
Real-time programming safety in Java and Ada

Bo I. Sand6n
Computer Science

Colorado Technical University
4435 N. Chestnut St.

Colorado Springs, CO 80907-3896
- U.S.A.

Email: bsanden@acm.org
Phone: (719) 590-6733

http://iis-web.coloradotech.edu/bsanden

This article was first published in the Ada User Journal 23:2 (June 2002) 105-113.

Abstract

Both Java and the Real-time Specification for Java contain concurrency-related constructs that are easily
abused or simply misunderstood by a programmer without sufficient knowledge of multi-threading. This
article lists a number of those constructs and shows how they are avoided in Ada. Many of the mistakes
arise when a programmer confuses exclusion synchronization and condition synchronization. The article
opens with an explanation of those concepts.

1. Introduction

Few industry-strength languages include multi-threading in their syntax. Among contemporary languages,
Ada [1, 2] and Java [3-8] are the most prominent. The philosophy of concurrency is similar in Java and
Ada95 and is based on the classic distinction between threads (tasks in Ada) on the one hand, and shared
objects on the other. This has been the dominant paradigm for practical multi-threading for decades, al-
though other models exist, such as the rendezvous paradigm of Ada83, which is still supported in Ada95.
(The Ada83 paradigm is not fiarther discussed here.) In Ada, shared objects are declared protected. In
Java, they are instances of classes that have methods marked s y n c h r o n i zed.

Although the philosophy of concurrency is similar, the attitude to safety and reliability is radically differ-
ent in Ada and Java. Java threading is adequate for its original purpose: windows programming and ap-
plets. But Java is now being fitted with real-time extensions and may be applied to safety critical soft-
ware. The language has many potentially abusable constructs and programmer pitfalls. This is certainly
true for Java in general [9] but is particularly important with concurrent software, which is notoriously
difficult to debug.

The Real-Time Specification for Java (RTSJ [10, 11]) does nothing to remove the pitfalls. It intends to
make Java useful for real-time applications by circumventing garbage collection and providing interrupt
handling, not to make the language less error prone. In fact, using the new classes that represent different
types of memory areas or the new construct for asynchronous transfer of control correctly is far from
easy. The case that Ada95 is a much safer language for real-time embedded applications than Java can
easily be made.

Ada Letters June 2003 32 Volume XXIII, Number 2

This article is intended for Ada programmers who may be taking the Ada concurrency features for
granted. The purpose is to view those features against a backdrop of the pitfalls of a more traditional con-
currency implementation without emphasis on safety. I point out a number of Java threading pitfalls and
note how they are prevented in Ada. While ! briefly summarize the Ada tasking model, the reader is as-
sumed to have an understanding of Ada tasking and sufficient understanding of Java to be able to read
small program excerpts, but is not expected to know much about Java multi-threading. For a comprehen-
sive comparison of concurrency features in the two languages, see [12].

1.1. Forms of synchronization

The traditional concurrency model with threads on the one hand and shared objects on the other relies on
a distinction between exclusion synchronization and condition synchronization, described as follows.

Exclusion synchronization is used to stop two threads from operating on the same object at the
same time and thereby jeopardizing the integrity of its data. Java provides exclusion synchroniza-
tion for any synchronized method. Ada provides exclusion synchronization for protected opera-
tions. A block of code that is executed under exclusion synchronization is called a critical sec-
tion. It is bracketed by instructions that acquire and release a lock on an object.

Each thread is expected to maintain exclusive access for a very short time, making it unlikely that
a thread will ever find an object locked. If it does find an object locked, only a brief wait should
be expected. It is even more unlikely that two threads should attempt access to the same object
while its is locked. For this reason, one need not be concerned with maintaining a orderly queue
of threads pending on an object lock. Implementations of exclusion synchronization typically let a
thread that encounters a locked object yield the processor in the hope that it will find the object
unlocked when next made running. If the object is still locked, the thread again yields the proces-
sor. With multiple processors, one often uses a spin lock, that is, the thread enters a loop where it
repeatedly attempts access until it is successful. I shall use the term "spin lock" for both the single
processor and multi-processor cases.

While a thread, 1, is operating on a shared object O, under exclusion synchronization, it may be
preempted by a higher-priority thread, lh, which also needs exclusive access to o. Unavoidably, h
must wait for 1 to exit the critical section. Such a situation where a higher priority thread is wait-
ing for a lower priority thread is referred to as priority inversion. If 1 continues executing at its
normal priority, a thread, i , of intermediate priority may preempt 1. This leads to an avoidable
situation where h is waiting for two lower-priority threads. To avoid it, 1 can be given a priority
boost. One possibility is to let 1 inherit h's priority once h tries to access O. The other possibil-
ity is to define a ceiling priority for O, which is used by any thread while it executes a synchro-
nized method on O. The ceiling priority must be as high as the priority of any thread that ever op-
erates on O.

Condition synchronization is when a thread cannot proceed if a certain condition holds. A buffer,
shared by two or more threads provides a classic example. A B u f f e r object has the operations
p u t (), called by producer threads, and g e t (), called by consumer threads. A thread that calls
p u t () must wait if the buffer is full, and a thread calling g e t () must wait if it is empty. There
is no assumption that this wait will be brief. Threads may spend considerable time waiting, and
must be queued, typically first-in-first-out per priority. A thread conditionally waiting for an ob-
ject never holds the object locked and should not normally hold other objects locked.

Ada Letters June 2003 33 Volume XXIII, Number 2

Condition synchronization must be used to control access to any shared resource that is held long
enough for a queue of waiting threads to form. Examples of resources of this nature range from a
printer or a database record to resources in the problem domain of a control system such as rail-
road segments and automated vehicles in a flexible manufacturing system. Access to such a re-
source is handled by means of an object with a Boolean variable b u s y , say, and operations such
as a c q u i r e () and r e l e a s e () . Once a thread has successfully acquired the resource and set
b u s y to t r u e , it releases the object lock, allowing other threads to call a c q u i r e () and place
themselves on queue.

The term "condition synchronization" gives no hint that condition synchronization is often used to control
mutually exclusive access to domain resources and, in general, to resources held for a long time. The
terms "competition synchronization" and "cooperation synchronization" for exclusion and condition syn-
chronization respectively are no better [13]. The rationale here is that the producer and consumer threads
must cooperate to manage an empty and a full buffer but compete over the access to the operations.
Again, this ignores the use of condition synchronization to control exclusive access to a domain resource.
An alternative way to characterize synchronization is to distinguish between exclusive access with short
extent in time (exclusion synchronization) and long extent (condition synchronization) [14], but this plays
down the conceptual difference between the two kinds of synchronization.

The distinction between exclusion and condition synchronization is crucial in real-time concurrent pro-
gralrnming. While Ada and Java both support exclusion and condition synchronization, Ada helps the nov-
ice programmer by clearly separating the concepts syntactically. Java does not, and some of the pitfalls
result from a confusion of them.

2. Ada concurrency model

Ada95 implements concurrency with two kinds of entities: tasks and protected objects. You define a task
type, which is instantiated as any other type, or a singleton task. Protected objects have monitor-like be-
havior. They can have protected operations of three kinds: functions, procedures and entries. These are
declared in the specification of the protected type I as for example the following:

protected type X is
function F1 (...) return Typel;

procedure Pl (... ;
entry E1 (...);

private
-- Attribute variables
-- Private operations including

end X;

interrupt handlers

All protected operations have exclusion synchronization built in. The differences between protected func-
tions, protected procedures and entries are as follows:

Protected functions are read-only. They are prohibited from changing the attribute values of the
protected object and are subject to a read lock: Any number of function calls on a given object are
allowed simultaneously, but not during a procedure or entry call on the object.

1 Ada also provides for singleton protected units.

Ada Letters June 2003 34 Volume XXIII, N u m b e r 2

Protected procedures are allowed to change attribute values. They are subject to a write lock:
Only one procedure (or entry) call at a time is allowed on a given object, and not during any func-
tion call.

Like procedures, entries are allowed to change attribute variable values and are subject to the
write lock. In addition, an entry can provide condition synchronization by means of a barrier
condition, which appears in the body of the protected type. An entry call only proceeds when the
condition is true. For example, an entry Get, which is only allowed when the number (Num) of
items in a buffer is greater than zero, may be declared as follows:

entry Get (...) when Num > 0 is

A task that calls Get when Num = 0 is put on a queue that is FIFO per priority. Each protected
object has one queue per entry.

Any variables in the barrier condition are supposed to be attribute variables of the protected ob-
ject, on which the entry operates. The values of those variables can only be changed by calls to
protected procedures and entries on that object.

At the end of each procedure or entry call on a given object, its barriers are evaluated. If a barrier
is found to be true, the most eligible task in the corresponding queue is activated and executes the
entry body. Tasks that are already in a queue have precedence over new callers according to the
principle o f " internal progress first".

3. Java concurrency model

In Java, any method in any class can be declared synchronized. This is exclusion synchronization: A write
lock per object is applied, so that only one synchronized method at a time can operate on a given object.
A synchronized method in Java is similar to a protected procedure or entry in Ada in that it is implicitly
bracketed by instructions that acquire and release the object lock.

Condition synchronization in Java relies on explicit tests programmed into the synchronized methods, as
for example:

while (0 == Num) {wait() ;}

If Num is zero, a calling thread calls w a i t () and thereby enters the object 's wait set. There is one wait
set per object, not one per entry per object as in Ada. A thread, t , that executes a synchronized method on
an object may change the truth value of a condition that may affect one or more threads in the wait set.
Before leaving the method, t must explicitly n o t i f y any such threads. The call n o t i f y A l l () reac-
tivates all threads waiting for conditional access to an object.

The Java thread model hides little from the programmer. This makes it quite flexible for the old hand at
concurrency. Apart from the tie-in with object-orientation, the thread model is in fact very similar to what
I first encountered when manipulating threads provided by the UNIVAC 494 operating system in assem-
bler programs 30 years ago. In a sense, this makes Java more pedagogical than Ada because it exposes the
details of synchronization. But by the same token, the Java model is much more error prone. Very little
protects Java programmers from the consequences of their own mistakes. Unfortunately, many program-
mers are not shy about trying things they don't fully understand and then testing the program to see if it

Ada Letters June 2003 35 Vo lume XXIII , N u m b e r 2

works. Many concurrency related bugs are subtle enough to pass most tests. An Ada programmer cannot
easily make clerical errors with unintended effects on the program behavior.

An advantage of the Java model is that it can be implemented with less overhead than the Ada model, but
this issue appears to be losing much of its earlier importance. Further, a Java class with synchronized op-
erations can be part of the inheritance hierarchy. Because a thread can hold multiple locks on the same
object, a synchronized method can easily call a synchronized method in a parent class, including one that
it overrides. If the parent method has a wait loop, the thread may enter the wait set.

In Ada, a protected type is not extensible, that is, it cannot be subclassed. Although Ada95 includes ob-
ject-oriented features including inheritance, polymorphism and dynamic binding, these were not extended
to protected objects [15].

3.1 Real-time Java

The Real-Time Specification for Java (RTSJ) [10, 11] is an effort to make Java useful for real-time pro-
gramming. (An alternative specification is given in [16].) One premise is that a real-time program must be
predictable so that the programmer can determine a priori when certain events will occur. This is not true
for standard Java for a number of reasons. First, the garbage collector, which can interrupt any other proc-
essing, adds an element of randomness. Second, different scheduling policies cannot be imposed in stan-
dard Java. (Scheduling policies such as the rate-monotonic algorithm allow you to prove that a set of
threads meet their specified deadlines.) Third, in standard Java, threads placed in a wait set are reactivated
in arbitrary order, independent of when they attempted access; the wait set is not a FIFO queue.

To deal with these problems, RTSJ introduces a number of new classes, most of which are necessary for
working around the garbage collector. One such class is N o H e a p R e a l t i m e T h r e a d (NHRT), which is
a descendant of T h r e a d . NHRT threads have higher priority than the garbage collector so are not subject
to arbitrary delays. This places many restrictions on the programmer, however. For example, an NHRT
thread cannot allocate objects on the heap. Instead, RTSJ provides for various kinds of special memory
areas.

RTSJ also stipulates that threads in a wait set must be kept in FIFO order within priorities. This means
that n o t i f y () reactivates the thread with the highest priority. If there are more than one thread with
that priority, the one that has waited the longest is reactivated.

RTSJ uses priority inheritance as the default control policy to address priority inversion. A priority ceiling
protocol is also specified. Finally, to further support real-time programming, RTSJ allows the program-
mer to specify interrupt handlers.

4. Java pitfalls and their Ada solutions

Apart from the extensions provided by RTSJ, real-time Java relies on the threading and synchronization
models of standard Java. Next, I discuss in more detail some features of these models from a real-time
point of view, focusing on the associated pitfalls. I also discuss how each pitfall is prevented by the
Ada95 syntax and semantics. Although programming to RTSJ is in many respects quite involved, I do not
address any programming pitfalls that may appear there.

Ada Letters June 2003 36 Volume XXIII, N u m b e r 2

4.1 Defining and starting threads

Java provides the abstract class T h r e a d , whose method r u n () represents the logic that a thread per-
forms. It corresponds to the executable part of a task body. A standard way of creating threads is to de-
clare a new class, T, that extends T h r e a d and overrides r u n () with appropriate processing. Each in-
stance To of T has its own thread, which is explicitly started by means of the call To . s t a r t (). Once
started, the thread executes T's r u n () method and has access to To 's data.

Because Java has no multiple inheritance, an additional mechanism is necessary for the case where a
class, R, that needs a thread, already extends another class, such as A p p l e t . For this situation, Java pro-
vides the interface R u n n a b l e . The programmer makes R extend A p p l e t and implement R u n n a b l e .
Instantiating R creates a runnable object, Ro, say. To associate a thread with Ro, you submit Ro as an
argument to one of T h r e a d ' s constructors and then call s t a r t () on the resulting T h r e a d instance.
This is typically done in a statement such as:

new Thread (Ro) . start () ;

Java pitfalls. Once you have a class R that implements R u n n a b l e , Java gives you two ways to create
multiple threads that execute R's r u n () m e t h o d . First, you can instantiate R n times, and submit each
instance once as a parameter to one of T h r e a d ' s constructors. Now you have n instances of R, each with
a thread, so each thread has its own set of instance variables. But Java also lets you submit the same in-
stance of R repeatedly to T h r e a d ' s constructor. The result is a subtly different case where multiple
threads are tied to one object and share its instance variables. Two (or more) of these threads can directly
manipulate those instance variables simultaneously, and possibly introduce inconsistencies.

Ada. Ada's model for defining and starting tasks is cleaner. You declare a task type, which is instantiated
as any other type, or a singleton task. The task is started automatically, either when the first executable
statement is reached after the declarations, or, if a task type is dynamically instantiated, immediately upon
instantiation. Each task instance has its own private data.

4.2 Synchronized objects

Java provides all objects with the potential for monitor-like behavior, that is, approximately the behavior
of a protected object in Ada. Every object has a lock variable, which is hidden from the programmer and
cannot be accessed from methods on the object. Exclusion synchronization is accomplished by specifying
a method as s y n c h r o n i z e d , as in:

void synchronized m() ...

When a synchronized method is called on some object, O, its code is implicitly bracketed by statements
that acquire and release the lock on O. That is, a thread calling O. m () locks O as a whole, so that no other
thread can perform any synchronized method on O (or execute any block synchronized with respect to O
as discussed below). This synchronization feature is built in, which guarantees that the lock is always re-
leased when a thread leaves a synchronized method, even if this happens by means of the exception han-
dling mechanism. I shall refer to any instance of a class that has at least one synchronized method or syn-
chronized block as a synchronized object.

Ada Letters June 2003 37 Vo lume XXIII , N u m b e r 2

A Java programmer can choose to specify some but not all the methods of a class as synchronized. This
has some useful applications. For example, a method that returns a constant or the value of a single attrib-
ute need not be synchronized.

Java pitfalls. The freedom to specify selected methods of a class as synchronized opens the door for mis-
takes. In the buffer example, the programmer may declare g e t () synchronized and not p u t (). This
allows different threads to call p u t () simultaneously. These calls may also overlap with a call to
g e t () . This jeopardizes the integrity of the buffer data structure. The program may still work much of
the time, but will produce occasional errors, especially when run on a symmetric multi-processor provid-
ing true parallelism. Such errors tend to be hard to find by testing - although more easily by inspection by
an experienced thread programmer. Omitting the keyword synchronized altogether, for p u t () as well as
g e t () would further exacerbate the situation.

A programmer must ensure that the instance variables that the synchronized methods operate on are pri-
vate so that they cannot be directly accessed and changed by a method operating on some other object.
Even if they are private, you must ensure that they are not changed by a static method defined for the
class.

Ada. All operations on a protected object require either a read lock or a write lock. You cannot include a
non-protected operation in a protected object. A protected function can be used to return constants, etc., as
can an unsynchronized method in an otherwise synchronized Java class.

4.2.1 Synchronized blocks

In addition to synchronized methods, Java provides synchronized blocks, which have no Ada counterpart.
Any block in any method can be synchronized with respect to an object not necessarily the current in-
stance of the class where the method appears by means of the syntax:

synchronized (Expression) { /* Block B */ }

Expression must evaluate to a reference to some object, Vo of class v, say. As for synchronized methods,
exclusion synchronization is implicit, so B's code is bracketed by statements to acquire and release the
lock on Vo. A synchronized method and a synchronized block are both critical sections.

Consider first the case where B is part of some method, m (), on class v and is synchronized with respect
to the current object as follows:

class V . . ,
{

void m()
{

}
}

synchronized (this)
{

/* Block B*/
}

Ada Letters June 2003 38 V o l u m e XXIII , N u m b e r 2

This design is an alternative to synchronizing m () and can be used if only parts of m () requires exclusive
access. That way, two or more threads can simultaneously execute those parts of m () that are outside B,
so concurrency may be increased. An alternative design is to make B into a separate, synchronized
method called from within m ().

As mentioned, the block B in m () can be synchronized with respect to any object, not only the current
one. In the following excerpt, B is synchronized with respect to object Wo of class w. This means that be-
fore entering the block B, the thread that called m () in order to operate on an object of class v acquires
the lock on object Wo ofw.

class V ...
{

void m()
{

}
}

synchronized (Wo)
{

/* Block B*/
}

Synchronized blocks are useful when different threads need exclusive access to some object in order to
perform their own, particular operations on it. Such an object is sometimes a printer or a window to which
many threads write their own tailored outputs such as log entries as in the following example:

synchronized (myPrinter)
{

// series of statements
}

producing output

In this case, it can be inconvenient to make every possible combination of output statements into a
method for the printer class.

Java pitfalls. By synchronizing blocks with respect to some object you effectively create "d istfibuted"
methods that are not included with other instance methods in the class definition. From looking at a class
definition, you cannot tell whether any blocks exist that are synchronized with respect to its instances. A
class without synchronized methods in its definition may appear to a maintenance programmer as an un-
synchronized class even though there are blocks synchronized with respect to its instances.

Ada has no equivalent to synchronized blocks. All operations on a protected object are specified in its
declaration.

4.3 Condition synchronization

The most common idiom for condition synchronization in Java is the statement

while (cond) {wait() ;}

Ada Letters June 2003 39 Vo lume XXIII , N u m b e r 2

I shall refer to this statement as a wait loop. It makes the calling thread wait as long as c o n d holds. If
c o n d is true, the thread calls w a i t () and thereby places itself in the wait set of the current object, O,
and releases O. The wait set contains all threads waiting for conditional access to O.

The wait loop syntax is somewhat complicated by the need to handle an interrupted exception that
can be caught by a thread while it is in the wait set. This is possible because this particular exception is
thrown by a different thread than the one that must catch it. Unless the exception is propagated to an en-
closing scope, a construct such as the following is necessary:

while (cond) try {wait () ; }
catch(InterruptedException e) {

/* Take action or ignore the
}

exception */

Pitfalls. The wait loop is like an incantation that should always be repeated in almost exactly that form.
For example, the variation

while (cond) {yield() ;}

stops the calling thread from proceeding against e o n d but does not release the object. This means that
other threads that are supposed to change c o n d by calling synchronized methods on the object cannot do
SO.

A more insidious mistake is to replace the wait loop with the quite similar statement

if (cond) {wait() ;}

This statement makes the calling thread enter the wait set and release the object, but only once. When re-
activated, the thread continues after the w a i t () call and proceeds in the synchronized method even if
c o n d is true [12]. This is particularly dangerous, since n o t i f y N l l () must often be used and relies'on
the wait loop. When n o t i f y A l l () activates a thread that is not to proceed, the thread is supposed to
retest its condition and return to the wait set. Substituting i f for w h i l e leads to a typically transient er-
ror. Under unlucky circumstances, it can remain undetected for some time, perhaps until an additional
thread is introduced.

Ada. Condition synchronization is achieved by means of entry barriers, which are built into the syntax.
Their format is not susceptible to easy programming mistakes. One possible mistake is to include in a bar-
rier condition a variable that is defined outside the protected object. In that situation, it is possible to
change the value of the condition without notifying waiting threads.

4.3.1 Placement of the wait loop

The wait loop in Java most often appears at the very beginning of a critical section and is reached imme-
diately after a thread locks the object. But it can be placed anywhere within a synchronized method or
block. As a simple example of one or more statements separating the wait loop from the beginning of a
method, you could count the number of calls to a method, m (), in an instance variable C a l 1 C o u n t e r in
the following way:

Ada Letters June 2003 40 Vo lume XXIII , N u m b e r 2

synchronized void m()
{

CallCounter ++;
while (cond) {wait() ;}

}

Here, Cal iCounter is incremented exactly once for each call, no matter if the calling thread enters the
wait set. Its value equals the number or calls to m () including those where the thread is still in the wait
set. In a slightly more sophisticated example, the statements before the wait loop could maintain a list of
the thread identities of the latest n callers. One can also instrument the wait loop itself similarly by includ-
ing statements before and/or after the wa i t () call.

The textbook case for placing the wait loop deeper inside a critical section is when a method allocates
resources to calling threads. It may turn out that the request of a calling thread, t , cannot be satisfied until
additional resources become available. In that situation, t can place itself in the wait set, release the ob-
ject and wait to be notified by a thread that has released resources. Once notified, t continues immedi-
ately after the w a i t () call with exclusion synchronization in force. If a synchronized method has one or
more such w a i t () calls, a thread can effectively execute it in segments separated by those calls, entering
a new segment each time it is successfully reactivated from the wait set.

Java pitfalls. The syntactical freedom to place the wait loop anywhere in a critical section allows certain
errors. Even if the wait loop is initially placed at the very beginning of the critical section, a maintainer
can unintentionally insert statements between the beginning and the wait loop. These statements are exe-
cuted exactly once by every thread that attempts access to the critical section regardless of the condition.
This may be even more treacherous if there are already statements between the beginning of the critical
section and the wait loop, as in the C a l l C o u n t e r example. The maintainer may not realize the differ-
ence in status between statements placed before and after the wait loop.

Ada. Because protected objects in Ada are syntactically distinct, there is no easy way to include a state-
ment such as C a l l C o u n t e r • = C a l l C o u n t e r + 1 ; in an entry in such a way that it would be
executed exactly once under exclusion synchronization before the barrier has been passed. (Certain elabo-
rate maneuvers are possible if you include in the barrier condition a function call with side effects.)

An Ada entry body cannot be broken into segments where a task would execute a segment, then release
the object, put itself on queue and continue with the next segment upon reactivation. In Ada, each such
segment must be an entry. A task that is executing an entry can call r e q u e u e and place itself on the
queue of the same or another entry [2]. Requeuing is sometimes considered an advanced Ada topic. An
intuitive example of requeuing when a resource turns out to be unavailable is given in [17].

4.3.2 Notification of waiting threads

A Java thread that executes a synchronized method on 0 and changes a condition that may affect one or
more threads in O's wait set must n o t i f y those threads. In standard Java, O. n o t i f y () reactivates o n e

arbitrarily chosen thread, t , in O's wait set. If the call is correctly placed within a wait loop, this means
that t reevaluates the condition and either proceeds in the synchronized method or reenters the wait set.
In RTSJ, the most eligible thread is reactivated.

Ada Letters June 2003 41 V o l u m e XXIII , N u m b e r 2

The call O. n o t i f y A 1 1 () releases all threads waiting for conditional access to O. This is useful when a
condition has changed so that multiple threads can proceed. But calling n o t i f y A l l () is sometimes
necessary even though you want only a single thread to proceed. In standard Java, this is the only way to
give preference to the highest priority thread. It is inefficient if there are many threads in the wait set,
since they must all attempt access, and only one will succeed [18].

Because there is only one wait set per object, you must also call n o t i f y A l l () instead of n o t i f y () if
an object 's wait set may include threads pending on different conditions. If you change one of the condi-
tions, you must activate all the threads to make sure that a thread pending on that condition is notified, if
it is in the set. This is true in RTSJ as well as in standard Java.

When a thread calls w a i t () , n o t i f y () or n o t i f y A l l () on an object, it must have the object
locked. The wait set is a shared data structure that must be protected from conflicting access, but has no
lock of its own.

Java pitfalls. Unlike exclusion synchronization, condition synchronization is not automatic; you have to
explicitly notify waiting threads. An obvious pitfall is to forget to insert n o t i f y () calls at all the neces-
sary places. This is particularly treacherous if a method has unusual exits, as via exception handlers. A
related mistake is to call n o t i f y () instead of n o t i f y A l l () when threads in the wait set may be
pending on different conditions.

A way to reduce the risk of forgotten notifications in standard Java is to include a timeout parameter in
every w a i t () call. After the given time, the thread is activated, and if the w a i t () call is placed inside a
correct wait loop, the thread reevaluates the condition and either proceeds or reenters the wait set. In
RTSJ this can only be used if you don't care about maintaining the FIFO per priority queuing discipline.

Ada. As long as the entry barrier depends only on variables local to the protected object, the most eligi-
ble, waiting thread is automatically activated after a protected procedure or entry call on the object has
changed the truth value of the condition. Waiting tasks are queued per entry, so precise notification can be
achieved: If a single condition is changed, only a task waiting on that condition is activated.

4.3.3 C o n t r o l l i n g access to d o m a i n r e s o u r c e s

Condition synchronization is used to give one thread at a time exclusive access to a shared resource in the
problem domain, such as a forklift truck in an automated factory application [14, 19, 20]. In this example,
jobs on the factory floor that need the forklift are represented by J o b threads in the software. A forklift
operation may continue for several minutes and must be performed under condition synchronization be-
cause we want waiting jobs to form a FIFO queue per priority. The object controlling the forklift - in-
stance F of class F o r k l i f t , say - typically has an attr ibute,busy, that reflects the availability of the
forklift, and the synchronized operations a c q u i r e () and r e l e a s e (), where a c q u i r e () contains a
wait loop such as the following:

while (i =: busy) {wait() ; }

The corresponding notification call is in r e 1 e a s e () . Statement sequences where the forklift is operated
are bracketed by calls to a c q u i r e () and r e l e a s e () whether they appear in J o b ' s r u n () method or
in other unsynchronized methods.

Ada Letters June 2003 42 Vo lume XXIII , N u m b e r 2

While one job is using the forklift, other J o b threads can call F. a c q u i r e () and place themselves in
F's wait set. The variable b u s y serves as the lock on the physical forklift while F's hidden lock variable
only serves to control the access to the variable b u s y itself.

Explicitly calling a c q u i r e () and r e l e a s e () in this fashion is similar to working with a semaphore,
and may be counterintuitive if you have been taught that semaphores are a primitive way of controlling
the access to a shared resource. A synchronized method or block is a more abstract representation that
hides the semaphore operations. But when controlling access to shared resources in the problem domain,
we must invert the abstraction by using a synchronized object to implement a semaphore [20].

In the example with the shared printer, we can choose whether to consider the wait to be of long or short
extent. In the solution in section 4.2.1, each thread's operations on the printer are enclosed in a synchro-
nized block as follows:

synchronized (myPrinter)
{

// series of statements
}

producing output

This exclusion synchronization assumes that the printer operations are quick. If other threads try to access
the printer during the exclusive access, they spin, waiting for the lock. There is no direct way to ensure
that they will ultimately access the printer in a first-in-first-out fashion.

In an altemative solution based on condition synchronization, you define a c q u i r e () and r e l e a s e ()
methods in the P r i n t e r class (or another class), introduce a variable such as b u s y , and bracket the se-
ries of statements with calls to those methods:

myPrinter.acquire() ;
/ / series of statements
myPrinter.release() ;

producing output

Here, acquire () contains a wait loop, and threads that must wait for the printer enter the wait set. A
downside is that this solution makes the programmer responsible for inserting one or more r e l e a s e ()
calls to ensure that the printer is released even if an exception is thrown while the output is being pro-
duced.

Java pitfalls. By convention, all critical sections should be programmed to minimize the time an object is
held locked. A thread that is waiting on a condition should release its object locks and be placed in a wait
set. But nothing stops a programmer from making a thread hold an object lock for an arbitrarily long time.
A trivial way to do this is to call s l e e p (. . .) inside a synchronized method. Two other cases are de-
scribed next.

Controlling domain resources. The confusion of long and short waits may typically occur in real-time
applications that control resources in the problem domain. In the automated factory domain, the forklift
operation may be implemented by means of the following synchronized block within the r u n () method
of the J o b class:

Ada Letters June 2003 43 V o l u m e XXIII , N u m b e r 2

synchronized (F)
{

// Operate
}

the forklift

This ensures mutual exclusion of jobs using the forklift and may at first seem more elegant than the solu-
tion with semaphores. But if the forklift operation continues for minutes, J o b threads that need the fork-
lift are not put in a wait set (and FIFO queued per priority in RTSJ) but spin until they find F unlocked.
Which J o b thread gets to the forklift next is then quite arbitrary. To avoid this, condition synchronization
must be used.

In RTSJ, exclusion synchronization invokes the control policy to minimize the effect of priority inver-
sion. Assume first that the default policy, priority inheritance, is in effect. If a job at priority 1 is currently
operating the forklift and a higher priority job, h, attempts to get the lock, l ' s remaining forklift opera-
tions will be executed at priority h. This skews l ' s priority relative to any jobs with priorities between
that of 1 and that of h. The ceiling priority protocol has an even more fundamental effect in that all fork-
lift operations will always be carried out at the highest priority of any job.

Nested synchronized blocks. Another way of inadvelrtently mixing long and short waits is with nested
critical sections. We can insert a wait loop in a nested synchronized block as follows:

synchronized (rl)
{

synchronized (r2)
{

while (cond) {r2.wait() ;}

}
}

If cond is true, the calling thread enters r 2 ' s wait set and releases r2. But it keeps r l locked, and lets
other threads that need access to r l spin rather than wait in a wait set. Incidentally, the following is also
legal:

synchronized(rl)
{

synchronized(r2)
{

while (cond)

}
}

{rl.wait();}

In this case, the calling thread enters rl's wait set and releases rl while keeping r2 locked.

Ada. The Ada syntax is certainly clearer about the distinction between exclusion and condition synchro-
nization. Any protected operation provides exclusion synchronization automatically. Any "potent ially
blocking operation", that is, essentially anything that can take time, is forbidden in a protected operation,

Ada Letters June 2003 44 Volume XXIII, Number 2

ensuring that the extent in time of mutual exclusion is kept short. For example, you cannot call an entry of
some protected object r2 while you are executing a protected operation on the object r l , which would be
the Ada equivalent of nested synchronized blocks.

Condition synchronization requires an entry with a barrier condition. The only way to control access to a
shared domain object is by means of a semaphore object similar to the F o r k l i f t class in Java. A
F o r k l i f t protected object would have an e n t r y A c q u i r e with a barrier such as not: b u s y and a
procedure R e l e a s e .

In the case of the printer, if it is undesirable to define protected procedures for each different combination
of printer operations, a semaphore object is the only solution permitted in Ada. It would be a protected
object My_Printer with the entry Acquire and the procedure Release.

5. Conclusions

Java was not originally intended as a language for systems with high reliability requirements, but its
popularity has prompted its use for ever wider sets of applications. The Real-Time Specification for Java
removes some of the obstacles associated with garbage collection but retains many pitfalls.

Java is adequate for many kinds of concurrent software, but for critical real-time applications it remains a
considerably riskier choice than Ada, which was intended for such applications. This is so because Java
lacks safeguards against programming errors that are easily committed by a programmer without a suffi-
ciently deep understanding of concurrency issues. There is a trade off here where Java's popularity and
the availability of Java programmers must be weighed against the risk exposure caused by those pro-
grammer mistakes the language readily allows.

References

[1] Barnes, J. G. P. (1998) Programming in Ada95, 2 no Ed., Addison-Wesley.

[2] Burns, A. and Wellings, A. J.. (1998) Concurrency in Ada, 2nd Ed., Cambridge University Press.

[3] Lea, D. (2000) Concurrent Programming in Java, 2nd Ed., Addison-Wesley.

[4] van der Linden, P. (2001) Just Java 2, 5 th Ed., Prentice Hall.

[5] Holub, A. I. (2000) Taming Java Threads, Apress.

[6] Hyde, P. (1999)Java Thread Programming, Sams Publishing.

[7] Oaks, S. and Wong, H. (1997) Java Threads, OReilly.

[8] Brinch Hansen, P. (1999). Java' s insecure parallelism, A CM SIGPLAN Notices 34/4, 38-45.

[9] Alexander, R. T. and Bieman, J. M. and Viega, J. (2000) Coping with Java programming stress, IEEE
Computer 33/4, 30-38

[10] Bollella, G. and Gosling, J. (2000) The real-time specification for Java. IEEE Computer 33/6, 47-54

Ada Letters June 2003 45 Volume XXIII, Number 2

[11] Bollella, G. and Gosling, J. and Dibble, B. P. and Furr, S. and Tumbull, M. (2000) The Real-time
Specification for Java, Addison-Wesley.

[12] Brosgol, B. M. (1998) A comparison of the concurrency features of Ada95 and Java, Proc. SIGAda
"98, (Ada Letters XVIII/6,175-192).

[13] Sebesta, R. W. (2002) Concepts of Programming Languages, 5th Ed., Addison-Wesley.

[14] Sand6r~ B. I. (1994). Software Systems Construction with Examples in Ada. Prentice-Hall.

[15] Wellings, A. J. and Johnson, R. W. and Sand&, B. I. and Kienzle, J. and Wolf, T. and Michell, S.
(2000) Integrating object-oriented programming and protected objects in Ada95. ACM TOPLAS 22/3,
506-539. (Reprinted in Ada Letters XXII/2 (June 2002), 11-44.

[16] International J Consortium (2000), Specification, Real-Time Core Extensions, Draft 1.0.14, 2 Sep-
tember 2002. http://www.j-consortium.org

[17] Sand61~ B. I. (1996) Using tasks to capture problem concurrency. Ada User Journal 17/1, 25-36.

[18] Vermeulen, A. and Ambler, S. W. and Bumgardner, G. and Metz, E. and Misfeldt, T. and Shur, J.
and Thompson, P. (2000) The Elements of Java Style, Cambridge University Press.

[19] Sand61~ B. I. (1997) Modeling concurrent software. IEEE Software 14/5, 93-100.

[20] Carter, J. R. and Sand&, B. I. (1998) Practical uses of Ada95 concurrency features. IEEE Concur-
rency 6/4, 47-56.

Ada Letters June 2003 46 Volume XXIII, Number 2

