
A Comparison of the Concurrency Features of
Ada 95 and Java

Benjamin M. Brosgol
Aonix

200 Wheeler Road
Burlington, MA 01803 USA
+1.781.221.7317 (Phone)
+1.781.270.6882 (FAX)
brosgol@aonix.com

1. ABSTRACT

Both Ada and Java support concurrent pro-
gramming, but through quite different
approaches. Ada has built-in tasking features
with concurrency semantics, independent of
the language’s OOP model, whereas Java’s
thread support is based on special execution
properties of methods in several predefined
classes. Ada achieves mutual exclusion
through protected objects with encapsulated
components; Java relies on the classical
“monitor” construct with “synchronized”
methods. Ada models condition-based
synchronization and communication through
protected entries or through rendezvous; Java
provides the somewhat low-level “wait” /
“notification” methods. Both languages offer
timing control; Ada additionally provides
user-specifiable scheduling policies.

Compared to Java, Ada’s concurrency model
is more reliable, better-structured, more
completely defined, more efficient, and more
appropriate for real-time applications.

1.1 Keywords
Ada, Java, concurrency, threads, tasking, inheritance
anomaly, Object-Oriented Programming

2. INTRODUCTION
Ada [1] and Java [2] [3] are unusual in providing direct
language support for concurrency: the task in Ada and the
thread in Java. Although they offer roughly equivalent
functionality – the ability to define units of concurrent
execution and to control mutual exclusion, synchron-
ization, communication, and timing – the two languages
have some major differences. This paper compares and
contrasts the concurrency-related facilities in Ada and Java,
focusing on their expressive power, support for sound
software engineering, and performance.

A brief comparison of concurrency support in Ada and Java
may be found in [4]; this paper extends those results. A
comprehensive discussion of Ada tasking appears in [5];
references targeting Java concurrency include [6] and [7].

The term “concurrent” is used here to mean “potentially
parallel.” Issues related to multiprocessor environments or
distributed systems are beyond the scope of this paper.

Section 3 summarizes the Java language and technology.
Sections 4 through 6 contrast task/thread “lifetime” issues
in Ada and Java: declaration, creation/startup, and
termination. Sections 7 and 8 deal with the most
important elements of the languages’ concurrency support,
namely mutual exclusion and synchronization/communi-
cation. Sections 9 and 10 focus on the languages’
approaches to scheduling and time-related support. Section
11 compares how the languages cope with the “inheritance
anomaly”, an interaction between concurrency and Object-
Oriented Programming. Section 12 contrasts Ada and Java
with respect to the interactions between exception handling
and the concurrency features. Section 13 touches on some
additional issues, and Section 14 presents the conclusions.
An extended example in both Ada and Java, the bounded
buffer, appears in an Appendix.

3. JAVA SUMMARY
This section provides an overview of the Java technology
and the basic language features. Among the references for
further information on Java are [2], [3], and [8]. Additional
points of comparison between Ada and Java may be found
in [4] and [9].

3.1 Java Technology Elements
Sun [10] has described Java as a “simple, object-oriented,
network-savvy, interpreted, robust, secure, architecture
neutral, portable, high-performance, multithreaded, and

dynamic language”. This is an impressive string of
buzzwords – [8, pp. 3ff] summarizes how Java complies
with these goals – but it is useful to distinguish among
three elements:

• The Java language

• The predefined Java class library

• The Java execution platform, also known as the Java
Virtual Machine or simply JVM.

In brief, Java is an Object-Oriented language with features
for objects/classes, encapsulation, inheritance, poly-
morphism, and dynamic binding. Its surface syntax has a
strong C and C++ accent: for example, the names of the
primitive types and the forms for the control structures are
based heavily on these languages. However, the OO model
is more closely related to so-called “pure” OO languages
such as Smalltalk and Eiffel. Java directly supports single
inheritance and also offers a partial form of multiple
inheritance through a feature known as an “interface”.

A key property of Java is that objects are manipulated
indirectly, through implicit references to explicitly allocated
storage. The JVM implementation performs automatic
garbage collection, as a background thread.

One can use Java to write stand-alone programs, known as
applications, in much the same way that one would use
Ada, C++, or other languages. Additionally, and a major
reason for the attention that Java is currently attracting, one
can use Java to write applets – components that are
referenced from HTML pages, possibly downloaded over
the Internet, and executed by a browser or applet viewer on
a client machine.

Supplementing the language features is a comprehensive set
of predefined classes. Some support general-purpose
programming: for example, there are classes that deal with
string handling, I/O, and numerics. Others, such as the
Abstract Windowing Toolkit, deal with Graphical User
Interfaces. Still others support specialized areas including
distributed component development, security, and database
connectivity.

There is nothing intrinsic about the Java language that
prevents a compiler from translating a source program into
a native object module for the target environment, just like
a compiler for a traditional language. However, it is more
typical at present for a Java compiler to generate a so-called
class file instead: a sequence of instructions, known as
“bytecodes”, that are executed by a Java Virtual Machine.
This facility is especially important for downloading and
running applets over the Internet, since the client machine
running a Web browser might be different from the server
machine from shich the applet is retrieved. Obviously
security is an issue, which is addressed through several
mechanisms, including:

• Java language semantics

§ Type safety

§ Absence of pointers (and hence absence of
insecurities from pointer manipulation)

§ Prevention of accesses to uninitialized variables

§ Run-time checking on array indexing and many
other operations

• Security-related classes

• The implementation of the JVM, which performs a
load-time analysis of the class file to ensure that it has
not been compromised

• The implementation of the browser or applet viewer,
which checks that a downloaded applet does not
invoke methods that access the client machine’s file
system

• Signed applets

3.2 General-Purpose Language Features
At one level Java can be regarded as a general-purpose
programming language with traditional support for software
development. Its features in this area include the following:

• simple control structures heavily resembling those
found in C and C++

• a set of primitive data types for manipulating numeric,
logical, and character data

• a facility for constructing dynamically-allocated linear
indexable data structures (arrays)

• a facility for code modularization (“methods”)

• limited block structure, allowing the declaration of
variables, but not methods, local to a method

• exception handling

The primitive data types in Java are boolean, char, byte,
short, int, long, float, double. Java is distinctive in
specifying the exact sizes and properties of these primitive
types. For example, an int is a 2’s complement 32-bit
quantity, with “wrap around” when an operation overflows.
The floating-point types are defined with IEEE-754
semantics [11], implying that results and operands may be
signed zeroes, signed infinities, and NaN (“Not a
Number”). Unlike Ada, Java does not allow range
constraints to be specified for variables from numeric types.

Java’s char type is 16-bit Unicode. Its source represent-
ation is likewise base on Unicode, although external files
may be stored in 8-bit format with conversion on the fly
during file loading. Like C and C++ but unlike Ada,
Java’s treatment of identifiers is case sensitive.

Java lacks a number of data structuring facilities found in
traditional languages:

• enumeration types

• heterogeneous data structures (records / structs)

• conditional data structures (variant records / unions)

An enumeration type can be simulated by constants (static
“final” variables), a record/struct can be modeled by a class,
and a variant record/union can be modeled by an inheritance
hierarchy.

Significantly, Java also lacks an explicit pointer facility, a
restriction motivated by security concerns. As a con-
sequence, it is not possible to obtain a pointer to a method,

functionality that languages like Ada and C/C++ provide
for “callbacks” in GUI programming. There is a
workaround to simulate callbacks, namely a reference to an
object of a class that implements the method, but this is
not as direct as the mechanisms in Ada and C/C++.

3.3 Java Run-Time Execution Model
Java’s execution model is based on a run-time stack (more
generally, one stack per created thread). When a method is
called, its parameters and local variables are stored on the
(calling thread’s) stack. For a parameter or variable of a
primitive type, the stack contains the variable’s value
directly. In all other cases the stack contains a reference
that is either null or else designates an allocated object of
an appropriate type. Parameter passing is thus always “by
value”, with the value of the actual parameter copied to the
formal parameter at the point of call. However, since
objects are represented indirectly, the effect is to copy a
reference and thus the formal and actual parameters refer to
the same object.

As will be discussed in detail below, Java offers built-in
support for multi-threaded programs, with user-definable
threads that can communicate through objects whose
methods are explicitly marked as synchronized. An
object that contains synchronized methods has a “lock”
that enforces mutually exclusive access, with calling threads
suspended waiting for the lock as long as any
synchronized method is being executed by some other
thread. The Java thread model is based on its OOP
features.

3.4 “Programming in the large”
Java offers a variety of support for developing large systems.
It provides a full complement of Object-Oriented features,
with precise control over the accessibility of member names
(that is, control over encapsulation) as will be summarized
below.

The unit of program composition is the class, but this
raises the problem of “namespace pollution” as large
numbers of classes are developed. Java solves this in two
ways. First, classes may be nested, a facility introduced in
the Java 1.1 release. Thus a class may declare other classes
as members; since the inner classes are referenced using
“dot” notation, their names do not conflict with any other
classes. Second, Java provides a namespace management
feature, the package, as a repository for classes. Despite the
similarity of names, the term “package” has different
meanings in Ada and Java. An Ada package is a syntactic
and semantic construct, a compatible unit. In contrast, a
Java package is an open-ended host-environment facility,
generally a directory, that contains compiled class files.
Java supplies an explicit construct, the package statement,
which allows the programmer to identify the target package
for the classes being compiled. If a source file does not
supply an explicit package statement, then its classes go
into an “unnamed” package, by default the same directory
as the site of the .java file.

Java’s predefined environment is structured as a collection
of packages, including java.lang, java.util, and many
others. If a Java program explicitly imports a class or
package, then it can access that class, or any class in the
given package, by the class’s “simple name” without the

package name as qualifier. The general-purpose package
java.lang is implicitly imported by every Java program,
and its classes (such as String) are therefore automatically
accessible without the package name as prefix.

Like Ada, but unlike C and C++, Java does not supply a
preprocessor. Higher level and better-structured mechan-
isms provide the needed functionality more reliably than
preprocessor directives.

Java does not include a facility for generic units
(“templates” as they would be known in C++). Some of
this functionality can be approximated in Java through use
of the “root” class Object defined in package java.lang,
but with much less compile-time protection and control
than with Ada generics.

3.5 Java Application Example
To introduce the basic language constructs, here is a simple
Java application that displays its command-line arguments:

class DisplayArgs{
 static int numArgs;
 public static void main(String[] args){
 numArgs = args.length;
 for (int j=0; j < numArgs; j++) {
 System.out.println(args[j]);
 } // end 'for'
 } // end 'main'
} //end 'DisplayArgs'

The class is the unit of compilation in Java, and is also a
data type; here it is only the compilation unit property that
is being exploited. A class declares a set of members: in
this example the class DisplayArgs has two members, a
field named numArgs of type int, and a method named
main.

The field numArgs is declared static, implying that there
is a single copy of the data item regardless of the number of
instances of its enclosing class.

The method main takes one parameter, args, an array of
String objects. It does not return a value (thus the
keyword void) and is invokable independent of the number
of instances of its enclosing class (thus the keyword
static). The public modifier implies that the method
name may be referenced anywhere that its enclosing class is
accessible.

There is special significance to a method named main that
is declared public and static, and that takes a String
array as parameter and returns void as its result. Such a
method is known as a class’s “main method.” When a
class is specified on the command line to the Java
interpreter, its main method is invoked automatically when
the class is loaded, and any arguments furnished on the
command line are passed in the args array. For example if
the user invokes the application as follows:

java DisplayArgs Brave new world

then args[0] is "Brave", args[1] is "new", and args[2]
is "world". Similar to C and C++, the initial element in
an array is at position 0. Since the number of elements in
an array is given by the array’s length field, the range of
valid indexes for an array x goes from 0 to x.length-1.

Unlike C and C++, an array is not synonymous with a
pointer to its initial element, and in fact there is a run-time
check to ensure that the value of an index expression is
within range. If not, an exception is thrown.

The class String is defined in the java.lang package. A
variable of type String is a reference to a String object,
and a string literal such as "Brave" is actually a reference
to a sequence of char values; recall that char is a 16-bit
type reflecting the Unicode character set. There is no
notion of a “nul” character terminating a String value;
instead, there is a method length() that can be applied to
a String variable to determine the number of char values
that it contains. String variable assignment results in
sharing, but there are no methods that can modify the
contents of a String. To deal with “mutable” strings, the
class StringBuffer may be used.

The Ada and Java String types are thus quite different. In
Ada, a String is a sequence of 8-bit Character values,
and declaring a String requires specifying the bounds
either explicitly through an index constraint or implicitly
through an initialization expression; further, in an array of
String values each element must have the same bounds.
In Java a String is a reference to an allocated sequence of
16-bit char values, and a length needs to be specified when
the object is allocated, not when the reference is declared.
Further, as with the args parameter to main, in an array of
String values different elements may reference strings of
different lengths.

The principal processing of the main method above occurs
in the for loop. The initialization part declares and
initializes a loop-local int variable j. The test expression
j < numArgs is evaluated before each iteration; if the value
is true then the statement comprising the loop body is
executed, otherwise the loop terminates. The loop epilog
j++, which increments the value of j, is executed after each
iteration.

The statement that is executed at each iteration is the
method invocation

System.out.println(args[j]);

System is a class defined in the package java.lang, and
out is a static field in this class. This field is of class
PrintStream, and println is an instance method for class
PrintStream. Unlike a static method, an instance method
applies to a particular instance of a class, a reference to
which is passed as an implicit parameter. The println
method takes a String parameter and returns void. I ts
effect is to send its parameter and a trailing end-of-line to
the standard output stream, which is typically associated
with the user’s display.

The example also illustrates one of Java’s comment
conventions, namely “//” through the next end-of-line.

3.6 Object-Oriented Programming in Java
Java is a “pure” Object-Oriented Language in the style of
Smalltalk and Eiffel. The class construct serves three
purposes:

• A compilable module

• A template for the construction of data objects allocated
on the heap

• A type for a polymorphic variable

A Java class has members; a member may be a field, a
method, or another class, and is either per-class or per-
instance. Defining a member with an explicit modifier
static makes it per-class, otherwise the member is per-
instance.

As implied by the terminology, if a member field is per-
class then there is exactly one copy regardless of the
number of instances of the class. In contrast, there is a
different copy of a per-instance field in each instance of the
class.

If a method m() is a static member of class K, then it is
invoked with the syntax

K.m(parameters)

and its only parameters are the ones it explicitly declares.

If m() is per-instance, then it is invoked with the syntax

ref.m(parameters)

where ref is a reference to an instance of either class K or
some class that inherits (directly or indirectly) from K. The
method takes an implicit parameter named this which
refers to an object whose class contains the method as a
member. The invocation of a per-instance method is
dynamically bound: the version of m() that is called is
based on the class of the object that ref references.

Most non-trivial classes have one or more constructors:
special parameterizable forms that allow “clients” of the
class to create (allocate) objects with controlled
initialization.

Visibility control (and thus encapsulation) is obtained
through access modifiers included in the declaration of
classes, members, and constructors.

If a top-level class is declared public, then it is accessible
anywhere its package is accessible. Otherwise it is
accessible only from classes in the same package.

If a member or constructor in a class is declared public,
then it is accessible wherever its class is accessible. If
declared protected, it is accessible only from classes in
the same package or from subclasses. If declared private,
it is accessible only from within the class itself. If there is
no access modifier, then the member or constructor has
“package” accessibility and is accessible from any class in
the same package, but not from outside.

A class may be declared to inherit from (“extend”) at most
one superclass. If no superclass is specified explicitly, then
the class implicitly extends the predefined class Object
from package java.lang. When a superclass is extended,
all public and protected instance methods are automatically
inherited by the subclass; the subclass may override any of
these and may also declare new members and constructors.
It is common for an overriding implementation of a
superclass method m() to need to invoke the overridden
method; the special form super.m() achieves this effect and
is bound statically.

A class may be specified as abstract, implying that no
objects of that class may be constructed. An abstract class
may have abstract methods (lacking implementations); non-

abstract subclasses of an abstract class need to provide
implementations for any abstract methods that they inherit.

A variable declared of a particular class is intrinsically
polymorphic: it can designate objects from that class or
from any of its direct or indirect subclasses. Objects are
generated on the heap from invocations of constructors.

Complementing the class concept is the feature known as
an interface. An interface may be viewed as a restricted
form of class with no “implementation” aspects. Thus the
only methods allowed in an interface are abstract methods,
and the only variables allowed in an interface are so-called
final variables, which are constants. A class is allowed to
extend only one class but may implement an arbitrary
number of interfaces; in this sense Java provides some
support for multiple inheritance.

Here is an example of Java’s main OOP concepts, adapted
from [4]:

public class Point{
 protected static int numPts=0;
 protected int x, y;

 public Point(int x, int y){
 this.x=x;
 this.y=y;
 numPts++;
 }

 public static int getNumPts(){
 return numPts;
 }

 public void shift(int ∆x, int ∆y){
 x += ∆x; // Note Unicode character
 y += ∆y;
 }

 public void put(){
 System.out.println("x = " + x);
 System.out.println("y = " + y);
 }
}

The constructor for Point initializes the instance fields x
and y and increments the static field numPts. Since
numPts is protected, a “client” of Point cannot access this
field directly. Instead, and more safely, it can retrieve the
value through a call on the public static method
getNumPts(). Point also declares two instance methods,
shift() and put(), the former coincidentally illustrating
Java’s support for Unicode characters such as ‘∆’.

public class ColoredPoint extends Point{
 protected int color;

 public ColoredPoint(int x, int y,
 int color){
 super(x, y);
 this.color = color;
 }

 protected void invertColor(){

 color = -color;
 }

 public void put(){
 super.put();
 System.out.println("color = " + color);
 }
}

The ColoredPoint class extends Point and supplies a
new constructor (which invokes its superclass’s
constructor), a new instance method invertColor(), and
an overriding version of the inherited put(). The instance
method shift() from Point is inherited and is not
overridden.

public class Example{
 public static void main(String[] args){
 Point p;
 p = new ColoredPoint(1, 2, 10);
 p.shift(5, 6);
 p.invertColor(); // Illegal
 ((ColoredPoint)p).invertColor();
 p.put();
 System.out.println("Point count = " +
 Point.getNumPts());
 }
}

The declaration of p does not create any objects; it reserves
space for a (polymorphic) reference. After the assignment
statement, p references an object of class ColoredPoint.
The invocation of shift() dynamically binds to the
version inherited from Point. The invocation of
invertColor() directly on p is illegal; p needs to be cast
to ColoredPoint (with a run-time check) in order for the
method invocation to be legal. The invocation of put()
dynamically binds to the overridden version of put()
declared in ColoredPoint. The invocation of
getNumPts() is statically bound.

The output of the above program (after the illegal statement
has been removed) is:

x = 6
y = 8
color = -10
Point count = 1

4. TASK/THREAD DECLARATION
An Ada task is a unit of modularization comprising a
specification and a body, and it is also a data object. A
template for such objects is a task type. Here is a package
that declares a task type, along with an access-to-task-type
for dynamic allocation of task objects.

package Outputter_Pkg is
 task type Outputter;
 type Outputter_Ref is access Outputter;
end Outputter_Pkg;

The algorithm performed by each object of the type is an
infinite loop that displays a string:

with Ada.Text_IO; use Ada.Text_IO;
package body Outputter_Pkg is
 task body Outputter is
 begin
 loop
 Ada.Text_IO.Put_Line("Hello");
 end loop;
 end Outputter;
end Outputter_Pkg;

Java’s concurrency facility is based on Object-Oriented
Programming. The predefined class Thread supplies a
variety of methods relevant to specifying and controlling
concurrent activities, and a user wishing to define a
template for concurrently executing objects can do so by
extending (subclassing) Thread and overriding the run()
method. A thread is then an instance of such a subclass.

class Outputter extends Thread{
 public void run(){
 while (true){
 System.out.println("Hello");
 }
 }
}

The technique of subclassing Thread is not always
applicable, however. Since Java supports only single
inheritance, a class that extends Thread may not extend
any other class. Java solves this problem by providing an
interface, Runnable, with an (abstract) method run(). The
Java Thread class implements Runnable by supplying a
run() method that simply returns, and it also supplies a
constructor that takes a Runnable parameter and produces a
Thread. Thus an alternative style to subclassing Thread,
and in fact one that is generally preferred, is to implement
Runnable. Here is an example:

class RunnableOutputter implements Runnable{
 public void run(){
 while (true){
 System.out.println("Hello");
 }
 }
}

Ada provides more flexibility than Java, in several areas.
First, in Ada it is straightforward to declare a single task
object, a task type, or an access-to-task type. In Java,
extending Thread is analogous to declaring an access-to-
task type in Ada; Java’s heap-based model means that there
is no direct analog to an Ada task type or an Ada task
object declaration. It is possible in Java to create a
reference to a thread whose type is an anonymous Thread
subclass, but the syntax is somewhat awkward.

Second, in Ada one may declare task objects or task types
in nested scopes, with standard visibility to names in outer
scopes; for example, outer variables may be updated and/or
referenced. Although Java allows locally declared classes
and thus permits a Thread subclass to be declared within a
method or block, the code for the local class can only
reference outer parameters and variables that are constant
(“final variables” in Java parlance). Java’s restriction to
accessing only constants does not imply that such accesses

can safely be left unsynchronized: a thread can modify the
object designated by a constant of a reference type.

Ada’s flexibility means that an outer scope cannot exit
until all inner tasks have terminated, a condition whose
checking entails a run-time price. Java has no such
requirement; however, since a method with local constants
may return while an inner thread that references such data is
still running, the Java run-time system cannot safely use a
simple stack to store method parameters and local
variables. To avoid dangling references, the Java imple-
mentation must either allocate method “stackframes” on the
heap, or else reserve space in a thread-specific area for a
copy of all of the non-local data that the thread references.

The relationship between OOP and concurrency is a subject
of ongoing research, and Java and Ada have staked out
different positions. Ada’s tasking support is separate from
its OOP model. Allowing a (limited private) tagged type
to be completed as a protected type would have added
semantic and implementation complexity and was some-
what out of the scope of the language revision effort that
culminated in Ada 95.

Java’s thread model intrinsically uses OOP; a class that
extends Thread or implements Runnable can itself be
extended. However, this is less useful than it may seem.
Java’s thread synchronization facilities trip on the
“inheritance anomaly”, an interaction between synchron-
ization and OOP that will be discussed further in §11
below.

An advantage of Java’s approach is that applications
needing to deal with threads in general, such as user-defined
schedulers, can compose data structures with Thread
components and methods with Thread parameters. In Ada
one needs to use the Task_ID type, arguably a less direct
approach. On the other hand, Thread is not a typical class;
although run() is a public method of any class that
extends Thread or implements Runnable, it is almost
always an error to invoke run()explicitly.

5. TASK/THREAD CREATION AND
STARTUP

5.1 Basic properties
In Ada a task is created as an effect of a task object
declaration or allocation. The following example shows an
allocation of an object of the task type Outputter:

with Outputter_Pkg; use Outputter_Pkg;
procedure Main is
 Ref : Outputter_Ref;
begin
 Ref := new Outputter;
end Main;

Ada task execution is a three-step process: create the task,
activate it (i.e., elaborate its declarative part) and then, as a
concurrent activity, execute the statements in the task body.
The allocation of a task object entails all three steps. If a
task is declared, then the declaration’s elaboration creates
the task object but the activation and further execution do
not occur until the “begin” of the enclosing unit. In either
case the execution of the task body occurs automatically.

In Java, thread execution is a two-step process, both of
which are explicit in the program: construct a Thread
object, and invoke its start() method. The effect of
start() is to invoke the thread’s run() method from a
new thread of control and then return immediately.

Here is a Java version of the above Ada program:

class Driver1{
 public static void main(String[] args){
 Outputter ref;
 ref = new Outputter();
 ref.start();
 }
}

When the Driver1 class is loaded its main method is
invoked, resulting in the declaration of the variable ref.
The invocation of the constructor new Outputter() creates
a new thread but does not initiate its execution. An
explicit invocation of the start() method (inherited from
Thread) is required, which has the effect of invoking the
subclass’s run() method from another thread of control and
then immediately returning.

Alternatively, here is the version based on the
RunnableOutputter approach; one of the Thread
constructors takes a Runnable parameter:

class Driver2{
 public static void main(String[] args){
 RunnableOutputter ro =
 new RunnableOutputter();
 Thread ref = new Thread(ro);
 ref.start();
 }
}

The main difference is Ada’s automatic task
activation/execution versus Java’s explicit thread startup.
An explicit activation mechanism was considered during
the initial Ada design but was rejected because of its error-
proneness (for example, forgetting to invoke it, or invoking
it more than once on the same task). Java’s explicit
start() facility suffers from these problems. On the other
hand, separating the creation of a task from its startup does
allow certain methods to be invoked on a thread that is in
the created-but-not-started state (for example, setting its
“dæmon” status), and in that sense offers some additional
flexibility.

5.2 Parameterization
It is sometimes convenient or necessary to pass parameters
to a task/thread when it is created or started. Ada has two
ways to achieve this: a discriminant of a task type, or a
parameter to an entry that is accepted as the first statement
in the task body. For example, suppose we want to specify
the number of iterations as a parameter to an Outputter
task. Here are the style using a discriminant:

package Outputter_Pkg1 is
 task type Outputter(How_Many : Natural);
 type Outputter_Ref is access Outputter;
end Outputter_Pkg1;

with Ada.Text_IO; use Ada.Text_IO;
package body Outputter_Pkg1 is
 task body Outputter is
 begin
 for I in 1..How_Many loop
 Ada.Text_IO.Put_Line("Hello");
 end loop;
 end Outputter;
end Outputter_Pkg1;

with Outputter_Pkg1; use Outputter_Pkg1;
procedure Main1 is
 Ref : Outputter_Ref;
begin
 Ref := new Outputter(10);
end Main1;

Here is the style using a rendezvous:

package Outputter_Pkg2 is
 task type Outputter is
 entry Start(How_Many : in Natural);
 end Outputter;
 type Outputter_Ref is access Outputter;
end Outputter_Pkg2;

with Ada.Text_IO; use Ada.Text_IO;
package body Outputter_Pkg2 is
 task body Outputter is
 How_Many : Natural;
 begin
 accept Start(How_Many : in Natural) do
 Outputter.How_Many := How_Many;
 end Start;
 for I in 1..How_Many loop
 Ada.Text_IO.Put_Line("Hello");
 end loop;
 end Outputter;
end Outputter_Pkg2;

with Outputter_Pkg2; use Outputter_Pkg2;
procedure Main2 is
 Ref : Outputter_Ref;
begin
 Ref := new Outputter;
 Ref.Start(How_Many => 10);
end Main2;

In Java the declaration of class Thread does not allow
overriding the start() method, and when run() is
overridden its signature may not be changed. Thus the
Java idiom is to pass “implicit” parameters to run()
through a constructor that stores its parameters in instance
variables, which may then be referenced from run().

public class Outputter extends Thread{
 int howMany; // instance variable
 Outputter(int howMany){
 this.howMany = howMany;
 }
 public void run(){
 for (int i=1; i <= howMany; i++){
 System.out.println("Hello");
 }
 }

 public static void main(String[] args){
 Outputter outp = new Outputter(10);
 outp.start();
 }
}

In some ways Java’s constructor mechanism is more
flexible than Ada’s discriminants:

• A constructor may include statements that assign to
static variables.

• Constructors may be overloaded to take different
numbers/types of parameters.

• If a constructor stores its parameter in a (non-final)
variable, the run() method can assign to this variable.
In contrast, an Ada discriminant is a constant.
(However, an access discriminant may be used to get
the effect of a variable.)

On the other hand, Ada’s rendezvous offers more flexibility
than Java’s constructors. The rendezvous has the further
stylistic benefit of an explicit communication that appears
at the place where it is needed, versus separating it into the
two steps of passing parameters via a constructor and
referencing instance variables from the run() method.

6. TASK/THREAD TERMINATION

6.1 Self termination
In Ada an “active” task (i.e., one that does not have any
accept statements) completes implicitly when it reaches
its “end”. Since Ada allows tasks to be declared in inner
scopes (including other tasks) there is a dependence
hierarchy at run time.

A terminate alternative on a select statement can be
used to arrange implicit termination for a “passive” task.

Analogous to an Ada task reaching its end, a Java thread
will terminate when its run() method executes a return
statement or reaches its end “}”. Because of Java’s
restrictions on nesting, the language does not need to
distinguish between completion and termination.

Somewhat akin to the implicit termination associated with
Ada’s terminate alternative, Java defines the concept of a
“dæmon thread”. A method invocation can set a thread’s
status to “dæmon” after the thread has been constructed but
before it has been started. If all non-dæmon threads have
terminated, then the Java Virtual Machine will
automatically kill all dæmon threads and hence terminate
the application. Such a mechanism is necessary since there
are a number of threads implicitly associated with each
executing application, for example the garbage collector.
Requiring the programmer to explicitly terminate such
threads would not be friendly.

The dæmon thread concept is somewhat more general than
Ada’s select-with-terminate, but with the generality comes
some danger. The language rules do not specify the effect if
a dæmon thread happens to be executing when it is made
to terminate. If it is in the process of accessing a system
resource, for example logging to a file, then the resource
may be left in an inconsistent state.

Java includes a method call t.join() that suspends the
invoking thread until thread t has terminated. Ada lacks a
directly analogous construct, although it is simple to
achieve the same effect by declaring a task in a local block.

6.2 Terminating other tasks/threads
Ada supports several ways for one task to terminate
another. One technique is a “shutdown” entry that is
explicitly called by one task and accepted by another. This
is the cleanest style but may lead to latency depending on
how the accepting task is expressed. An alternative is the
abort statement which, if the Real-Time Annex is
supported, provides a more immediate mechanism for
arranging task termination while still satisfying the need for
certain constructs to be “abort deferred”.

Java can simulate a shutdown entry through its wait/notify
mechanism described below. There is nothing that directly
corresponds to the Ada abort, although two Thread
instance methods, stop() and destroy(), offer some
corresponding functionality. The stop() method is an
asynchronous exception mechanism and will be described
below. The destroy() method unconditionally and
immediately kills a thread, without performing any
cleanup. It is hard to visualize a situation where it would
be safe to call destroy() without terminating the entire
application, but in any event this method is not
implemented in Version 1.1 of the Java Development Kit.

7. MUTUAL EXCLUSION

7.1 Basic Properties
Ada supplies three mechanisms for mutual exclusion:

• An “atomic” variable, whose accesses are indivisible
(with respect to task context switching) because of the
hardware, and which may not be optimized into
“temporary” locations such as registers

• A protected object/type, with associated protected
operations, based on the concept of “concurrent read,
exclusive write” locks and designed for efficient
implementation

• A “passive” task, expressed as a loop around an accept
or selective_accept statement

Java provides two techniques:

• “volatile” variables

• Monitors (synchronized blocks / methods)

Java’s volatile modifier is equivalent to Ada’s pragma
Atomic for a standalone variable, but does not apply to
components and thus is less general than Ada.

Java’s synchronized block/method approach uses the
classical monitor / critical region model (see, e.g., [12,
§7]). Each object (including the “class object” associated
with a class’s static members) has a lock that may be
thought of as a non-negative integer with an atomic test-
and-set. If a thread invokes a method marked as
synchronized, then it will be blocked unless either the
method’s containing object is unlocked (i.e., the lock value
is 0) or the thread already holds the lock on this object. In
either of these two cases the lock is incremented by 1. On

return from a synchronized method the lock value is
decremented by 1. (Using a count rather than a boolean for
the lock allows a thread that is executing synchronized code
to invoke other synchronized code on the same object.)
Synchronized blocks are analogous to synchronized
methods but are generally less preferable stylistically owing
to the distribution of locking code throughout the program.

If a thread invokes a method that causes it to suspend (such
as sleep()) then it releases all the locks that it holds.

There is no notion of a queue for threads that are waiting for
an object to be unlocked, and one possible implementation
is for a blocked thread to be periodically awakened to test if
the object has become unlocked.

7.1.2 Java Example
Here is an example of the “Readers/Writers” idiom in Java
using synchronized methods:

class Clock{
 private int minutes=0, seconds=0;

 synchronized void tick(){
 minutes =
 (minutes + ((seconds+1)/60)) % 60;
 seconds = (seconds+1) % 60;
 }

 synchronized Clock read(){
 Clock result = new Clock();
 result.minutes=this.minutes;
 result.seconds=this.seconds;
 return result;
 }

 // Selector functions to be invoked on
 // the result of read()
 int seconds(){ return this.seconds; }
 int minutes(){ return this.minutes; }
}

class Reader extends Thread{
 private Clock clock;

 Reader(Clock clock){ this.clock=clock; }

 public void run(){
 while (true){
 Clock now = clock.read();
 System.out.println("minutes: " +
 now.minutes());
 System.out.println("seconds: " +
 now.seconds());
 try {Thread.sleep(1000);}
 catch(Exception e){}
 }
 }
}

class Writer extends Thread{
 private Clock clock;

 Writer(Clock clock){ this.clock=clock; }

 public void run(){
 for (int i=1; i <= Integer.MAX_VALUE;
 i++){
 try {Thread.sleep(1000);}
 catch (Exception e){}
 clock.tick();
 System.out.println("Tick " + i);
 }
 }
}

public class ReaderWriter{
 public static void main(String[] args){
 Clock c = new Clock();
 Writer w = new Writer(c);
 Reader r = new Reader(c);
 w.start();
 r.start();
 }
}

A Writer thread increments a Clock object approximately
once per second. (For simplicity we ignore the cumulative
drift implied by the style shown above; periodicity will be
addressed below in §10.) The static method sleep() in
class Thread suspends the calling thread for the specified
number of milliseconds.

A Reader thread retrieves and displays the Clock value,
also approximately once per second.

It is essential for the tick() and read() functions to be
specified as synchronized, otherwise a Reader thread risks
retrieving an inconsistent result (a new value for minutes
and an old value for seconds). The “selector” functions
seconds() and minutes() are not specified as
synchronized, since their only purpose is to be invoked by
a Reader thread on its copy (constructed by the read()
method) of the shared Clock object. This style is
necessitated by Java’s lack of “out” parameters for
primitive types.

7.1.3 Ada Example
The following Ada program has the same effect as the Java
version. It is somewhat simpler since Ada’s “out”
parameters obviate the need for selector functions. Note
that an access discriminant serves the purpose of a
parameterized constructor.

package Clock_Pkg is
 subtype Mod_60 is Integer range 0..59;

 protected type Clock is
 procedure Tick;

 procedure Read(Minutes : out Mod_60;
 Seconds : out Mod_60);
 private
 Minutes, Seconds : Mod_60 := 0;
 end Clock;
end Clock_Pkg;

package body Clock_Pkg is
 protected body Clock is
 procedure Tick is
 begin
 Minutes := (Minutes +
 ((Seconds+1)/60)) mod 60;
 Seconds := (Seconds + 1) mod 60;
 end Tick;

 procedure Read(Minutes : out Mod_60;
 Seconds : out Mod_60) is
 begin
 Minutes := Clock.Minutes;
 Seconds := Clock.Seconds;
 end Read;
 end Clock;
end Clock_Pkg;

with Clock_Pkg, Ada.Text_IO;
use Clock_Pkg, Ada.Text_IO;
procedure Reader_Writer is
 task type Reader(C : access Clock);
 task type Writer(C : access Clock);

 task body Reader is
 Minutes, Seconds : Mod_60;
 begin
 loop
 C.Read(Minutes, Seconds);
 Put_Line("minutes:" &
 Integer'Image(Minutes));
 Put_Line("seconds:" &
 Integer'Image(Seconds));
 delay 1.0;
 end loop;
 end Reader;

 task body Writer is
 begin
 for I in Positive loop
 delay 1.0;
 C.Tick;
 Put_Line("Tick" & Integer'Image(I));
 end loop;
 end Writer;

 C : aliased Clock;
 W : Writer(C'Access);
 R : Reader(C'Access);

begin
 null;
end Reader_Writer;

7.1.4 Comparison of Approaches to Mutual
Exclusion
Ada’s protected object mechanism is more expressive,
more secure, and in some places more efficient than Java’s
monitors:

• Ada distinguishes protected entries from protected
procedures, thus making it explicit when queuing (and
not simply object locking) is required.

• Protected functions in Ada may be invoked with true
concurrency in a multiprocessor environment. Java
lacks an equivalent facility.

• A Java class may contain both synchronized and
unsynchronized methods. Thus invoking a
synchronized method does not guarantee that the access
will be safe. In Ada, all externally invokable
operations on a protected object are protected.

• Locking an object does not imply locking the “class
object” containing the static variables. A subtle
programming error is for a synchronized instance
method to access a static variable.

• Mutual monitor calls in Java risk deadlock (the
“nested monitor” problem). In Ada, with the
Ceiling_Locking policy supported, mutual calls
across protected objects will not deadlock.

• In Ada, protected entries combine a condition test with
object locking in a way that avoids race conditions. In
Java, the programmer must explicitly code the
condition wait/notification logic, a more error-prone
approach.

• Deciding whether to specify a method as synchronized
is not always easy. Unnecessarily making a method
synchronized degrades performance and may lead to
deadlock in the presence of mutually dependent
methods. Failing to specify synchronized when it is
needed can cause unpredictable effects.

• Java’s absence of “out” parameters for primitive data
makes it clumsy to express “readers/writers” programs.

In Ada, a bounded error results if a protected operation
executes a construct that could potentially block. Although
Java lacks such a prohibition, the language’s silence on the
issue does not imply safety. A synchronized method can
block, for example by invoking sleep() or wait(), in
which case the lock is released. The programmer needs to
be careful that the object’s state is consistent at points
where such methods are invoked.

In Ada, protected procedures and protected entries have
epilog code with a resulting run-time cost [13]. Java also
has some epilog code on return from a synchronized
method (to decrement the lock), but the overhead is likely
to be less. On the other hand, in order to simulate the
effect of Ada’s protected entries, a Java program needs to do
explicit processing that will likely be more expensive than
the Ada epilog code for barrier reevaluation.

8. TASK/THREAD SYNCHRONIZATION
AND COMMUNICATION

8.1 Synchronous control
Ada offers several features related to synchronization and
communication:

• Explicit rendezvous, for general communication

• Protected entries, when access to a shared resource
requires waiting for a condition

• The Suspension_Object type from the Real-Time
Annex, for simple event-based synchronization between
two tasks

Java provides one mechanism, the somewhat low-level
signal-oriented methods wait(), notify(), and
notifyAll() that are inherited from the root class Object.
A thread calls ref.wait()when it needs to be suspended
until the object referenced by ref has a particular state.
Another thread, on detecting that this object’s state has the
desired value, invokes either ref.notify() or
ref.notifyAll(). The effect of ref.notify()is a
“pulsed signal”. If any threads are suspended waiting for
the referenced object, then exactly one is awakened (the
language rules do not specify which one). The effect of
ref.notifyAll() is a “broadcast signal”, awakening all
threads (if any) waiting for the referenced object. If no
threads are suspended waiting for the referenced object, then
the “signal” implied by both ref.notify() and
ref.notifyAll()is ignored. Thus a call of ref.wait()
will always unconditionally suspend the caller and release
all its locks.

The bounded buffer example in the Appendix illustrates
Ada’s protected objects and Java’s wait/notify methods.

In most respects Ada’s mechanism for synchronous control
is superior to Java’s:

• Ada’s rendezvous is a direct, explicit communication
between two tasks. In Java the communicated data
must be declared together with synchronization code
that controls accesses to the data, a less explicit and
more error-prone style.

• Java has one queue (more strictly, one “wait set”) per
object, whereas Ada has one queue per protected entry,
implying potential overhead in Java based on the need
to invoke notifyAll() versus notify().

• The wait and notification methods are fairly low level
and somewhat error prone. It is generally necessary to
invoke wait() in a loop versus a simple conditional,
since by the time a thread is awakened after a wait()
and has reacquired the lock on the object, another
thread may have reset the condition being awaited.

• There is no guarantee that the thread awakened by a
notify() will be either the longest waiting or highest
priority thread in the object’s wait set.

• Java’s synchronization logic – calls on wait(),
notify(), and notifyAll() – is embedded in
method bodies. With an Ada protected entry, the wait
condition is much more easily identifiable
syntactically. Separating the barrier from the
algorithmic code is important in coping with the
Inheritance Anomaly (see §11 below).

• Java requires that a thread invoking any of the
wait/notification methods hold the lock on the target
object (a run-time test), or an exception will be
thrown. (This requirement avoids a race condition in
which one thread calls obj.wait(), but before it is
entered in obj’s wait set another thread invokes

obj.notify() or obj.notifyAll(). By the time the
first thread is entered in obj’s wait set it has missed
the signal.) One effect of the Java rules is that a thread
invoking notify() or notifyAll() does not thereby
release the object’s lock. The awakened thread(s) must
compete with the notifying thread, and with each other
in the case of notifyAll(), introducing both run-time
overhead and the potential for a race condition. The
Ada approach does not suffer from these problems.

• For simple synchronization, Ada’s Suspension_-
Object is likely to yield highly optimized
performance. Java lacks such a construct, and it is
much harder for an implementation to optimize objects
used as the target of wait().

• A program that uses notify() to awaken a waiting
thread may need to be modified to use notifyAll() as
a side effect of a maintenance change. More generally,
it is not always easy to see when one needs to use
notifyAll() instead of notify().

Since synchronization code in Java is contained in method
bodies, it can depend on parameters to the method.
Although Ada does not allow entry barriers to refer to
parameters (an efficiency-based restriction), the requeue
statement allows a protected entry to interrogate its
parameter(s) and then suspend if necessary.

8.2 Asynchronous control
Ada provides several mechanisms

• the Hold / Continue facility from the Real-Time
Annex

• the asynchronous select statement

Java’s suspend() / resume() methods are similar to
Ada’s Hold / Resume. Java does not have a facility directly
analogous to Ada’s asynchronous select.

Java provides an interrupt() method allowing one thread
to set a boolean flag asynchronously in another thread,
which the latter can check or poll. However, this is only
partially implemented in JDK 1.1. In Ada, such
functionality can be achieved through a Boolean variable
marked as pragma Atomic and visible to the two tasks. A
side effect of Java’s interrupt() method is a notational
inconvenience: an exception handler is needed for
InterruptedException when run() invokes common
methods such as sleep() and join(), since an instance of
this exception class will be thrown if interrupt() is
called on a suspended thread.

9. SCHEDULING AND PRIORITY
Ada’s Real-Time Annex defines a number of mechanisms:

• Subtypes for priority ranges, and subprograms to
dynamically set and retrieve a task’s priority

• Semantic distinctions between a task’s active and base
priorities

• Pragmas that dictate policies for dispatching, locking,
and entry queuing

Java defines a priority range, 1 through 10, and provides
methods to set and retrieve a thread’s priority. However,

the treatment of priorities is completely implementation
dependent, perhaps surprising in light of Java’s well-
publicized goal of software portability. If the underlying
operating system supplies time-sliced scheduling, then a
low priority thread may run even though a higher priority
thread is eligible for execution.

In Ada, a task can invoke the scheduler through the idiom
“delay 0.0;” for example to implement cooperative
multiplexing for equal-priority tasks. Java has an
analogous mechanism, the yield() method, but without
the guarantee that the invoking thread goes to the tail of the
ready queue.

10. TIMING-RELATED FEATURES
Ada supplies several facilities dealing with time:

• Predefined packages Ada.Calendar and
Ada.Real_Time, with subprograms to retrieve and
manipulate time values

• Relative and absolute delay statements

• Time out on an entry call, accept statement,
selective_accept, and asynchronous select

Here is a simple periodic task in Ada; the types Time_Span
and Time, and the function Clock, are declared in
Ada.Real_Time, a package provided by the Real-Time
Annex.

task type Periodic(Period:
 access Time_Span);

task body Periodic is
 Next_Time : Time := Clock;
begin
 loop
 ... -- Perform action
 Next_Time := Next_Time + Period.all;
 delay until Next_Time;
 end loop;
end Periodic;

Java likewise has several relevant time-related features:

• Predefined classes and methods to retrieve and
manipulate time values

• Relative delay (the sleep() method)

• Timeout on wait() and other methods

Here is a Java version of the periodic task:

class Periodic extends Thread{
 protected final int period;

 Periodic(int period){this.period=period;}

 public void run(){
 long nextTime =
 System.currentTimeMillis();
 while (true) {
 ... // Perform processing
 nextTime += period;
 int delay = (int)(nextTime -
 System.currentTimeMillis());

 try {Thread.sleep(delay);}
 catch (InterruptedException e) {}
 }
 }
}

Analogous to an Ada discriminant, the constant (final
variable) period is not initialized as part of its declaration,
but rather is set, and cannot thereafter be changed, as an
effect of the constructor.

The Java version is somewhat more verbose than Ada, in
part because run() needs to handle the
InterruptedException that might be thrown by
sleep(). More importantly, the relative delay of Java’s
sleep() method runs the risk of missing deadlines. If a
Periodic thread is preempted by a higher priority thread
after the delay is computed but before the sleep()
invocation has taken effect, then the delay that will
eventually be used will not have taken the preemption time
in account. This phenomenon was observed in Ada 83
with the “relative” delay statement, and is the reason that
the “absolute” delay mechanism was introduced into
Ada 95.

Although Java supplies overloaded versions of sleep()
and other time-related methods, each taking a parameter
that specifies the number of nanoseconds in addition to the
number of milliseconds, there are no assurances about the
granularity of the clock used in their implementation. In
contrast, Ada 95 imposes requirements both in the core
language (no coarser than 20 milliseconds) and in the Real-
Time Annex (50 microseconds).

11. THE “INHERITANCE ANOMALY”
Over the past several years programming language
researchers have been investigating the interaction between
concurrency and OOP known as the “inheritance anomaly”.
The issue concerns inheriting from a class whose methods
contain synchronization code: constructs that enforce
mutual exclusion, or that control thread
suspension/resumption based on condition checks/signals.
As observed by [14, p. 108], “synchronization code cannot
be effectively inherited without non-trivial class re-
definitions”. Depending on the language’s synchronization
scheme, the subclass author may need to know the
implementation of methods in the superclass, and the
introduction of new methods in the subclass may
necessitate overriding seemingly-unrelated superclass
methods. These effects compromise encapsulation.

The inheritance anomaly relates to three topics: mutual
exclusion, condition-based execution1, and scheduling The
second term refers to a situation where a thread invoking a

1 The first two issues could be unified, since mutually
exclusive access to an object is a special case of condition-
based execution where the condition is the absence of other
threads executing a method on the object in question.
However, since both Ada and Java offer different
mechanisms for the two effects, and since the
implementation of mutual exclusion and condition-based
execution can be quite different, it is useful to treat them
separately.

method may need to be blocked until an enabling condition
becomes true. How this condition and its signaling are
expressed depends on the language features. Here are the
main issues surrounding the inheritance anomaly:

• Some or all of the superclass’s methods may need to
be executed with mutual exclusion, and likewise for
the subclass’s methods. How easy is it for the
programmer to express such requirements? If two
objects’ methods call each other, how is deadlock to
be prevented?

• Whether a method call is to be immediately executed,
or whether the calling task/thread needs to be blocked,
may be based on run-time conditions. Bloom [15],
[16] identified a number of such constraints, which can
be categorized as follows:

§ Local state . A condition may be a function of the
values of instance variables; e.g. whether a
bounded buffer is empty, full, or partially-filled
dictates whether only a “put” method, only a
“get” method, or either, may be invoked.

§ History information. A condition may depend on
the history of previous calls; e.g., in a
“reader/writer”, a “read” operation should be
blocked until after at least one “write” method has
been performed.

§ Request parameters. A condition may depend on
parameters passed to the method; e.g., whether a
“chopstick guardian” method in a Dining
Philosopher’s solution is invokable depends on
which chopsticks are requested [17].

In light of these factors, what are the implications of
defining a subclass where either some of its methods,
or some of the superclass’s methods, or both, exhibit
condition-based execution? In particular, if a subclass
method imposes new conditions, is it necessary to
override the implementation of superclass methods?

• If several threads/tasks are competing for an object that
needs to be accessed with mutual exclusion, or if a
condition (or conditions) awaited by multiple
threads/tasks has become true, then the choice of which
thread to run will depend on the scheduling policy.
Bloom identified the following scheduling policy
aspects:

§ Type of request. It may be necessary to give
preference to some methods over others. For
example, in a “readers/writers” program, priority
might be given to callers of “write” to ensure that
readers obtain fresh data.

§ Order of requests. For different applications,
different policies may be appropriate for scheduling
their method invocations: FIFO, priority-based,
non-deterministic, etc.

How can the class author specify the appropriate
scheduling policy, and how is this affected by
inheritance?

An in-depth treatment of the inheritance anomaly is beyond
the scope of this paper; indeed, the topic remains the
subject of ongoing research. More comprehensive

discussion may be found in [14] (which coined the term
“inheritance anomaly”), [16], and [18]. We here
summarize how Ada and Java compare with respect to the
questions posed above.

11.1 The Inheritance Anomaly in Ada
11.1.1 Mutual Exclusion
Ada’s tagged type mechanism offers OOP semantics, but
without mutual exclusion or synchronization control.
Ada’s protected type mechanism offers mutual exclusion
and synchronization control, but without the OOP
semantics for inheritance. As a consequence, combining
OOP with mutual exclusion requires a “mix-in” style. [5,
§13.2] summarize three main techniques:

• The root type contains no protection logic;
synchronization is added by the descendant type’s
implementation.

• The root type contains protection logic, for example an
encapsulated “mutex” component in the type’s
implementation, which is called from class-wide
operations to lock the object before a dispatching call,
and to unlock it afterwards. This technique is also
described in [19].

• Synchronization is centralized in a protected type
declared in a root package. The data are passed
through an access discriminant using an access-to-
class-wide type, and are thus decoupled from the
protection logic. The protected operations make
dispatching calls on primitive operations.

None of these solutions is ideal, and working around the
drawbacks leads to somewhat complicated styles. The
third approach seems to be the safest, but the inability to
extend a protected type gives this solution a non-OO flavor.
If a new class is added to the inheritance hierarchy, with
new operations, then the root protected type needs to be
changed.

11.1.2 Condition-Based Execution
[16] observed that “inheritance anomalies are directly
attributed to the failure to consider certain classes of
Bloom’s constraints on synchronization” and reviewed a
number of languages against these criteria. (Java was not in
this set, possibly because it was still a rather new language
at the time the paper was written.) Ada 95’s protected type
facility came closest to satisfying the criteria.

• Local state can be tracked through protected
components, which are referenced from entry barrier
conditions disjoint from the entry body. (Separating
the “guard” logic from the algorithmic code is
important in avoiding tedious and error-prone changes
during inheritance.)

• History can likewise be tracked with protected
components.

• Although a barrier cannot reference an entry parameter,
the equivalent effect may be obtained through a
requeue.

The main issue, as with mutual exclusion, is the lack of
extensibility for protected types. [19] discuss the notion of
“synchronization compatibility” between a subclass and a

superclass – for example, a subclass cannot weaken the
guards on an operation, and the subclass states must be a
partitioning of the superclass states. They propose a
solution based on encapsulating the protection logic in a
“mutex” in the root type. A drawback is that the resulting
style seems somewhat heavy.

11.1.3 Scheduling
With an implementation that supports the Real-Time
Annex, the user has control over a number of elements of
the scheduling policy including, with some restrictions
based on efficiency, the dispatching and queuing policies.
In particular, giving precedence to particular operations may
be achieved dynamically through entry barriers (checking
the 'Count attribute) or statically through the
Priority_Queuing argument of pragma Queuing_Policy.
This pragma more generally establishes whether requests
will be served FIFO, priority-based, or through some other
policy.

As with mutual exclusion and condition-based execution,
these mechanisms are separate from the OOP features.
Indeed, OOP has generally not been widely used in the
real-time community, and it is not surprising that the
scheduling features of the Real-Time Annex should aim
more for efficiency than for blissful harmony with OOP.

11.2 The Inheritance Anomaly in Java
11.2.1 Mutual Exclusion
If a synchronized method is inherited, it is also
synchronized in the subclass. One of the effects of Java’s
thread model being based on OOP is thus a simple
approach to inheriting mutual exclusion protection.
However, Java still suffers from several problems:

• Mutually dependent methods may lead to deadlock.
This is a special case of the “nested monitor” issue
described earlier, but it can easily arise through a
combination of several common OOP idioms:
“passing the buck”, where a subclass method invokes
the corresponding superclass method, and “nested
dispatching” where a superclass method dynamically
binds to another method on the same object.

• If a synchronized method is overridden, then
synchronized must be specified explicitly on the
overriding declaration. Otherwise the subclass’s
method will not be synchronized, a perhaps subtle
error.

11.2.2 Condition-Based Execution
Java’s condition checks (a “while” loop on wait()) and
state transitions (invocations of notify() and
notifyAll()) are buried in algorithmic code. As observed
by [14] and [16], specifying synchronization in code bodies
makes the effect of inheritance anomalies much worse than
in languages where these are separated, for example with
conditions given by “guards”. It is almost inevitable that
a Java subclass that requires additional synchronization
logic will need to completely re-implement superclass
methods containing wait/notification calls, thus breaking
encapsulation.

One of Java’s objectives is to minimize the “binary
compatibility” problem [2, §13]. If a new version of a class

K is produced, for example with new functionality or a
revised implementation, a user who had defined a subclass
K1 of the original class should be able simply to relink
with the new version. If either version of K contains
synchronization code, this will probably not work. The
user will need the source code for the new version and may
need to modify the source code for the subclass K1.

11.2.3 Scheduling
As noted earlier, Java leaves the semantics of scheduling
and priorities completely unspecified. The effect depends
on the implementation, and the class author has no control
over scheduling policy.

11.3 Summary of Inheritance Anomaly
The inheritance anomaly is a difficult problem, and neither
Ada nor Java offer completely satisfactory solutions. Ada’s
main shortcoming is the inability to extend a protected
type, a restriction that was motivated by efficiency
considerations and concern about semantic complexity.
Since one of the main purposes of Ada tasking was to
support real-time applications with minimal overhead, the
generality of extendable protected types was not considered
a sufficiently large gain in expressability to offset the costs.

Java integrates thread support with OOP, and its
inheritance of synchronized methods addresses some of the
issues of the inheritance anomaly. However, its immediate
susceptibility to “nested monitor” deadlocks, and the need
for explicit low-level synchronization through calls on
wait() or notify()/notifyAll() are intrinsic problems
with the language design.

In summary, Ada’s concurrency model is a much more
appropriate starting point than Java’s for addressing the
inheritance anomaly. A possible approach, for a future
version of the language, would be to add OOP semantics to
protected types. One proposal for such a scheme is given
in [20].

12. INTERACTION WITH EXCEPTION
HANDLING

12.1 Synchronous versus asynchronous
exceptions
One of the axioms of Ada semantics is that exceptions are
always synchronous. In a pre-standard draft of the language
in the early 1980’s an asynchronous exception was
included, the 'Failure attribute; raising T'Failure would
halt execution of T and transfer control to an exception
handler included in T’s body, thereupon allowing T to
perform necessary cleanup. This feature was removed before
the language was standardized, since it was difficult to
specify semantics for the construct that the programmer
could depend upon in writing reliable code. For example,
raising T'Failure while T is accessing a file could leave
the file in an inconsistent state.

In contrast, Java includes asynchronous exceptions.
Invoking t.stop() on a thread t throws an instance of the
exception class ThreadDeath, and an alternate version of
stop() allows the invoker to specify an arbitrary exception
object that will be thrown in the target thread. There is no
guarantee where the target thread is executing when the

exception is thrown, and thus it is possible for either
program data or run-time system data to be in an
inconsistent state. Invoking stop() also has the effect of
releasing all locks held by the stopped thread. It is
possible (but generally inadvisable) for a thread’s run()
method to catch the ThreadDeath exception, unless the
handler re-throws the same exception.

A parameterizable version of stop() invites a programming
style in which one thread asynchronously stops another,
and passes data (an exception) indicating the reason.
However, asynchronous communication in general is error-
prone – [7, p. 215] shows how it is simple to misuse
stop() to throw an exception that violates a method’s
throws clause – and it is questionable whether a feature
that facilitates such usage is good design in a language that
is intended to be secure.

Ada does not ignore the issue of asynchronous
communication, but rather than using the exception
mechanism it provides a limited form of asynchronous
control transfer based on either a time out or the acceptance
of an entry call. This construct, the asynchronous select
statement, provides some guarantees on which operations
are “critical sections” (“abort deferred” in Ada parlance)
with respect to such asynchronous events.

12.2 Propagating exceptions out of
tasks/threads
As a consequence of Ada’s “no asynchronous exceptions”
principle, an unhandled exception raised in a task body’s
statement part is not propagated; the task dies silently.
(Propagating the exception to, say, the unit that activated
the task would raise an asynchronous exception.) To
prevent “silent task death” syndrome, a programmer can
include in the task body an exception handler with an
“others” choice to rendezvous with an error-logging task.

Since the signature of the run() method does not include a
throws clause, a Java thread can never propagate an
instance of a checked exception class. (A side effect is that
if run() invokes a method with a throws clause, the
invocation must be in a try block with a catch clause
covering the specified exception class.) However, it is
possible for a thread to propagate an unchecked exception
such as ArrayIndexOutOfRangeException. In such a
situation the exception is passed as a parameter (of class
Throwable) to the method uncaughtException. This
method’s default effect is to print out a stack trace based on
the exception, except when the parameter is an instance of
ThreadDeath in which case uncaughtException simply
returns.

The two languages provide roughly the same effects. One
difference is that Java mandates the printing of a stack trace
on the propagation of uncaught exceptions (other than for
ThreadDeath). Such functionality is useful in an
interactive environment but of questionable value where the
program is running on an embedded processor.

12.3 Exceptions propagated from task/thread-
specific constructs
In Ada an exception propagated from a protected operation
is propagated to the caller; an exception propagated from an

accept statement is propagated both within the called task
and to the caller. Other tasking constructs raise exceptions
based on specific circumstances. For example, calling an
entry of a terminated task raises Tasking_Error at the call;
raising an exception during elaboration of a task’s
declarative part (i.e. during activation) propagates
Tasking_Error to the unit that caused the task activation.
Note that in this latter case the exception is synchronous,
since the activating unit is suspended while the new task is
being activated.

In Java an exception may be propagated from synchronized
blocks or methods; in such a situation the lock count is
decreased as an effect of the propagation.

13. OTHER ISSUES
Several other differences between Ada and Java are as
follows

• Java supplies the concept of a “thread group”, allowing
the programmer to define a collection of threads that
may be manipulated all at once by certain methods.
This concept is useful in Java’s security model for
applets. Ada has no corresponding construct.

• Ada’s Systems Programming Annex uses the tasking
model, in particular the protected object, as the basis
for interrupt handling. Java has no mechanism for
interrupt handling.

14. CONCLUSIONS
Ada and Java have taken quite different approaches to
supporting concurrency. Ada provides a general, high-level
model based on explicit communication (the rendezvous),
and a structured approach to mutual exclusion (protected
objects), while also supplying lower-level mechanisms and
specific scheduling semantics and control that may be
needed for real-time and other applications. In contrast,
Java’s approach relies on the classical monitor construct for
mutual exclusion, and “pulsed” / “broadcast” signals for
thread synchronization and communication. Java is thus
susceptible to the well-known “nested monitor” deadlock
problem, and its signal-oriented approach to
communication is error-prone and may entail additional
context switches. Moreover, the absence of semantics for
priority means that thread scheduling is completely
implementation dependent.

Although certain elements of Java’s thread model provide
functionality not found in Ada (for example, thread groups),
on the whole Ada’s approach to concurrency is more
reliable, more portable, and more efficient than Java’s.

The following table summarizes the main points of
comparison:

Feature Ada Java

Concurrency unit task thread

General types for
concurrency

Task_ID Thread
ThreadGroup

Creation declaration or
allocation

construction
(allocation)

Parameterization discriminant,
entry

constructor

Startup implicit after
activation

explicit via
start()

Termination
(implicit)

select statement
with terminate

dæmon thread

Termination
(explicit)

abort stop()
destroy()

Wait for
termination

block declaring a
local task

join()

Atomic variable volatile
variable

protected
operation

synchronized
methodMutual Exclusion

critical region
controlled by
semaphore

synchronized
block

entry barrier on
protected object

wait()

Suspension_-
Object

wait()

implicit barrier
reevaluation at
end of protected
procedure or
protected entry

notify()
notifyAll()

Synchronization
and
communication

rendezvous no corresponding
feature

Hold
Continue

suspend()
resume()

asynchronous
select statement

no corresponding
feature

Asynchronous
control

Atomic variable interrupt()

delay 0.0 yield()

delay N sleep(1000*N)

delay until T no corresponding
feature

Time

Time-out on
entry call, accept

Time-out on
wait()

Scheduling policy User-specifable Implementation-
defined

APPENDIX A: BOUNDED BUFFER
EXAMPLE
This Appendix presents Ada and Java versions of the
classical “bounded buffer” idiom. The Ada version is a

generic package where the element type is a formal generic
parameter; the Java version uses Object as the element
type.

A “producer” inserts an element into a buffer by invoking
the buffer’s “put” method. A “consumer” removes an
element from a buffer, in FIFO fashion, by invoking the
buffer’s “get” method. A producer is blocked when the
buffer is full, and a consumer is blocked when the buffer is
empty.

In both versions, the producer runs at twice the frequency of
the consumer, so that eventually the buffer will be full.

A.1 Ada Version
generic
 type Element is private;
package Generic_Buffer_Pkg is
 type Element_Array is
 array (Positive range <>) of Element;
 protected type Buffer(Max : Natural) is
 entry Put(Item : in Element) ;
 entry Get(Item : out Element);
 private
 Data : Element_Array(1..Max);
 Next_in, Next_Out : Integer := 1;
 Count : Natural := 0;
 end Buffer;
end Generic_Buffer_Pkg;

package body Generic_Buffer_pkg is
 protected body Buffer is
 entry Put(Item : in Element)
 when Count < Max is
 begin
 Data(Next_In) := Item;
 Next_In := (Next_In mod Max)+1;
 Count := Count+1;
 end Put;

 entry Get(Item: out Element)
 when Count > 0 is
 begin
 Item := Data(Next_Out);
 Next_Out := (Next_Out mod Max)+1;
 Count := Count-1;
 end Get;
 end Buffer;
end Generic_Buffer_Pkg;

with Generic_Buffer_Pkg;
procedure Producer_Consumer is
 package Int_Buffer_Pkg is
 new Generic_Buffer_Pkg(Integer);
 use Int_Buffer_Pkg;

 Buff : Buffer(20) ;

 task Producer;
 task body Producer is
 begin
 for J in 1..100 loop
 delay 0.5;

 Buff.Put(J);
 end loop;
 end Producer;

 task Consumer;
 task body Consumer is
 K : Integer;
 begin
 for J in 1..100 loop
 Buff.Get(K);
 delay 1.0;
 end loop;
 end Consumer;
begin
 null; -- wait for tasks to terminate
end Producer_Consumer;

A.2 Java Version
The following Java version illustrates both a Thread
subclass and a Runnable implementation. Recall that
protected has quite different meanings in Ada and Java.

Both the Producer and Consumer threads need to operate
on a common Buffer object. As is typical in Java, a
reference to this object is passed as a parameter to the
constructor for the two classes, stored in an instance
variable, and accessed from the run() methods.

class Buffer{
 protected final int max;
 protected final Object[] data;
 protected int nextIn=0, nextOut=0,
 count=0;

 public Buffer(int max){
 this.max = max;
 this.data = new Object[max];
 }
 public synchronized void put(Object item)
 throws InterruptedException{
 while (count == max) { wait(); }
 data[nextIn] = item;
 nextIn = (nextIn+1) % max;
 count++;
 notify(); //a waiting consumer, if any
 }

 public synchronized Object get()
 throws InterruptedException{
 while (count == 0) { wait(); }
 Object result = data[nextOut];
 nextOut = (nextOut+1) % max;
 count--;
 notify(); // a waiting producer, if any
 return result;
 }
}

class Producer implements Runnable{
 protected final Buffer buffer;
 Producer(Buffer buffer){
 this.buffer=buffer;
 }

 public void run() {
 try{
 for (int j=1; j<=100; j++){
 Thread.sleep(500);
 buffer.put(new Integer(j));
 }
 }catch (InterruptedException e)
 {return;}
 }
}

class Consumer extends Thread{
 protected final Buffer buffer;
 public Consumer(Buffer buffer){
 this.buffer = buffer;
 }
 public void run(){
 try {
 for (int j=1; j<=100; j++){
 Integer p = (Integer)(buffer.get());
 int k = p.intValue();
 Thread.sleep(1000);
 }
 } catch (InterruptedException e)
 {return;}
 }
}

public class ProducerConsumer{
 static Buffer buffer = new Buffer(20);
 public static void main(String[] args){
 Producer p = new Producer(buffer);
 Thread pt = new Thread(p);
 Consumer c = new Consumer(buffer);
 pt.start();
 c.start();
 }
}

The put and get methods each include a throws clause
specifying InterruptedException, since the wait method
in class Thread includes such a clause and put and get do
not catch exceptions from this class. However, the
implementation of each run method needs to catch
InterruptedException; get, put, and sleep() can
propagate exceptions from this class, and the run()
method, lacking a throws clause, must catch any exceptions
propagated from methods that it invokes. It would not
have been possible to simply put a throws
InterruptedException clause on the implementation of
the run() methods, since the signature of this method in
the superclass Thread and the interface Runnable lack a
throws clause. As noted earlier, a method is not allowed
to throw more kinds of exceptions than are specified in the
throws clause of the version of the method that it is
overriding.

In this example the signals sent at the end of put() and
get() can simply be notify() versus notifyAll().
Even if there were many Producer and Consumer threads,
versus just one of each as above, there is no way that both a
Producer and a Consumer could be in the wait set for a
given Buffer object. (If a Consumer thread is in the
Buffer object’s wait set, that is because the Buffer is
empty. A Producer thread may attempt to call put()
while the object is locked, but that does not place the caller
in the object’s wait set. Since all the threads in the wait
set are waiting for the same condition, awakening all of
them is of no benefit: after one Consumer finishes executing
get() the Buffer will again be empty and all the other
Consumer threads will suspend immediately on re-
evaluating the condition. Thus a simple notify(),
awakening just one thread in the wait set, is sufficient.
Analogous reasoning applies to the choice of notify()
versus notifyAll() at the end of get().)

A.3 Comparison of Styles
The Ada version is more readable, for several reasons

§ Synchronization is clearly expressed through entry
barriers as opposed to Java’s wait() / notify().

§ The exception handling code in the Java version is
extraneous and distracts from the main processing.

§ Generic units are more type-safe than Java’s approach
with Object as the buffer element type, and they do
not incur the run-time overhead and stylistic heaviness
of the casts between Integer and Object.

The Ada program also has some efficiency advantages

§ In Ada the Buffer object will go on the stack; there is
no need for heap management or an additional level of
indirection on referencing the buffer data. In Java the
Buffer will be constructed on the heap, with resulting
run-time costs.

The main Java advantage is the flexibility of its dynamic
thread model, but this was not really exploited in the
example.

REFERENCES
[1] Intermetrics, Inc.; Ada Reference Manual -

Language and Standard Libraries , ISO/IEC
8652:1995.

[2] J. Gosling, B. Joy, and G. Steele; The Java™

Language Specification, Addison-Wesley, 1996.

[3] K. Arnold and J. Gosling, The Java™ Program-
ming Language (2nd edition); Addison-Wesley,
1998.

[4] B. Brosgol; “A Comparison of the Object-
Oriented Features of Ada 95 and Java™”, Proc.
Tri-Ada ’97, ACM SIGAda, 1997.

 [5] A. Burns and A. Wellings; Concurrency in Ada,
Cambridge University Press, 1995.

 [6] D. Lea; Concurrent Programming in Java™ -
Design Principles and Patterns, Addison-Wesley,
1997

[7] S. Oaks and H. Wong; Java Threads, O’Reilly &
Associates, 1997.

[8] D. Flanagan, Java in a Nutshell (2nd edition);
O’Reilly & Assoc., 1997.

[9] B. Brosgol, “A Comparison of Ada and Java as a
Foundation Teaching Language”, ACM SIGAda
Ada Letters, Sept.-Oct. 1998.

[10] Sun; “The Java™ Language; and Overview”,
http:\\java.sun.com/docs/overview/
java/java-overview-1.html

[11] ANSI/IEEE IEEE Standard for Binary Floating-
Point Arithmetic; ANSI/IEE Std. 754-1985; 1985.

[12] A. Burns and G. Davies; Concurrent Program-
ming, Addison-Wesley; 1993.

[13] E. Giering and T. Baker; “Implementing Ada
Protected Objects - Interface Issues and
Optimization”, Proc. Tri-Ada ’95, ACM SIGAda,
1995.

[14] S. Matsuoka and A. Yonezawa; “Analysis of
Inheritance Anomaly in Object-Oriented
Concurrent Programming Languages, in Research
Directions in Concurrent Object-Oriented
Programming; MIT Press, 1993.

[15] T. Bloom, “Evaluating Synchronization Mechan-
isms”, in Proc. of the Seventh ACM Symposium
on OS Principles; 1979.

[16] S. Mitchell and A. Wellings; “Synchronization,
Concurrent Object-Oriented Programming, and the
Inheritance Anomaly”, in Comput. Lang. , Vol.
22, No. 1, 1996

[17] B. Brosgol, “The Dining Philosophers in
Ada 95”, in Proc. 1996 Ada-Europe International
Conference, Springer Lecture Notes in Computer
Science 1088; 1996.

[18] L. M. J. Bergmans, Composing Concurrent Ob-
jects, Ph.D. Thesis, University of Twente
(Netherlands); 1994.

[19] G. Schumacher and W. Nebel; “How to Avoid
the Inheritance Anomaly in Ada”, in Proc. 1998
Ada-Europe International Conference, Springer
Lecture Notes in Computer Science 1411; 1998.

[20] O.P. Kiddle and A.J. Wellings, “Extensible
Protected Types in Ada – EPT”, in Proc. SIGAda
’98; ACM SIGAda, 1998.

	cr1: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full
	cr2: citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. SIGAda '98 Washington, D.C., USA © ACM 1-58113-033-3/98/0011...$5.00

