram 3-15
well-formedness rules 3-21

OCL 2.0 REVISED SUBMISSION

VERSION 1.6, JANUARY 6, 2003

RealLiteralExpEval 5-19

diagram 5-18

well-formedness rules 5-26, 5-38
realSymbol 3-16
referredAssociationClass 3-12, 5-14
referredAssociationEnd 3-12, 5-14
referredAttribute 3-12, 5-14
referredEnumLiteral 3-16
referredOperation 3-3, 3-12, 5-15
referredSignal 3-3
referredVariable 3-11
reject operation 2-19
result of iterate expression 3-9
resultValue 5-13
re-typing 2-8

S
select operation 2-19
self 2-3
semantic domain 5-1
sentSignal 3-13
Sequence 6-9, 6-14, 6-18
SequenceType 3-3
diagram 3-2
type conformance 3-5
well-formedness rules 3-6
SequenceTypeValue 5-6
diagram 5-3
well-formedness rules 5-8, 5-31
Set 6-10, 6-11, 6-17
SetType 3-3
diagram 3-2
type conformance 3-5
well-formedness rules 3-7
SetTypeValue 5-6
diagram 5-3
well-formedness rules 5-8, 5-31
shorthand for collect 2-21
Signal
additional operations 3-24
source of property call 3-10
State
additional operations 3-24
StaticValue 5-6
diagram 5-3
well-formedness rules 5-8, 5-31
String 6-5, 6-7
StringLiteralExp 3-16
concrete syntax 4-9
diagram 3-15
well-formedness rules 3-21
StringLiteralExpEval 5-19
diagram 5-18
well-formedness rules 5-38
stringSymbol 3-16
StringValue
diagram 5-12, 5-15, 5-19
symbol 3-16

T
target of message expression 3-13
thenExpression 3-13, 5-16
Transition

additional operations 3-24
TupleLiteralExp 3-17

concrete syntax 4-8

diagram 3-15

well-formedness rules 3-21
TupleLiteralExpEval 5-19

diagram 5-18

well-formedness rules 5-26, 5-38
TupleLiteralExpPart 3-17

well-formedness rules 3-22
TupleLiteralExpPartEval 5-19
TupleType 3-3

additional operations 3-25

diagram 3-2

type conformance 3-5

well-formedness rules 3-7
TupleValue 5-6

additional operations 5-9

diagram 5-3

well-formedness rules 5-8, 5-32
Type

concrete syntax 4-14
type conformance 2-17, 3-3
type of OCL expression 3-10
type of variable declaration 3-10
types from the UML model 2-6
Types package

abstract syntax 3-1

U

undefined value 2-10

UndefinedValue
well-formedness rules 5-32

UnspecifiedValueExp 3-14
diagram 3-14
well-formedness rules 3-22

UnspecifiedValueExpEval 5-17
diagram 5-16
well-formedness rules 5-26, 5-38

use of OCL expressions 2-2

v
Value 5-6
additional operations 5-32
diagram 5-3, 5-5, 5-12, 5-18
well-formedness rules 5-8, 5-32
VariableDeclaration 3-10
additional operations 3-25
concrete syntax 4-14
diagram 3-8, 3-15, 3-17
well-formedness rules 3-22
VariableDeclEval 5-14
diagram 5-12, 5-18
well-formedness rules 5-26, 5-38
VariableExp 3-10
concrete syntax 4-4
diagram 3-8
well-formedness rules 3-22
VariableExpEval 5-14
diagram 5-12
well-formedness rules 5-26, 5-38
varName 3-10
visibility 4-3
VoidType 3-3
diagram 3-2
type conformance 3-5

\\%
Well-formedness Rules

AS-Domain-Mapping.exp-eval package 5-32
AS-Domain-Mapping.type-value package 5-31

OCL 2.0 REVISED SUBMISSION

VERSION 1.6, JANUARY 6, 2003

Evaluations package 5-19
Well-formedness rules
Expressions package 3-17
Types Package 3-6
Values package 5-7

OCL 2.0 REVISED SUBMISSION

VERSION 1.6, JANUARY 6, 2003

	Response to the UML 2.0 OCL RfP (ad/2000-09-03)
	Contents
	List of figures
	List of tables
	Foreword
	Overview
	1.1 Introduction
	1.2 The Authors of the Submission
	1.3 Acknowledgements
	1.4 Goals of the Submission
	1.4.1 Relationship with existing OCL specification in UML 1.4
	1.4.2 OCL 2.0 Metamodel
	1.4.3 OCL Expressibility and Usability
	1.4.4 OCL Semantics

	1.5 Design Rationale
	1.5.1 Abstract syntax
	1.5.2 Concrete syntax
	1.5.3 Semantics
	1.5.4 OCL Standard Library

	1.6 Compliance to the RfP Requirements
	1.6.1 General Requirements
	1.6.2 Specific Requirements - Mandatory
	1.6.3 Specific Requirements - Optional
	1.6.4 Issues to be Discussed

	1.7 Structure of This Submission
	1.8 OCL 2.0 Compliance Points
	1.9 Alignment Issues with Respect to UML 2.0 Infrastructure and MOF 2.0 Core
	Alignment with UML 2.0 Infrastructure
	Pairs of Pre and Postconditions
	Frame Conditions

	OCL Language Description
	2.1 Why OCL?
	2.1.1 Where to Use OCL

	2.2 Introduction
	2.2.1 Legend
	2.2.2 Example Class Diagram

	2.3 Relation to the UML Metamodel
	2.3.1 Self
	2.3.2 Specifying the UML context
	2.3.3 Invariants
	2.3.4 Pre- and Postconditions
	2.3.5 Package Context
	2.3.6 Operation Body Expression
	2.3.7 Initial and Derived Values
	2.3.8 Other Types of Expressions

	2.4 Basic Values and Types
	2.4.1 Types from the UML Model
	2.4.2 Enumeration Types
	2.4.3 Let Expressions
	2.4.4 Additional operations/attributes through «definition» expressions
	2.4.5 Type Conformance
	2.4.6 Re-typing or Casting
	2.4.7 Precedence Rules
	2.4.8 Use of Infix Operators
	2.4.9 Keywords
	2.4.10 Comment
	2.4.11 Undefined Values

	2.5 Objects and Properties
	2.5.1 Properties: Attributes
	2.5.2 Properties: Operations
	Defining operations

	2.5.3 Properties: AssociationEnds and Navigation
	Missing AssociationEnd names
	Navigation over Associations with Multiplicity Zero or One
	Combining Properties

	2.5.4 Navigation to Association Classes
	2.5.5 Navigation from Association Classes
	2.5.6 Navigation through Qualified Associations
	2.5.7 Using Pathnames for Packages
	2.5.8 Accessing overridden properties of supertypes
	2.5.9 Predefined properties on All Objects
	2.5.10 Features on Classes Themselves
	2.5.11 Collections
	Collection Literals

	2.5.12 Collections of Collections
	2.5.13 Collection Type Hierarchy and Type Conformance Rules
	2.5.14 Previous Values in Postconditions
	2.5.15 Tuples

	2.6 Collection Operations
	2.6.1 Select and Reject Operations
	2.6.2 Collect Operation
	Shorthand for Collect

	2.6.3 ForAll Operation
	2.6.4 Exists Operation
	2.6.5 Iterate Operation

	2.7 Messages in OCL
	2.7.1 Calling operations and sending signals
	2.7.2 Accessing result values
	2.7.3 An example
	The Example and Problem
	The solution

	2.8 Resolving Properties

	Abstract Syntax
	3.1 Introduction
	3.2 The Types Package
	BagType
	CollectionType
	OclMessageType
	OclModelElementType
	OrderedSetType
	SequenceType
	SetType
	TupleType
	VoidType
	3.2.1 Type Conformance
	BagType
	Classifier
	CollectionType
	OrderedSetType
	Primitive
	SequenceType
	SetType
	TupleType
	VoidType

	3.2.2 Well-formedness Rules for the Types Package
	BagType
	CollectionType
	Classifier
	OclMessageType
	OrderedSetType
	SequenceType
	SetType
	TupleType

	3.3 The Expressions Package
	3.3.1 Expressions Core
	IfExp
	IterateExp
	IteratorExp
	LiteralExp
	LoopExp
	ModelPropertyCallExp
	OclExpression
	OclMessageExp
	PropertyCallExp
	VariableDeclaration
	VariableExp

	3.3.2 Model PropertyCall Expressions
	AssociationEndCallExp
	AssociationClassCallExp
	AttributeCallExp
	NavigationCallExp
	OperationCallExp

	3.3.3 If Expressions
	IfExp

	3.3.4 Message Expressions
	OclMessageExp
	OclMessageArg
	UnspecifiedValueExp

	3.3.5 Literal Expressions
	BooleanLiteralExp
	CollectionItem
	CollectionKind
	CollectionLiteralExp
	CollectionLiteralPart
	CollectionRange
	EnumLiteralExp
	IntegerLiteralExp
	NumericLiteralExp
	PrimitiveLiteralExp
	RealLiteralExp
	StringLiteralExp
	TupleLiteralExp

	3.3.6 Let expressions
	LetExp

	3.3.7 Well-formedness Rules of the Expressions package
	AttributeCallExp
	BooleanLiteralExp
	CollectionLiteralExp
	CollectionLiteralPart
	CollectionItem
	CollectionRange
	EnumLiteralExp
	IfExp
	IntegerLiteralExp
	IteratorExp
	IterateExp
	LetExp
	LiteralExp
	LoopExp
	ModelPropertyCallExp
	NumericLiteralExp
	OclExpression
	OclMessageArg
	OclMessageExp
	OperationCallExp
	PropertyCallExp
	RealLiteralExp
	StringLiteralExp
	TupleLiteralExp
	TupleLiteralExpPart
	UnspecifiedValueExp
	VariableDeclaration
	VariableExp

	3.3.8 Additional Operations on UML metaclasses
	Classifier
	Operation
	Parameter
	Signal
	State
	Transition

	3.3.9 Additional Operations on OCL metaclasses
	OclExpression
	OclMessageArg
	TupleType
	VariableDeclaration

	3.3.10 Overview of class hierarchy of OCL Abstract Syntax metamodel

	Concrete Syntax
	4.1 Structure of the Concrete Syntax
	4.2 A Note to Tool Builders
	4.2.1 Parsing
	4.2.2 Visibility

	4.3 Concrete Syntax
	ExpressionInOclCS
	OclExpressionCS
	VariableExpCS
	simpleNameCS
	pathNameCS
	LiteralExpCS
	EnumLiteralExpCS
	CollectionLiteralExpCS
	CollectionTypeIdentifierCS
	CollectionLiteralPartsCS
	CollectionLiteralPartCS
	CollectionRangeCS
	PrimitiveLiteralExpCS
	TupleLiteralExpCS
	IntegerLiteralExpCS
	RealLiteralExpCS
	StringLiteralExpCS
	BooleanLiteralExpCS
	PropertyCallExpCS
	LoopExpCS
	IteratorExpCS
	IterateExpCS
	VariableDeclarationCS
	TypeCS
	collectionTypeCS
	tupleTypeCS
	variableDeclarationListCS
	ModelPropertyCallExpCS
	OperationCallExpCS
	AttributeCallExpCS
	NavigationCallExpCS
	AssociationEndCallExpCS
	AssociationClassCallExpCS
	isMarkedPreCS
	argumentsCS
	LetExpCS
	LetExpSubCS
	OclMessageExpCS
	OclMessageArgumentsCS
	OclMessageArgCS
	IfExpCS
	4.3.1 Comments
	4.3.2 Operator Precedence

	4.4 Environment definition
	4.4.1 Environment
	4.4.2 NamedElement
	4.4.3 Namespace

	4.5 Concrete to Abstract Syntax Mapping
	4.6 Abstract Syntax to Concrete Syntax Mapping

	Semantics Described using UML
	5.1 Introduction
	5.2 The Values Package
	5.2.1 Definitions of concepts for the Values package.
	BagTypeValue
	CollectionValue
	DomainElement
	Element
	LocalSnapshot
	NameValueBinding
	ObjectValue
	OclMessageValue
	OclVoidValue
	PrimitiveValue
	SequenceTypeValue
	SetTypeValue
	StaticValue
	TupleValue
	Value

	5.2.2 Well-formedness rules for the Values Package
	BagTypeValue
	CollectionValue
	DomainElement
	Element
	EnumValue
	LocalSnapshot
	NameValueBinding
	ObjectValue
	OclMessageValue
	OclVoidValue
	PrimitiveValue
	SequenceTypeValue
	SetTypeValue
	StaticValue
	TupleValue
	Value

	5.2.3 Additional operations for the Values Package
	LocalSnapshot
	ObjectValue
	TupleValue

	5.2.4 Overview of the Values package

	5.3 The Evaluations Package
	5.3.1 Definitions of concepts for the Evaluations package
	EvalEnvironment
	IterateExpEval
	IteratorExpEval
	ExpressionInOclEval
	LiteralExpEval
	LoopExpEval
	ModelPropertyCallExpEval
	OclExpEval
	OclMessageExpEval
	PropertyCallExpEval
	VariableDeclEval
	VariableExpEval

	5.3.2 Model PropertyCall Evaluations
	AssociationClassCallExpEval
	AssociationEndCallExpEval
	AttributeCallExpEval
	NavigationCallExpEval
	OperationCallExp

	5.3.3 If Expression Evaluations
	IfExpEval

	5.3.4 Ocl Message Expression Evaluations
	OclMessageArgEval
	OclMessageExpEval
	UnspecifiedValueExpEval

	5.3.5 Literal Expression Evaluations
	BooleanLiteralExpEval
	CollectionItemEval
	CollectionLiteralExpEval
	CollectionLiteralPartEval
	CollectionRangeEval
	EnumLiteralExpEval
	IntegerLiteralExpEval
	NumericLiteralExpEval
	PrimitiveLiteralExpEval
	RealLiteralExpEval
	StringLiteralExpEval
	TupleLiteralExpEval
	TupleLiteralExpPartEval

	5.3.6 Let expressions
	LetExpEval

	5.3.7 Well-formedness Rules of the Evaluations package
	AssociationClassCallExpEval
	AssociationEndCallExpEval
	AttributeCallExpEval
	BooleanLiteralExpEval
	CollectionItemEval
	CollectionLiteralExpEval
	CollectionLiteralPartEval
	CollectionRangeEval
	EnumLiteralExpEval
	EvalEnvironment
	ExpressionInOclEval
	IfExpEval
	IntegerLiteralExpEval
	IterateExpEval
	IteratorExpEval
	LetExpEval
	LiteralExpEval
	LoopExpEval
	ModelPropertyCallExpEval
	NavigationCallExpEval
	NumericLiteralExpEval
	OclExpEval
	OclMessageExpEval
	OclMessageArgEval
	OperationCallExpEval
	PropertyCallExpEval
	PrimitiveLiteralExpEval
	RealLiteralExpEval
	StringLiteralExpEval
	TupleLiteralExpEval
	UnspecifiedValueExpEval
	VariableDeclEval
	VariableExpEval

	5.3.8 Additional operations of the Evaluations package
	EvalEnvironment
	CollectionRangeEval

	5.3.9 Overview of the Values package

	5.4 The AS-Domain-Mapping Package
	5.4.1 Well-formedness rules for the AS-Domain-Mapping.type-value Package
	CollectionValue
	DomainElement
	Element
	EnumValue
	ObjectValue
	OclMessageValue
	PrimitiveValue
	SequenceTypeValue
	SetTypeValue
	StaticValue
	TupleValue
	UndefinedValue
	Value

	5.4.2 Additional operations for the AS-Domain-Mapping.type-value Package
	Value

	5.4.3 Well-formedness rules for the AS-Domain-Mapping.exp-eval Package
	AssociationClassCallExpEval
	AssociationEndCallExpEval
	AttributeCallExpEval
	BooleanLiteralExpEval
	CollectionItemEval
	CollectionLiteralExpEval
	CollectionLiteralPartEval
	CollectionRangeEval
	EvalEnvironment
	LiteralExpEval
	LoopExpEval
	EnumLiteralExpEval
	IfExpEval
	IntegerLiteralExpEval
	IterateExpEval
	IteratorExpEval
	LetExpEval
	LoopExpEval
	ModelPropertyCallExpEval
	NumericLiteralExpEval
	NavigationCallExpEval
	OclExpEval
	OclMessageExpEval
	OclMessageArgEval
	OperationCallExpEval
	PropertyCallExpEval
	PrimitiveLiteralExpEval
	RealLiteralExpEval
	StringLiteralExpEval
	TupleLiteralExpEval
	UnspecifiedValueExpEval
	VariableDeclEval
	VariableExpEval

	The OCL Standard Library
	6.1 Introduction
	6.2 The OclAny, OclVoid, and OclMessage types
	OclAny
	OclMessage
	OclVoid
	6.2.1 Operations and well-formedness rules
	OclAny
	OclMessage
	OclVoid

	6.3 ModelElement types
	OclModelElement
	OclType
	OclState
	6.3.1 Operations and well-formedness rules
	OclModelElement
	OclType
	OclState

	6.4 Primitive Types
	Real
	Integer
	String
	Boolean
	6.4.1 Operations and well-formedness rules
	Real
	Integer
	String
	Boolean

	6.5 Collection-Related Types
	Collection
	Set
	OrderedSet
	Bag
	Sequence
	6.5.1 Operations and well-formedness rules
	Collection
	Set
	OrderedSet
	Bag
	Sequence

	6.6 Predefined Iterator Expressions
	Extending the standard library with iterator expressions
	6.6.1 Mapping rules for predefined iterator expressions
	Collection
	Set
	Bag
	Sequence

	The Use of Ocl Expressions in UML Models
	7.1 Introduction
	UML 2.0 Alignment

	7.2 The ExpressionInOcl Type
	ExpressionInOcl
	7.2.1 Well-formedness rules
	ExpressionInOcl

	7.3 Standard placements of OCL Expressions
	How to extend the use of OCL at other places
	7.3.1 Definition
	Well-formedness rules

	7.3.2 Invariant
	Well-formedness rules

	7.3.3 Precondition
	Well-formedness rules

	7.3.4 Postcondition
	Wellformedness rules

	7.3.5 Initial value expression
	Well-formedness rules

	7.3.6 Derived value expression
	7.3.7 Operation body expression
	7.3.8 Guard
	Well-formedness rules

	7.4 Concrete Syntax of Context Declarations
	packageDeclarationCS
	contextDeclarationCS
	attrOrAssocContextCS
	initOrDerValueCS
	classifierContextDeclCS
	invOrDefCS
	defExpressionCS
	operationContextDeclCS
	prePostOrBodyDeclCS
	operationCS
	parametersCS

	Alignment of OCL, UML and MOF Metamodels
	8.1 Introduction
	8.2 Use of the UML Metamodel
	8.3 Use of the OCL metamodel in the UML metamodel
	8.4 Wishlist

	Semantics
	A.1 Object Models
	A.1.1 Syntax of Object Models
	A.1.2 Interpretation of Object Models

	A.2 OCL Types and Operations
	A.2.1 Basic Types
	A.2.2 Common Operations on all Types
	A.2.3 Enumeration Types
	A.2.4 Object Types
	A.2.5 Collection and Tuple Types
	A.2.6 Special Types
	A.2.7 Type Hierarchy
	A.2.8 Data Signature

	A.3 OCL Expressions and Constraints
	A.3.1 Expressions
	A.3.2 Pre- and Postconditions
	Bibliography

	Interchange Format
	B.1 This appendix is intentially left blank.

	References

