
Tasking/Tasking/Realtime Realtime -- 11

Systems and RealSystems and Real--time time
Programming in Ada Programming in Ada

95 95

Tasking/Tasking/Realtime Realtime -- 22

SpeakersSpeakers
Eugene Eugene BingueBingue, Ph.D., Ph.D.
Dr.Dr.BingueBingue@ix.@ix.netcomnetcom.com.com

David A. Cook, Ph.D.David A. Cook, Ph.D.
USAF STSC/Shim Inc.USAF STSC/Shim Inc.
David.Cook@hill.David.Cook@hill.afaf.mil.mil

Leslie (Les) DupaixLeslie (Les) Dupaix
USAF STSCUSAF STSC
Les.Dupaix@hill.af.milLes.Dupaix@hill.af.mil

Tasking/Tasking/Realtime Realtime -- 33

Presented Presented
by the by the

ASEETASEET
TeamTeam

David A. Cook, Ph.D.David A. Cook, Ph.D.

Shim Enterprises, Inc.Shim Enterprises, Inc.

email: email: daviddavid.cook@hill..cook@hill.afaf.mil.mil

LeslieLeslie DupaixDupaix

Software Technology Support CenterSoftware Technology Support Center

email: les.email: les.dupaixdupaix@hill.@hill.afaf.mil.mil

Eugene Eugene BingueBingue

Nova Southeastern UniversityNova Southeastern University

email: email: binguebingue@ix.@ix.netcomnetcom.com.com

Tasking/Tasking/Realtime Realtime -- 44

MultitaskingMultitasking

Tasking/Tasking/Realtime Realtime -- 55

Parallel ProcessingParallel Processing
(Tasking)(Tasking)

:: The Ada parallel processing model is a useful The Ada parallel processing model is a useful
model for the abstract description of many model for the abstract description of many
parallel processing problems. In addition, a parallel processing problems. In addition, a
more static monitormore static monitor--like approach is like approach is
available for shared dataavailable for shared data--access applications.access applications.

:: Ada provides support for single and multiple Ada provides support for single and multiple
processor parallel processing, and also processor parallel processing, and also
includes support for timeincludes support for time--critical realcritical real--time time
and distributed applications.and distributed applications.

Tasking/Tasking/Realtime Realtime -- 66

What a Task isWhat a Task is
u Concurrently Executing Program Unit

One processor (single thread of control)
Multi-programming (multiple threads)
Multi-processing (multiple threads)
Distributed Environment (sterile)
Distributed Environment

u Always a Slave
Must have a master
Sometimes abortable
Can be aborted by ANYBODY (who has visibility)
Since a task must have a master, it can never be a library unit

u What makes the master important?
The master may not terminate until all “children” are finished
Library packages acting as a master may have “rogue” tasks

Tasking/Tasking/Realtime Realtime -- 77

Simple Task SyntaxSimple Task Syntax
task [type]task [type] task_simple_name task_simple_name [is[is

{entry declaration}{entry declaration}
{representation clause}{representation clause}

end [end [task_simple_nametask_simple_name]] ;]] ;

task body task body task_simple_name task_simple_name isis

[declarative part][declarative part]
beginbegin

sequence_of_statementssequence_of_statements
[exception [exception

exception handler]exception handler]
end [end [task_simple_name task_simple_name] ;] ;

Tasking/Tasking/Realtime Realtime -- 88

Examples Examples -- Single TaskSingle Task

task EAT_UP_RESOURCES ;

task body
EAT_UP_RESOURCES is

begin
loop

null;
end loop;

end EAT_UP_RESOURCES;

Only 1 task, and it’s name is EAT_UP_RESOURCES!!!

Tasking/Tasking/Realtime Realtime -- 99

Examples Examples -- Task TypesTask Types
task type EAT_UP_RESOURCES ;

task body EAT_UP_RESOURCES is
begin
loop

null;
end loop;

end EAT_UP_RESOURCES;

type EATER is access EAT_UP_RESOURCES;

EAT_UP_1 : EATER;

EAT_UP_A_LOT : array (1..10) of EATER;

There are 11 tasks defined above!

Tasking/Tasking/Realtime Realtime -- 1010

When does a task start?When does a task start?

u After the elaboration of the declarative part that each
task is declared in. Basically, after the “begin”
statement, but before any other executable statement

u Allows TASKING_ERROR to be raised in the
“master” in case of problems in the elaboration of a
task

NOTE - This is the ONLY time that a task will raise an
asynchronous exception in the master. There may be only 1
TASKING_ERROR per master per declarative region

Tasking/Tasking/Realtime Realtime -- 1111

Simplest tasks have noSimplest tasks have no
communication with other communication with other

program unitsprogram units

Task EAT_UP_RESOURCES ;

task body EAT_UP_RESOURCES is
begin
loop

Do_some_thing;
exit when Good_and_ready;

end loop;
end EAT_UP_RESOURCES;

Tasking/Tasking/Realtime Realtime -- 1212

RendezvousRendezvous
uu If another program unit calls a task, and If another program unit calls a task, and

the task the task acceptsaccepts the call, then the two the call, then the two
units (the caller and the units (the caller and the calleecallee) are said) are said
to be in to be in rendezvousrendezvous

uu During rendezvous, the caller is During rendezvous, the caller is
suspended suspended or or blocked, blocked, and the and the callee callee (the (the
task unit) is activetask unit) is active

Tasking/Tasking/Realtime Realtime -- 1313

Problem Problem -- how to synchronizehow to synchronize
two objects?two objects?

uu SolutionSolution
–– Have an Ada task that synchronizes with a Have an Ada task that synchronizes with a

calling unit.calling unit.

–– ScenarioScenario
FF Program unit calls a task, saying “let me know Program unit calls a task, saying “let me know

when you are ready to synchronize”when you are ready to synchronize”
FF Ada task “accepts” the synchronize call, and Ada task “accepts” the synchronize call, and

executes an optional Sequence Of Statements executes an optional Sequence Of Statements
(SOS). The caller and task are now (SOS). The caller and task are now
synchronizedsynchronized

Tasking/Tasking/Realtime Realtime -- 1414

Synchronization CallsSynchronization Calls

The “accept” synchronizes the caller and server, during SOS #1 aThe “accept” synchronizes the caller and server, during SOS #1 and nd
prepares the task to execute SOS #2.prepares the task to execute SOS #2.

SOS #1 occurs during rendezvous, and the caller is “blocked” whiSOS #1 occurs during rendezvous, and the caller is “blocked” while le
the receiver (server) executes the statements. SOS #1 should be the receiver (server) executes the statements. SOS #1 should be
only as long as absolutely necessary. SOS #1 may be null. only as long as absolutely necessary. SOS #1 may be null.

SOS #2 occurs after rendezvous, and multiple threads of control SOS #2 occurs after rendezvous, and multiple threads of control
exist. Both the caller and server are executing in parallel. exist. Both the caller and server are executing in parallel.

task DO_SOMETHING is
entry SYNC_POINT;

end DO_SOMETHING;

task body DO_SOMETHING is
begin

loop
accept SYNC_POINT do

<SOS #1>
end SYNC_POINT;
<SOS #2>

end loop;
end DO_SOMETHING;

Tasking/Tasking/Realtime Realtime -- 1515

Simple “sync” callSimple “sync” call

There is no action associated with the synchronize call, so therThere is no action associated with the synchronize call, so there is no e is no
““do end;” do end;” associated with entry point associated with entry point SYNC_POINT.SYNC_POINT.

As soon as the task Do_Something As soon as the task Do_Something accepts the call, the accepts the call, the
synchronization ends, and both the caller and synchronization ends, and both the caller and callee callee proceed after proceed after
the synchronization.the synchronization.

task DO_SOMETHING is
entry SYNC_POINT;

end DO_SOMETHING;

task body DO_SOMETHING is
begin

loop
accept SYNC_POINT;
<SOS #2>

end loop;
end DO_SOMETHING;

Tasking/Tasking/Realtime Realtime -- 1616

How long does a task “wait”?How long does a task “wait”?
uu The easiest option to program is the The easiest option to program is the

“wait forever” model.“wait forever” model.
uu In this model, a task is willing to wait In this model, a task is willing to wait

for a call until some other program unit for a call until some other program unit
calls it. Although a parallel thread of calls it. Although a parallel thread of
control, the task is inactive, waiting for control, the task is inactive, waiting for
another program unit to call it and another program unit to call it and
reactivate itreactivate it

Tasking/Tasking/Realtime Realtime -- 1717

When we say “call”….When we say “call”….
uu We don’t mean We don’t mean callcall in the sense of in the sense of

calling a procedure or function. The calling a procedure or function. The
task is already an active entity, task is already an active entity,
occupying stack, memory, and machine occupying stack, memory, and machine
cycles.cycles.

uu Calling a task refers to an attempt to Calling a task refers to an attempt to
rendezvousrendezvous

Tasking/Tasking/Realtime Realtime -- 1818

Wait forever!Wait forever!
uu An “ENTRY POINT” defines a point to rendezvous An “ENTRY POINT” defines a point to rendezvous

((synchronizationsynchronization or exchange data point) with a task.or exchange data point) with a task.
You can NEVER call a task, only rendezvous with it at You can NEVER call a task, only rendezvous with it at
an entry point. An entry point is like a “phone number” an entry point. An entry point is like a “phone number”
to the task.to the task.

task DO_SOMETHING is
entry SYNC_POINT;

end DO_SOMETHING;

task body DO_SOMETHING is
begin

loop
accept SYNC_POINT;
<SOS> --Sequence Of Statements

end loop;
end DO_SOMETHING;

Tasking/Tasking/Realtime Realtime -- 1919

Multiple Accept StatementsMultiple Accept Statements
uu There is nothing “sacred” about “accept” statements.There is nothing “sacred” about “accept” statements.
uu There may be multiple accepts per entry pointThere may be multiple accepts per entry point

task type DO_SOMETHING_ELSE is
entry SYNC_POINT;

end DO_SOMETHING_ELSE

task body DO_SOMETHING_ELSE is
begin

loop
accept SYNC_POINT do

<SOS #1>
end SYNC_POINT;

<SOS #2>
accept SYNC_POINT;

end loop;
end DO_SOMETHING_ELSE;

Tasking/Tasking/Realtime Realtime -- 2020

Entry Call ParametersEntry Call Parameters
An entry point may define parametersAn entry point may define parameters

(like a procedure or function definition)(like a procedure or function definition)

task type DO_LITTLE is
entry GET_DATA (PARAM1 : in SOME_TYPE);
entry PUT_DATA (PARAM2 : out SOME_TYPE);

end DO_LITTLE;

TASK_DO_LITTLE : DO_LITTLE;

task body DO_LITTLE is
HOLDER : SOME_TYPE;

begin
loop

accept GET_DATA (PARAM1: in SOME_TYPE) do
HOLDER := PARAM1;

end GET_DATA;

accept PUT_DATA (PARAM2 : out SOME_TYPE) do
PARAM2 := HOLDER;

end PUT_DATA;
end loop;

end DO_LITTLE;

Tasking/Tasking/Realtime Realtime -- 2121

What the Previous What the Previous
Example DoesExample Does

22 Enforces “serverEnforces “server--client” relationship for a client” relationship for a
“critical” data item.“critical” data item.

22 Requires a “new” item to be created before it can Requires a “new” item to be created before it can
be “consumed”be “consumed”

22 Requires the current item to be “consumed” Requires the current item to be “consumed”
before a new item can be created.before a new item can be created.

22 Will allow multiple producers/consumers to Will allow multiple producers/consumers to
interact by using the task as a “middleman” interact by using the task as a “middleman”

Tasking/Tasking/Realtime Realtime -- 2222

Receiving the dataReceiving the data

task body DO_LITTLE is
HOLDER : SOME_TYPE;

begin
loop

accept GET_DATA (PARAM1: in SOME_TYPE) do
HOLDER := PARAM1;

end GET_DATA;
--the above lines accept data from some calling unit

accept PUT_DATA (PARAM2 : out SOME_TYPE) do
PARAM2 := HOLDER;

end PUT_DATA;
end loop;

end DO_LITTLE;

Tasking/Tasking/Realtime Realtime -- 2323

Storing the DataStoring the Data
task body DO_LITTLE is

HOLDER : SOME_TYPE;
begin

loop
accept GET_DATA (PARAM1: in SOME_TYPE) do

HOLDER := PARAM1;
end GET_DATA;

--Maybe some code to put the data into a stack, queue, buffer, etc

accept PUT_DATA (PARAM2 : out SOME_TYPE) do
PARAM2 := HOLDER;

end PUT_DATA;
end loop;

end DO_LITTLE;

Tasking/Tasking/Realtime Realtime -- 2424

Forwarding the DataForwarding the Data
task body DO_LITTLE is

HOLDER : SOME_TYPE;
begin

loop
accept GET_DATA (PARAM1: in SOME_TYPE) do

HOLDER := PARAM1;
end GET_DATA;

accept PUT_DATA (PARAM2 : out SOME_TYPE) do
PARAM2 := HOLDER;

end PUT_DATA;
--pass on some data, perhaps from a buffer

end loop;
end DO_LITTLE;

Tasking/Tasking/Realtime Realtime -- 2525

Implicit Queues for Entry Implicit Queues for Entry
PointsPoints

uu QueuesQueues
–– By definition of accept statement, only 1 By definition of accept statement, only 1

caller may be in rendezvous per task. caller may be in rendezvous per task.
–– This means that calls for task entries are This means that calls for task entries are

neither reentrant or recursiveneither reentrant or recursive

uu There is a queue associated with each There is a queue associated with each
entry point. All callers to this entry entry point. All callers to this entry
stand in an ordered line.stand in an ordered line.

Tasking/Tasking/Realtime Realtime -- 2626

Use “Wait Until I get Done”Use “Wait Until I get Done”
with Great Care!with Great Care!

uu Could be replaced with a simple procedure/function call Could be replaced with a simple procedure/function call
except in special Cases!except in special Cases!

uu Use entry points to pass data “one way” Use entry points to pass data “one way”

NOTNOT
task type DO_PROCESSING is

entry DO_WORK (DATA : in out SOME_TYPE);
end DO_PROCESSING;

WORKER : DO_PROCESSING;

task body DO_PROCESSING is
begin

loop
accept DO_WORK (DATA : in out SOME_TYPE) do

<LSOS> -- some long, involved processing here
end DO_WORK;

end loop;
end DO_PROCESSING;

Tasking/Tasking/Realtime Realtime -- 2727

task DO_PROCESSING is
entry GET_DATA (DATA : in SOME_TYPE);
entry PUT_DATA (DATA : out SOME_TYPE);

end DO_PROCESSING;
task body DO_PROCESSING is

HOLDER : SOME_TYPE;
begin

loop
accept GET_DATA(DATA: in SOME_TYPE) do

HOLDER := DATA;
end GET_DATA;
<LSOS> -- some long, involved processing here

accept PUT_DATA(DATA: out SOME_TYPE) do
DATA := HOLDER;

end PUT_DATA;
end loop;

end DO_PROCESSING;

When You Need to Send and When You Need to Send and
Receive Data From a TaskReceive Data From a Task

Tasking/Tasking/Realtime Realtime -- 2828

Exiting or Quitting a TaskExiting or Quitting a Task

task type DO_PROCESSING is
entry GET_DATA (DATA : in
SOME_TYPE);
entry PUT_DATA (DATA :
out SOME_TYPE);

end DO_PROCESSING;

WORKER : DO_PROCESSING;

task body DO_PROCESSING is
HOLDER : SOME_TYPE;

begin
loop

accept GET_DATA(DATA: in
SOME_TYPE) do

HOLDER := DATA;
end GET_DATA;

-- some long processing here

accept PUT_DATA(DATA: out
SOME_TYPE) do

DATA := HOLDER;
end PUT_DATA;

exit when <some condition>;

end loop;
end DO_PROCESSING;

Task “quits” under task controlTask “quits” under task control

Tasking/Tasking/Realtime Realtime -- 2929

Multiple Callers Multiple Callers -- the the SelectSelect
Task TASK2 is

entry ENTRY1;
entry ENTRY2;

end TASK2;

Task body TASK2 is
begin

loop
select --Waits for a call of ENTRY1 or ENTRY2

accept ENTRY1 [do
<SOS>

end ENTRY1];
[<SOS>]

or
accept ENTRY2 [do

<SOS>
end ENTRY2];
[<SOS>]

end select;
end loop;

end TASK2;

Tasking/Tasking/Realtime Realtime -- 3030

The The Select ConcernsSelect Concerns

uu The order of selection is not defined by The order of selection is not defined by
the language!!!the language!!!
–– It may be arbitrary, fair, consistent, It may be arbitrary, fair, consistent,

inconsistent or predefined!!!inconsistent or predefined!!!
–– Any program that makes assumptions Any program that makes assumptions

about the order of the selection of the about the order of the selection of the
open alternatives should be considered open alternatives should be considered
“erroneous”!!!“erroneous”!!!

Tasking/Tasking/Realtime Realtime -- 3131

The Select (cont.)The Select (cont.)
uu Each accept statement in a “select” is called an Each accept statement in a “select” is called an

ALTERNATIVEALTERNATIVE
–– Each alternative is allowed to have an optional Each alternative is allowed to have an optional

“guard” of the form“guard” of the form
when <Boolean condition> =>when <Boolean condition> =>

accept ...accept ...
–– If the guard is true, then the alternative is “open” If the guard is true, then the alternative is “open”

and the corresponding “accept” is consideredand the corresponding “accept” is considered
–– If the guard is false, the alternative is called If the guard is false, the alternative is called

“closed”, and not a possible alternative“closed”, and not a possible alternative
–– If all alternatives are closed, a If all alternatives are closed, a

PROGRAM_ERROR is raised!!PROGRAM_ERROR is raised!!
–– In any “Wait case”, an alternative is evaluated In any “Wait case”, an alternative is evaluated

only once per select!!only once per select!!

Tasking/Tasking/Realtime Realtime -- 3232

Quitting Under Caller ControlQuitting Under Caller Control

task type DO_PROCESSING is
entry GET_DATA (DATA :
in SOME_TYPE);
entry PUT_DATA (DATA :
out SOME_TYPE);
entry SHUTDOWN;

end DO_PROCESSING;

WORKER : DO_PROCESSING;

task body DO_PROCESSING is
HOLDER : SOME_TYPE;

begin
loop

select
accept GET_DATA(DATA: in
SOME_TYPE) do

HOLDER := DATA;
end GET_DATA;

or
accept PUT_DATA(DATA: out
SOME_TYPE) do

DATA := HOLDER;
end PUT_DATA;

or
accept SHUTDOWN;

--sync call only
exit;

end select;
end loop;
end DO_PROCESSING;
--Question: What if callers still in

queue?

Tasking/Tasking/Realtime Realtime -- 3333

Finite Wait Finite Wait -- the the DelayDelay
uu This is the This is the WAIT FOR A FINITE AMOUNT OF TIME WAIT FOR A FINITE AMOUNT OF TIME

optionoption
uu The syntax isThe syntax is

oror
delay <fixeddelay <fixed--point DURATION>;point DURATION>;

[<SOS>][<SOS>]

uu The duration is expressed in seconds (X.X)The duration is expressed in seconds (X.X)
uu Since the delay may be dynamic (an expression), a Since the delay may be dynamic (an expression), a

negative value may be used (treated as 0)negative value may be used (treated as 0)
uu Multiple delays are allowed (the shortest one “wins”)Multiple delays are allowed (the shortest one “wins”)
uu the delay statement may also have a guardthe delay statement may also have a guard
uu After a time equal to the delay, no other open After a time equal to the delay, no other open

alternatives will be allowedalternatives will be allowed
uu After a time >= the delay, the optional <SOS> after the After a time >= the delay, the optional <SOS> after the

delay is executed, and the select terminates delay is executed, and the select terminates

Tasking/Tasking/Realtime Realtime -- 3434

Dave’s Fast FoodDave’s Fast Food
task FAST_FOOD is

entry WALK_IN;
entry DRIVE_UP;

end FAST_FOOD;

task body FAST_FOOD is
begin

loop
select

when WALK_IN_HOURS => accept WALK_IN do
..

end WALK_IN;
or

when DRIVE_UP_HOURS => accept DRIVE_UP do
..

end DRIVE_UP;
or

delay 60.0; --if no customers after 1 minute, clean up
CLEAN_UP_TABLES;

end select;
end loop;

end FAST_FOOD;

Tasking/Tasking/Realtime Realtime -- 3535

Passive Quitting Passive Quitting -- TerminateTerminate

selectselect
accept ...accept ...

oror
accept ...accept ...

oror
terminate;terminate;

end select;end select;

•• This says “If I have no callers in line, and my This says “If I have no callers in line, and my
master is waiting to quit, and all of my children master is waiting to quit, and all of my children
are ready to quit, then I may now terminate”are ready to quit, then I may now terminate”

•• This option is mutually exclusive with the This option is mutually exclusive with the
delaydelay Thus, you can only use the Thus, you can only use the terminateterminate
option with a option with a wait foreverwait forever in a selectin a select

Tasking/Tasking/Realtime Realtime -- 3636

Close the burger jointClose the burger joint
loop

select
when WALK_IN_HOURS =>
accept WALK_IN do

..
end WALK_IN;

or
when DRIVE_UP_HOURS =>
accept DRIVE_UP do

..
end DRIVE_UP;

or
terminate;

end select;
end loop;

end FAST_FOOD;

Tasking/Tasking/Realtime Realtime -- 3737

Don’t Wait at All Don’t Wait at All -- the the ElseElse
uu This option is mutually exclusive with both the This option is mutually exclusive with both the delaydelay and and

the the terminateterminate alternativealternative
selectselect

accept ...accept ...
oror

accept ...accept ...
oror

accept ...accept ...
elseelse

<SOS>;<SOS>;
end select;end select;

uu If there is NOBODY in queue, then perform the sequence If there is NOBODY in queue, then perform the sequence
of statementsof statements

uu This option must be used carefully. Depending upon the This option must be used carefully. Depending upon the
type of wait the caller will take, it can cause huge type of wait the caller will take, it can cause huge
overhead and prevent “real” work from getting done!overhead and prevent “real” work from getting done!

uu If a caller is using the “don’t wait” option also, what are If a caller is using the “don’t wait” option also, what are
the odds of achieving a rendezvous??the odds of achieving a rendezvous??

Tasking/Tasking/Realtime Realtime -- 3838

Never Code a Never Code a Busy WaitBusy Wait

uu A “busy wait” consumes resources, and can easily A “busy wait” consumes resources, and can easily
locklock--up up a nonup up a non--timetime--slicing system!slicing system!

uu Specifically, single processor systems are very Specifically, single processor systems are very
sensitive to this. sensitive to this.

looploop

selectselect
accept SOME_ENTRY_CALL do ..accept SOME_ENTRY_CALL do ..

....

....
end SOME_ENTRY_CALL;end SOME_ENTRY_CALL;

elseelse
null;null;

end select;end select;

end loop;end loop;

Tasking/Tasking/Realtime Realtime -- 3939

Calling Task EntriesCalling Task Entries
uu As we have seen, there are three ways to “receive” an entry As we have seen, there are three ways to “receive” an entry

callcall
1. Wait forever1. Wait forever
2. Wait for a determinate time2. Wait for a determinate time
3. Don’t wait at all3. Don’t wait at all

uu There are three corresponding ways to “call” an entry pointThere are three corresponding ways to “call” an entry point

NOTE: inside a task, you don’t know who was “placing” the call.NOTE: inside a task, you don’t know who was “placing” the call. However, to call However, to call
an entry, you MUST specify both the task name and the entry poinan entry, you MUST specify both the task name and the entry point.t.

Tasking/Tasking/Realtime Realtime -- 4040

Wait Forever Entry CallWait Forever Entry Call
uu Much like a procedure call. You simply specify Much like a procedure call. You simply specify

the TASK_NAME.ENTRY_NAME;the TASK_NAME.ENTRY_NAME;
........
........
Some_Task.Some_Entry(Some_Parameters);Some_Task.Some_Entry(Some_Parameters);
........
........

uu Once this type of “call” is placed, you have Once this type of “call” is placed, you have
ABSOLUTELY NO CONTROL over how long ABSOLUTELY NO CONTROL over how long
you wait. Also, you can’t even determine how you wait. Also, you can’t even determine how
many people are in line ahead of you!!many people are in line ahead of you!!

Tasking/Tasking/Realtime Realtime -- 4141

Timed Entry CallTimed Entry Call
This allows you to wait for a maximum time in queue, This allows you to wait for a maximum time in queue,

then “jump out of the queue”. then “jump out of the queue”.

selectselect
TASK_NAME.ENTRY_NAME (optional_data);TASK_NAME.ENTRY_NAME (optional_data);
<optional SOS><optional SOS>

oror
delay 60.0;delay 60.0;
<optional SOS>;<optional SOS>;

end select;end select;

The select statement is used for BOTH the “selective waits” The select statement is used for BOTH the “selective waits”
in receiving an entry call in the task, and for placing calls tin receiving an entry call in the task, and for placing calls to o
a task entry. Thisa task entry. This orthogonalityorthogonality is very confusing to is very confusing to
beginning Ada code readers. beginning Ada code readers.

Tasking/Tasking/Realtime Realtime -- 4242

Only One Task at a TimeOnly One Task at a Time

MM You can onlyYou can only call one task at a time.call one task at a time.

selectselect
TASK_ONE.ENTRY_NAME;TASK_ONE.ENTRY_NAME;

oror
TASK_TWO.ENTRY_NAME; TASK_TWO.ENTRY_NAME; ---- ILLEGALILLEGAL

end select;end select;

Tasking/Tasking/Realtime Realtime -- 4343

Don’t Wait at All Entry Call Don’t Wait at All Entry Call

NEVERNEVER use this type of call if there is ANY chance that the use this type of call if there is ANY chance that the
task you are calling is also using the “else” option. task you are calling is also using the “else” option.

((translation translation -- don’t use this option except in very special circumstances.don’t use this option except in very special circumstances.))

selectselect
TASK_NAME.ENTRY_NAME;TASK_NAME.ENTRY_NAME;
<optional SOS><optional SOS>

elseelse
<SOS><SOS>

end select;end select;

Tasking/Tasking/Realtime Realtime -- 4444

Let’s look at some code!Let’s look at some code!
uu Time for the “Aggie Burger” examplesTime for the “Aggie Burger” examples

uu In these examples, we look at various In these examples, we look at various
options for rendezvous and callingoptions for rendezvous and calling

uu There is a main program that contains a There is a main program that contains a
task called task called Aggie BurgerAggie Burger, and also a , and also a
procedure called procedure called consumeconsume

Tasking/Tasking/Realtime Realtime -- 4545

procedure MAIN is

type FOOD_TYPE is

MY_TRAY : FOOD_TYPE;

task AGGIE_BURGER is
entry SERVE (TRAY : out FOOD_TYPE);

end AGGIE_BURGER;

task body AGGIE_BURGER is separate;

procedure CONSUME (MY_TRAY : in
FOOD_TYPE)

is separate;

begin
..
..

end MAIN;

Tasking/Tasking/Realtime Realtime -- 4646

The task AGGIE_BURGER provides a
service (resource). It is a producer.

separate (MAIN)
task body AGGIE_BURGER is

THE_FOOD : FOOD_TYPE;

function COOK return FOOD_TYPE is
..
..

end COOK;

begin
..
.. -- We are going to fill in the task body later
..

end;

Tasking/Tasking/Realtime Realtime -- 4747

For now, let us assume that the body of
MAIN always looks like the following:

begin
loop

..

..
AGGIE_BURGER.SERVE(MY_TRAY);
CONSUME (MY_TRAY);
..
delay (SOME_VALUE);

end loop
end MAIN;

Tasking/Tasking/Realtime Realtime -- 4848

Callee Callee scenario #1scenario #1
separate (MAIN)
task body AGGIE_BURGER is

THE_FOOD : FOOD_TYPE;

function COOK return FOOD_TYPE is
..

end COOK;

begin
loop

THE_FOOD := COOK; --cook the food
accept SERVE(TRAY : out FOOD_TYPE) do

TRAY := THE_FOOD;
end SERVE;

end loop;
end AGGIE_BURGER;
--Question - how fresh is the food? How do we quit?

Tasking/Tasking/Realtime Realtime -- 4949

Callee Callee scenario #2scenario #2
begin
loop

THE_FOOD := COOK;
select

accept SERVE(TRAY : out FOOD_TYPE) do
TRAY := THE_FOOD;

end SERVE;
or

terminate;
end select;

end loop;
end AGGIE_BURGER;
--Question - how fresh is the food? How do we quit?

Tasking/Tasking/Realtime Realtime -- 5050

Callee Callee scenario #3scenario #3
begin
loop

THE_FOOD := COOK;
select

accept SERVE(TRAY : out FOOD_TYPE) do
TRAY := THE_FOOD;
end SERVE;

else
null;

end select;
end loop;

end AGGIE_BURGER;

--Question - how fresh is the food? How do we quit?

Tasking/Tasking/Realtime Realtime -- 5151

Callee Callee scenario #4scenario #4
beginbegin
looploop

THE_FOOD := COOK;THE_FOOD := COOK;
selectselect

accept SERVE(TRAY : out FOOD_TYPE) do accept SERVE(TRAY : out FOOD_TYPE) do
TRAY := THE_FOOD;TRAY := THE_FOOD;

end SERVE;end SERVE;
or or

delay 15.0 * MINUTES;delay 15.0 * MINUTES;
null;null;

end select;end select;
end loop;end loop;

end AGGIE_BURGER;end AGGIE_BURGER;
--Question - how fresh is the food? How do we quit?

Tasking/Tasking/Realtime Realtime -- 5252

Callee Callee scenario #5scenario #5
beginbegin
looploop

THE_FOOD := COOK;THE_FOOD := COOK;
selectselect

accept SERVE(TRAY : out FOOD_TYPE) do accept SERVE(TRAY : out FOOD_TYPE) do
TRAY := THE_FOOD;TRAY := THE_FOOD;
end SERVE;end SERVE;

or or
delay 15.0 * MINUTES;delay 15.0 * MINUTES;

oror
when not SERVING_HOURS =>when not SERVING_HOURS =>

delay 0.0;delay 0.0;
exit; exit; ----why not terminate??why not terminate??

end select;end select;
end loop;end loop;

end AGGIE_BURGER;end AGGIE_BURGER;
--Question - how fresh is the food? How do we quit?

Tasking/Tasking/Realtime Realtime -- 5353

Caller scenario #1Caller scenario #1
procedure MAIN isprocedure MAIN is
....
....
....
beginbegin
....

selectselect
AGGIE_BURGER.SERVE(...);AGGIE_BURGER.SERVE(...);
CONSUME(...);CONSUME(...);

oror
utut_burger.SERVE(...); _burger.SERVE(...);
CONSUME(...);CONSUME(...);

end select;end select;

----This is what you want to do (always get in the shortest line)This is what you want to do (always get in the shortest line)
----Unfortunately, it’s illegal!!Unfortunately, it’s illegal!!

Tasking/Tasking/Realtime Realtime -- 5454

Caller scenario #2Caller scenario #2
procedure MAIN isprocedure MAIN is
....
....
beginbegin

....
selectselect

AGGIE_BURGER.SERVE(..);AGGIE_BURGER.SERVE(..);
CONSUME(...);CONSUME(...);

oror
delay 10.0 * MINUTES;delay 10.0 * MINUTES;
selectselect

utut_burger.SERVE(..);_burger.SERVE(..);
----clearly, an inferior and hence, second choice clearly, an inferior and hence, second choice
CONSUME(...);CONSUME(...);

oror
delay 10.0 * MINUTES;delay 10.0 * MINUTES;
EAT_AT_HOME;EAT_AT_HOME;

end select;end select;
end select;end select;

Tasking/Tasking/Realtime Realtime -- 5555

Asynchronous Transfer of Asynchronous Transfer of
Control (Control (then abortthen abort))

uu Allows a sequence of statements to be Allows a sequence of statements to be
interrupted and then abandoned upon interrupted and then abandoned upon
some event.some event.

uu Event is either completion of an entry call, Event is either completion of an entry call,
or expiration of a delay.or expiration of a delay.

uu Used for a mode change, time bounded Used for a mode change, time bounded
computations, usercomputations, user--initiated interruption, initiated interruption,
etc..etc..

Tasking/Tasking/Realtime Realtime -- 5656

UserUser--initiated Interruptinitiated Interrupt

looploop
selectselect

Terminal.Wait_for_Interrupt;Terminal.Wait_for_Interrupt;
Put_Line (“Process Interrupted..”);Put_Line (“Process Interrupted..”);

then abortthen abort

Put_Line (“Put_Line (“--> “);> “);
Get_Line (Command, Last);Get_Line (Command, Last);
Process_Command (Command (1..Last));Process_Command (Command (1..Last));

end select;end select;
end loop;end loop;

}}
This process This process
will be will be
abandoned abandoned
by terminal by terminal
interruptinterrupt

Tasking/Tasking/Realtime Realtime -- 5757

Time Bounded SituationTime Bounded Situation
select -- Time Critical Data Processing

delay 5.0;

Set_Display_Object_Color (Yellow);

Put_Line (“Target lock aborted data too old.”);

then abort -- Data not received in 5.0 seconds

Position_Object;

Set_Display_Object_Color (Green);

end select;

Tasking/Tasking/Realtime Realtime -- 5858

Mode ChangeMode Change
select -- Mode Change

Confirmed_Air_Threat.Were_Gonna_Die;

Sound_ Tone;

Crash_Avoidance;

then abort

Land_Aircraft;

end select;

Tasking/Tasking/Realtime Realtime -- 5959

RequeueRequeue StatementStatement

uu TheThe requeuerequeue allows a call to an entry to be allows a call to an entry to be
placed back in the queue for later placed back in the queue for later
processing.processing.

uu Without the Without the with abortwith abort option, theoption, the
requeuedrequeued entry is protected against entry is protected against
cancellation.cancellation.

requeue Entry_Name [with abort];

Tasking/Tasking/Realtime Realtime -- 6060

RequeueRequeue
StatementStatement

protected Event is
entry Wait;
entry Signal;

private
entry Reset;
Occurred : Boolean := False;

end Event;
protected body Event is

entry Wait when Occurred is
begin

null; -- note null body
end Wait;
entry Signal when True is

-- barrier is always true
begin

if Wait’Count > 0 then
Occurred := True;
requeue Reset;

end if;
end Signal;
entry Reset when Wait’Count = 0 is
begin

Occurred := False;
end Reset;

end Event;

Tasking/Tasking/Realtime Realtime -- 6161

Delay and Until StatementsDelay and Until Statements

delay Next_Time delay Next_Time -- Calendar.Now;Calendar.Now;

---- suspended for at least suspended for at least
the duration specifiedthe duration specified

---- specifies an absolute specifies an absolute
time rather than a time time rather than a time
intervalinterval

The The untiluntil does notdoes not provide a guaranteed delay interval, but it provide a guaranteed delay interval, but it
does prevent inaccuracies due to swapping out between the does prevent inaccuracies due to swapping out between the
“delay interval calculation” and the delay statement“delay interval calculation” and the delay statement

delay until Next_time;delay until Next_time;

Tasking/Tasking/Realtime Realtime -- 6262

Delay StatementDelay Statement

task body Poll_Device is
Poll_Time : Real_Time.Time := time_to_start_polling;
Period : constant Real_Time.Interval := 10 * Milliseconds;

begin
loop

delay until Poll_Time;

. -- sequence of statements

. -- to

. -- Poll the device

Poll_Time := Poll_Time + Period;
end loop;

end Poll_Device;

Poll_Device task Poll_Device task
polls the device polls the device
every 10 every 10
milliseconds milliseconds
starting at the starting at the
initial value of initial value of
Poll_Time. The Poll_Time. The
period will not period will not
drift.drift.

Tasking/Tasking/Realtime Realtime -- 6363

Protected TypesProtected Types
Protected types provide a lowProtected types provide a low--level, level,
lightweight synchronization lightweight synchronization
mechanism whose key features are:mechanism whose key features are:

ÜÜ Protected types are used to Protected types are used to
control access to data shared control access to data shared
among multiple processes. among multiple processes.

ÜÜ Operations of the protected type Operations of the protected type
synchronize access to the data.synchronize access to the data.

ÜÜ Protected types have three kinds Protected types have three kinds
of operations: protected of operations: protected
functions, protected procedures, functions, protected procedures,
and entries.and entries.

Tasking/Tasking/Realtime Realtime -- 6464

Protected Units & Protected Units &
Protected ObjectsProtected Objects

ÜProtected procedures provide mutually
exclusive read-write access to the data of a
protected object

ÜProtected functions provide concurrent
read-only access to the data.

ÜProtected entries also provide exclusive
read-write access to the data.

ÜProtected entries have a specified barrier
(a Boolean expression). This barrier must
be true prior to the entry call allowing
access to the data.

Tasking/Tasking/Realtime Realtime -- 6565

Protected TypesProtected Types
package Mailbox_Pkg is

type Parcels_Count is range 0 .. Mbox_Size;
type Parcels_Index is range 1 .. Mbox_Size;
type Parcels_Array is array (Parcel_Index) of Parcels
protected type Mailbox is

-- put a data element into the buffer
entry Send (Item : Parcels);

-- retrieve a data element from the buffer
entry Receive (Item : out Parcels);
procedure Clear;
function Number_In_Box return Integer;

private
Count : Parcels_count := 0;
Out_Index : Parcels_Index := 1;
In_Index: Parcels_Index := 1;
Data : Parcels_Array ;

end Mailbox;
end Mailbox_Pkg;

Tasking/Tasking/Realtime Realtime -- 6666

package body Mailbox_Pkg is

protected body Mailbox is

entry Send (Item : Parcels) when Count < Mbox_Size is
-- block until room

begin
Data (In_Index) := Item;
In_Index := In_Index mod Mbox_size + 1;
Count := Count + 1;

end Send;

entry Receive (Item : out Parcels) when Count > 0 is
-- block until non-empty

begin
Item := Data(Out_Index);
Out_Index := Out_Index mod Mbox_Size + 1;
Count := Count -1;

end Receive;

Protected Types ExampleProtected Types Example

Tasking/Tasking/Realtime Realtime -- 6767

Protected Types Protected Types
Example (cont)Example (cont)

procedure Clear is --only one user in Clear at a time
begin

Count := 0;
Out_Index := 1;
In_Index := 1;

end Clear;

function Number_In_Box return Integer is
-- many users can check # in Box

begin
return Count;

end Number_In_Box;

end Mailbox;

end Mailbox_Pkg;

Tasking/Tasking/Realtime Realtime -- 6868

Killing a TaskKilling a Task

Tasking/Tasking/Realtime Realtime -- 6969

Aborting a taskAborting a task
u The “ABORT” statement can not only kill a

task, but can have catastrophic effects upon
the entire system.

u Any program unit that has “visibility” to a
task object can “abort” the task thru the
abort statement.

abort TASK_NAME;

Tasking/Tasking/Realtime Realtime -- 7070

Aborting a taskAborting a task
u This causes the task to become “abnormal”

u If the task is “blocked” or “ready”, it just
becomes complete

u If not, it must become completed prior to
any action affecting another task

Tasking/Tasking/Realtime Realtime -- 7171

Aborting a TaskAborting a Task
u A task may “complete” in the middle of IO,

updating a record, an assignment, etc.

u Any entry in the tasks’ queues (or a
“client” that was in rendezvous) now

have a TASKING_ERROR raised

u A task may kill itself to quickly terminate
execution cleanly!!

Tasking/Tasking/Realtime Realtime -- 7272

Aborting a TaskAborting a Task
u “An abort statement should be used only in

extremely severe situations requiring
unconditional termination”

u Any abort statement (other than a task
aborting itself) should only be used as a last
resort if the task is non-responsive or a
“rogue” task!! Steps must be taken to
ensure data and file integrity and recovery!!

Tasking/Tasking/Realtime Realtime -- 7373

Ada 95 StandardAda 95 Standard
FeaturesFeatures

that supportthat support
realreal--time time

programmingprogramming

Tasking/Tasking/Realtime Realtime -- 7474

What is RealWhat is Real--time?time?

Tasking/Tasking/Realtime Realtime -- 7575

Task AttributesTask Attributes

Task_Task_Type’CallableType’Callable;; -- -- is Task in a callable state.is Task in a callable state.
-- -- Boolean returned.Boolean returned.

Task_Task_Type’TerminatedType’Terminated;; -- -- is Task Terminated.is Task Terminated.
-- -- Boolean returned.Boolean returned.

E’CountE’Count;; -- -- number of calls waiting in queue on an Entry.number of calls waiting in queue on an Entry.
-- -- return Universal_Integer;return Universal_Integer;

T’IdentifyT’Identify;; -- -- Yields a value of Task_ID (Annex C)Yields a value of Task_ID (Annex C)
-- -- Only allowed inside an entry_body or Only allowed inside an entry_body or
-- -- accept statement.accept statement.

Tasking/Tasking/Realtime Realtime -- 7676

Features Required Features Required
(for low(for low--level, reallevel, real--time,time,

embedded, and distributed systems)embedded, and distributed systems)

Systems Programming Annex Annex CSystems Programming Annex Annex C

RealReal--Time Annex Annex DTime Annex Annex D

The RealThe Real--Time Annex requires the Time Annex requires the
Systems Programming Annex for support Systems Programming Annex for support

Tasking/Tasking/Realtime Realtime -- 7777

Standard InterfacesStandard Interfaces

pragmapragma ImportImport

pragmapragma ExportExport

pragmapragma ConventionConvention

-- used to import a foreign
language into Ada

-- used to export an Ada
entity to a foreign language

-- use the convention of
another language

Tasking/Tasking/Realtime Realtime -- 7878

Standard InterfacesStandard Interfaces

••package Interface.C package Interface.C ---- interface to Cinterface to C

••package Interface.COBOL package Interface.COBOL ---- interface for COBOLinterface for COBOL

••package Interface.FORTRAN package Interface.FORTRAN -- interface for FORTRANinterface for FORTRAN

The following packages are The following packages are REQUIREDREQUIRED by the standard:by the standard:

Tasking/Tasking/Realtime Realtime -- 7979

Systems Programming Annex Systems Programming Annex
Annex CAnnex C

Tasking/Tasking/Realtime Realtime -- 8080

CapabilitiesCapabilities
(Systems Programming)(Systems Programming)

••Access to Machine Operations (machine dependent)Access to Machine Operations (machine dependent)
Must have assembler (if available)Must have assembler (if available)
Memory addressing and offsets must be specifiedMemory addressing and offsets must be specified
Overhead with inline vs. subprogram calls documentedOverhead with inline vs. subprogram calls documented
PragmasPragmas for interfacing assembler and Ada must be suppliedfor interfacing assembler and Ada must be supplied

••Access to Interrupt SupportAccess to Interrupt Support
pragmapragma Interrupt_Handler (definesInterrupt_Handler (defines parameterlessparameterless procedures procedures

that can be later attached to an interrupt)that can be later attached to an interrupt)
pragmapragma Attach_Handler (can be used to specify attachment of Attach_Handler (can be used to specify attachment of

parameterlessparameterless procedure to a specific interrupt at procedure to a specific interrupt at
initialization time). Thisinitialization time). This pragmapragma can be replaced by a can be replaced by a
dynamic procedure call to Attach_Handler that dynamic procedure call to Attach_Handler that
accomplishes the same thing.accomplishes the same thing.

Tasking/Tasking/Realtime Realtime -- 8181

Interrupt PackageInterrupt Package
package Ada.Interrupts is

type Interrupt_Id is implementation_defined;
type Parameterless_Handler is access protected procedure;
function Is_Reserved (Interrupt : Interrupt_Id) return Boolean;
function Is_Attached (Interrupt : Interrupt_Id) return Boolean;
function Current_Handler (Interrupt :Interrupt_Id)

return Parameterless_Handler;
procedure Attach_Handler (New_Handler : Parameterless_Handler;

Interrupt : Interrupt_Id);
procedure Exchange_Handler

(Old_Handler : out Parameterless_Handler;
New_Handler : Parameterless_Handler; Interrupt : Interrupt_Id);

procedure Detach_Handler (Interrupt : Interrupt_Id);
function Reference (Interrupt: Interrupt_Id) return Address;

private
... -- not specified by the language

end Ada.Interrupts;

Tasking/Tasking/Realtime Realtime -- 8282

package Ada.Interrupts.Names is
implementation_defined : constant Interrupt_Id :=

implementation_defined;
. . .

implementation_defined : constant Interrupt_Id :=
implementation_defined;

private
... -- not specified by the language

end Ada.Interrupts.Names;

Interrupt Package Interrupt Package -- ContCont

Tasking/Tasking/Realtime Realtime -- 8383

Shared Variable ControlShared Variable Control

•Pragma Atomic (applies to objects, components, or types)

•Pragma Atomic_Components (applies to arrays)

•Pragma Volatile (applies to objects, components, or types)

•Pragma Volatile_Components (applies to arrays)

The Atomic pragmas force indivisible read/write operations.

The Volatile pragmas force direct read/writes to memory

Tasking/Tasking/Realtime Realtime -- 8484

Task IdentificationTask Identification

package Ada.Task_Identification is
type Task_Id is private;
Null_Task_Id : constant Task_Id;
function "=" (Left, Right: Task_Id) return Boolean;
function Image (T: Task_Id) return String;
function Current_Task return Task_Id;
procedure Abort_Task (T : in out Task_Id);

function Is_Terminated(T : Task_ID) return Boolean;
function Is_Callable (T : Task_ID) return Boolean;

private
... -- not specified by the language

end Ada.Task_Identification;

ImageImage returns an implementationreturns an implementation--defined string that identifies defined string that identifies
a task.a task.

Current_TaskCurrent_Task returns a value that identifies the taskreturns a value that identifies the task

Tasking/Tasking/Realtime Realtime -- 8585

Task AttributesTask Attributes

with Ada.Task_Identification;
generic

type Attribute is private;
Initial_Value : Attribute;

package Ada.Task_Attributes is
type Attribute_Handle is access all Attribute;

function Value
(T: Task_Identification.Task_Id := Task_Identification.Current_Task)

return Attribute;
function Reference

(T : Task_Identification.Task_Id := Task_Identification.Current_Task)
return Attribute_Handle;

procedure Set_Value (Val : Attribute;
T : Task_Identification.Task_Id := Task_Identification.Current_Task);

procedure Reinitialize
(T : Task_Identification.Task_Id := Task_Identification.Current_Task);

end Ada.Task_Attributes;

Tasking/Tasking/Realtime Realtime -- 8686

Specifies additional characteristics of Ada implementations
intended for real-time systems software.

To conform to this annex, an implementation must also
conform to the Systems Programming Annex.

Most of this annex consists of documentation requirements.
An implementation must document the values of the annex-
defined metrics for at least one hardware/system
configuration.

RealReal--Time AnnexTime Annex

Tasking/Tasking/Realtime Realtime -- 8787

Task and Protected Type PrioritiesTask and Protected Type Priorities
pragma Priority (expression);

pragma Interrupt_Priority (optional expression);

The range of System.Interrupt_Priority shall include at least
one value.

The range of System.Priority must have at least 30 values.

Interrupt_Priority is defined as being greater than Priority.

The following declarations exist in package System
subtype Any_Priority is Integer range implementation-defined;

subtype Priority is Any_Priority range Any_Priority’first..implementation-defined;

subtype Interupt_Priority is Any_Priority range Priority’last+1..Any_Priority’last;

Default_Priority : constant Priority := (Priority’first + Priority’last) / 2;

Default_Interupt_Priority : constant Interupt_Priority := Interupt_Priority’last;

Tasking/Tasking/Realtime Realtime -- 8888

Priority SchedulingPriority Scheduling
pragmapragma Task_Dispatching_Policy (policy_identifier);Task_Dispatching_Policy (policy_identifier);

where FIFO_Within_Priorities is the only required policy. where FIFO_Within_Priorities is the only required policy.
Other implementationOther implementation--dependent policies may be defineddependent policies may be defined

An implementation must document An implementation must document

•• the maximum priority inversion a user task can experiencethe maximum priority inversion a user task can experience

•• whether execution of a task can be preempted by the whether execution of a task can be preempted by the
implementation processing of delay expirations for lower implementation processing of delay expirations for lower
priority tasks (and, if so, for how long) priority tasks (and, if so, for how long)

Tasking/Tasking/Realtime Realtime -- 8989

The Ceiling_Locking policy (which specifies The Ceiling_Locking policy (which specifies
interactions between priority task scheduling interactions between priority task scheduling
and protected object ceilings) must be in effect and protected object ceilings) must be in effect
for FIFO_Within_Priorities.for FIFO_Within_Priorities.

Priority SchedulingPriority Scheduling

pragmapragma Locking_Policy(policy_identifier)Locking_Policy(policy_identifier)

where Ceiling_Locking is a predefined where Ceiling_Locking is a predefined
policy. Other policies may be policy. Other policies may be
implementationimplementation--defined. defined.

Tasking/Tasking/Realtime Realtime -- 9090

Priority Ceiling LockingPriority Ceiling Locking
An example WITHOUT Ceiling LockingAn example WITHOUT Ceiling Locking

Three tasks Three tasks

••P of priority 5 P of priority 5
••Q of priority 3 Q of priority 3
••R of priority 1R of priority 1

Also, there is a Also, there is a protectedprotected object (O).object (O).

Task R is executing a procedure in O. P later requires access tTask R is executing a procedure in O. P later requires access to the o the
same procedure in O, but R must finish first. Q can preempt R. same procedure in O, but R must finish first. Q can preempt R.

R executing O, priority 1R executing O, priority 1

P starts waitingP starts waiting

RR

QQ

PP

Q (priority 3) preempts R (priority 5)Q (priority 3) preempts R (priority 5)

At this point, Q has blocked R and P At this point, Q has blocked R and P

(R must complete exclusive write(R must complete exclusive write
access to O before P can preempt R)access to O before P can preempt R)

Tasking/Tasking/Realtime Realtime -- 9191

Priority Ceiling LockingPriority Ceiling Locking
Solution - Have the protected object O
automatically execute at a “ceiling”.

Every protected object has a ceiling
priority (set by either Priority or
Interrupt_Priority pragma).

When a task executes a protected
operation, it inherits the ceiling priority
of the corresponding protected object.

If the active priority of the task
is higher than the ceiling of the
protected operation, a
Program_Error is raised.

Tasking/Tasking/Realtime Realtime -- 9292

Expiration of Time DelayExpiration of Time Delay
and and

Selective AcceptsSelective Accepts
If two or more selective accepts are present with
different priorities, then the highest priority is
executed.

If two or more expired delays or selective accepts
are present with the same priority, the first in
textual order is executed / selected.

Tasking/Tasking/Realtime Realtime -- 9393

Entry Queuing PoliciesEntry Queuing Policies

This specifies how the calls to a single entry point
are queued up.

pragma Queuing_Policy (policy_identifier);

where FIFO_Queuing and Priority_Queuing are
predefined. Other implementation-defined
policies may exist.

FIFO_Queuing is the default.

Tasking/Tasking/Realtime Realtime -- 9494

Dynamic PrioritiesDynamic Priorities

with System;
with Ada.Task_Identification; -- See G.6.1

package Ada.Dynamic_Priorities is

procedure Set_Priority(Priority : System.Any_Priority;
T : Ada.Task_Identification.Task_Id :=
Ada.Task_Identification.Current_Task);

function Get_Priority (T : Ada.Task_Identification.Task_Id :=
Ada.Task_Identification.Current_Task)
return System.Any_Priority;

private
... -- not specified by the language

end Ada.Dynamic_Priorities;

Allows the priority of a task to be modified or queried Allows the priority of a task to be modified or queried
at run timeat run time

Tasking/Tasking/Realtime Realtime -- 9595

Preemptive AbortPreemptive Abort
Implementations must documentImplementations must document

• Execution time (in processor clock cycles) that it
takes for an abort_statement to cause completion

• On multiprocessors, the upper bound (in seconds)
on the time that the completion of an aborted
task can be delayed beyond the point that is
required for a single processor

• An upper bound on the execution time of an
asynchronous_select

Tasking/Tasking/Realtime Realtime -- 9696

Tasking RestrictionsTasking Restrictions
The following are restrictions that are languageThe following are restrictions that are language--defineddefined

for use with thefor use with the pragmapragma RestrictionsRestrictions
•No_Task_Hierarchy
•No_Nested_Finalization
•No_Abort_Statement
•No_Terminate_Alternatives
•No_Task_Allocators
•No_Implicit_Heap_Allocation
•No_Dynamic_Priorities
•No_Asynchronous_Control
•Max_Select_Alternatives
•Max_Task_Entries
•Max_Protected_Entries
•Max_Storage_At_Blocking
•Max_Asynchronous_Select_Nesting
•Max_Tasks

Tasking/Tasking/Realtime Realtime -- 9797

Monotonic TimeMonotonic Time
This clause specifies a high-resolution, monotonic clock package

package Ada.Real_Time is

type Time is private;
Time_First: constant Time;
Time_Last: constant Time;
Time_Unit: constant := implementation_defined_real_number;

type Time_Span is private;
Time_Span_First: constant Time_Span;
Time_Span_Last: constant Time_Span;
Time_Span_Zero: constant Time_Span;
Time_Span_Unit: constant Time_Span;

Tick: constant Time_Span;
function Clock return Time;

...

Tasking/Tasking/Realtime Realtime -- 9898

Monotonic Time Cont.Monotonic Time Cont.
type Seconds_Count is range implementationtype Seconds_Count is range implementation--defined; defined;

procedure Split (T : in Time; SC: out Seconds_Count; procedure Split (T : in Time; SC: out Seconds_Count;
TS : out Time_Span);TS : out Time_Span);

function Time_Of(SC: Seconds_Count; TS: Time_Span) function Time_Of(SC: Seconds_Count; TS: Time_Span)
return Time; return Time;

private private
... ... ---- not specified by the language not specified by the language
endend Ada.Real_Time; Ada.Real_Time;

Tasking/Tasking/Realtime Realtime -- 9999

Monotonic Time LimitsMonotonic Time Limits
The range of Time shall be sufficient to represent
real ranges up to 50 years later.

Tick shall be no greater than 1 millisecond.

Time_Unit shall be less than or equal to 20 micro
seconds.

Time_Span_First shall be no Greater than -3600
seconds and Time_Span_Last no less than 3600
seconds.

The actual values of Time_First, Time_Last,
Time_Span_First, Time_Span_Last ,
Time_Span_Unit and Tick shall be documented.

Tasking/Tasking/Realtime Realtime -- 100100

Delay AccuracyDelay Accuracy
An implementation shall document the followingAn implementation shall document the following

•An upper bound on the execution time (in processor clock cycles)
of a delay_relative_statement whose requested values is less than or
equal to zero.

•An upper bound of the execution time of a delay_until_statement
whose requested value of the delay expression is less than or equal
to the value of the Real_Time.Clock and Calendar.Clock.

•An upper bound on the lateness of a delay_relative_statement for
a positive values of the delay (and delay_until_statement), in a
situation where the task has sufficient priority to preempt the
processor as soon as it becomes ready.

Tasking/Tasking/Realtime Realtime -- 101101

Synchronous Task ControlSynchronous Task Control
Describes a languageDescribes a language--defined private semaphore defined private semaphore

(suspension object) (suspension object)

package Ada.Synchronous_Task_Control is
type Suspension_Object is limited private;
procedure Set_True(S : in out Suspension_Object);
procedure Set_False(S : in out Suspension_Object);
function Current_State(S : Suspension_Object) return Boolean;
procedure Suspend_Until_True(S: in out Suspension_Object);

private
... -- not specified by the language

end Ada.Synchronous_Task_Control;

•• An object of type Suspension_Object has two states: True and An object of type Suspension_Object has two states: True and
FalseFalse

•• Set_True and Set_False are atomic with respect to each otherSet_True and Set_False are atomic with respect to each other
•• Suspend_Until_True blocks the calling task until the state is TrSuspend_Until_True blocks the calling task until the state is True, ue,

Program_Error is raised if another task is already waitingProgram_Error is raised if another task is already waiting
•• Current_State returns the current state of the object.Current_State returns the current state of the object.

Tasking/Tasking/Realtime Realtime -- 102102

Asynchronous Task ControlAsynchronous Task Control
This clause introduces a languageThis clause introduces a language--defined package defined package

to do asynchronous suspend/resume on tasks. to do asynchronous suspend/resume on tasks.

with Ada.Task_Identification;
package Ada.Asynchronous_Task_Control is
procedure Hold(T : Ada.Task_Identification.Task_Id);
procedure Continue(T : Ada.Task_Identification.Task_Id);
function Is_Held(T : Ada.Task_Identification.Task_Id)
return Boolean;

private
... -- not specified by the language

end Ada.Asynchronous_Task_Control;

Tasking/Tasking/Realtime Realtime -- 103103

Asynchronous Task ControlAsynchronous Task Control
• After the Hold operation, the task becomes

“held”. There is a conceptual “idle task”
whose priority is below
System.Any_Priority’First. The held task is
set to a “held priority” below the “idle
task”.

• For a held task, it’s base priority no longer
constitutes an inheritance source. Instead,
the “held priority” is the new inheritance
source.

• A Continue operation resets the state to
not-held, and the priority is now
reevaluated.

Tasking/Tasking/Realtime Realtime -- 104104

So So ---- why use Ada tasking?why use Ada tasking?
uu Because Ada tasking is part of the Because Ada tasking is part of the

language, and it’s a defined standardlanguage, and it’s a defined standard

–– Can be easily certified (since it’s ONLY Can be easily certified (since it’s ONLY
part of the language!!part of the language!!

–– In safetyIn safety--critical environments, all critical environments, all
components of a system must be specified components of a system must be specified
and tested. This is difficult in other and tested. This is difficult in other
languageslanguages

Tasking/Tasking/Realtime Realtime -- 105105

More than just theMore than just the
Source Code must be CertifiedSource Code must be Certified

System
(Program)This is Certified and

is Safety Critical

Source
Code

Compiler

LinkerRun-time
System

Library
and

Runtime
code

Tasking/Tasking/Realtime Realtime -- 106106

Lack of ExperienceLack of Experience

Lack of experience in Ada Lack of experience in Ada
programming causes poor programming causes poor
code performance.code performance.

Lack of experience in Lack of experience in
“C/C++” causes code “C/C++” causes code
errors.errors.

Tasking/Tasking/Realtime Realtime -- 107107

Questions?Questions?

Tasking

Tasking/Tasking/Realtime Realtime -- 108108

The EndThe End

