

SPEAKENS

Eugene Bingue, Ph.D.
Dr.Bingue@ix.netcom.com

David A. Cook, Ph.D.
USAF STSC/Shim Inc. <
David.Cook@hill.af.mil

LLeslie (Les) Dupaix
USAF STSC
LLes. Dupaix@hill.af.mil

Tasking/Realtime - 2

- Presented
- by the

T eam

David A. Cook; Ph.D.
Shim Enterprises; Inc.

email: david.coeck@hilil afmil

Eugene Bingue lLeslie Dupaiix

INova Seutheastern University. Sofitware Tiechnology Suppoert Center

email: bingue@ix.netcom.com email’ les. dupaix@hilllafi.mil

Tasking/Realtime - 3

Multitasking

Parallel Processing
(Frasking)

~ The Ada parallel processing model is a useful
model for the abstract description of many.
parallel processing problems. In addition, a
more static monitor-like approach Is
availlable for shared data-access applications.

Ada provides support for single and multiple
processor parallel processing, and also
Includes support for time-critical real-time
and distributed applications.

Tasking/Realtime - 5

What a Task 1Is

¢ Concurrently Executing Program Unit
One processor (single thread of control)
Multi-programming (multiple threads)
Multi-processing (multiple threads)
Distributed Environment (sterile)
Distributed Environment

¢ Always a Slave
Must have a master
Sometimes abortable
Can be aborted by ANYBODY (who has visibility)
Since a task must have a master, it can never be a library unit

+ What makes the master important?

The master may not terminate until all “children” are finished
Library packages acting as a master may have “rogue” tasks

Tasking/Realtime - 6

Simple Trask Syntax
/ task [type] task simple_name [is\

{entry declaration;

{representation clause;}
end [task_simple_name | | ;

task body task_simple_name Is

[declarative part]
Pegin

seguence_of statements
[exception
exception handler |

\end [task_simple_name] ; /

Tasking/Realtime - 7

Examples - Single Trask

task EAT UP_RESOU RCE\s-

task body
EAT _UP_RESOURCES is
begin
loop
null;

end loop;
end EAT_UP_RESOURCES;

Only 1 task, and it’s name is EAT_UP_RESOURCES!!!

Tasking/Realtime - 8

Examples - Trask Types

task type EAT_UP_RESOURCES; \

task body EAT _UP_ RESOURCES is
begin
loop
null;

end loop;
end EAT_UP RESOURCES;

type EATER is access EAT_UP_RESOURCES;
EAT UP _1:EATER;

\E:\AT_U P A LOT:array (1..10) of EATER, /

There are 11 tasks defined above!

Tasking/Realtime - 9

When does a task start?

+ After the elaboration of the declarative part that each
task is declared in. Basically, after the “begin”
statement, but before any other executable statement

¢ Allows TASKING_ ERROR to be raised in the
“master” in case of problems in the elaboration of a
task

NOTE - This is the ONLY time that a task will raise an
asynchronous exception in the master. There may be only 1
TASKING ERROR per master per declarative region

Tasking/Realtime - 10

STmplest tasks Rave no
communication with other
pProgiam Units

Task EAT UP_RESOURCES ;

task body EAT_UP_RESOURCES is
begin
loop
Do _some_thing;
exit when Good_and_ready;
end loop;
end EAT_UP_RESOURCES;

Tasking/Realtime - 11

Rendezvous

¢ |f another program unit calls a task, and
the task accepts the call, then the two
units (the caller and the callee) are said
to be In rendezvous

¢ During rendezvous, the caller Is
suspended or blocked, and the callee (the
task unit) Is active

Tasking/Realtime - 12

Pronlem - how to synchronize
WO oldjects?

¢ Solution

— Have an Ada task that synchronizes with a
calling/ unit.

— Scenario

+ Proegram unit calls a task, saying “let me know.
WhEn you are ready te synchronize

+ Ada task “accepts” the symchronize call, and
executes an optional Sequence Of Statements
(SOS). The caller and task are new
Symchronized

Tasking/Realtime - 13

Synchronization Calls

@sk DO _SOMETHING is \
entry SYNC _POINT,;
end DO_SOMETHING;

task body DO_SOMETHING is
begin

loop

accept SYNC _POINT do
<SOS #1>

end SYNC_POINT,;
<SOS #2>

end loop;

K end DO_SOMETHING; /

e “accept™ synchronizes the caller and server, duking SOS #1 and
prepares the task te execute SOS #2.

SOS #1 occurs during rendezvous, and the caller 1s “blocked™ while
the receiver (server) executes the statements. SOS #1 should e
only as/leng as akselutely necessary. SOS #1 may: e aull

SOS #2 eceuUrs ahter renadezveus, and multiple threads off control

exist. Both the caller and server are executing in parallel.
Tasking/Realtime - 14

Simple “sync™

/ task DO_SOMETHING is
entry SYNC _POINT,;
end DO_SOMETHING:

task body DO_SOMETHING is
begin
loop
accept SYNC_POINT,;
<SOS #2>
end loop;

K end DO_SOMETHING,;

%

There Is ne action asseciated with the symchronize call, so there IS ne

“do end;* assoclated! withientry peint SYNC POIINIE

AS SeEN as the task Do, Semethingiaccepts thecall; the

synchronization ends, and Both the caller and callee preceed after

thesynchronization.

Tasking/Realtime - 15

IHow Iong dees a task “wWalt™?

¢ The easiest option to program is the
“walt forever” model.

¢ In this model, a task 1s willing to wait
for a call until some other program unit
calls it. Although a parallel thread of
control, the task Is inactive, waiting for
another program unit to call it and
reactivate it

Tasking/Realtime - 16

Wihenwe say call™....

¢ \We don’t mean call in the sense of
calling a procedure or function. The
task Is already an active entity,
occupying stack, memory, and machine
cycles.

¢ Calling a task refers to an attempt to
rendezvous

Tasking/Realtime - 17

Walit forever!

» An “ENTRY POINT” defines a point to rendezvous
(synchronization or exchange data point) with a task.

You can NEVER call a task, enly rendezvous with It at
an entry point. An entry point Is like a “phone numiber?
to the task.

task DO_SOMETHING is \

entry SYNC POINT,;
end DO_SOMETHING;

task body DO_SOMETHING is
begin
loop
accept SYNC_POINT,;
<SOS> --Sequence Of Statements

end loop;
end DO_SOMETHING; /

Tasking/Realtime - 18

Multiple Accept Statements

¢ There Is nothing “sacred” about “accept’” statements.
¢ There may be multiple accepts per entry point

task type DO_SOMETHING_ELSE is \
entry SYNC_POINT;
end DO SOMETHING_ELSE

task body DO _SOMETHING_ELSE is
begin
loop
accept SYNC POINT do
<SOS #1>
end SYNC_POINT,;

<SOS #2>
accept SYNC_POINT;

end loop;

\ end DO_SOMETHING_ELSE; /

Tasking/Realtime - 19

Entry Call Parameters

An entry point may define parameters
(Itke a precedure or function definition)

-

_

task type DO _LITTLE is
entry GET_DATA (PARAM1:in SOME_TYPE),
entry PUT_DATA (PARAM2 : out SOME_TYPE);
end DO _LITTLE;

TASK_DO_LITTLE : DO _LITTLE;

task body DO _LITTLE is
HOLDER : SOME_TYPE;
begin
loop
accept GET_DATA (PARAML: in SOME_TYPE) do
HOLDER := PARAM],
end GET_DATA;

accept PUT_DATA (PARAM2 : out SOME_TYPE) do
PARAM? := HOLDER:
end PUT_DATA:

end loop;
end DO _LITTLE; j/
rasking/Realtime - 20

What the Previous
Example [Does

Enforces “server-client™ relationship for a
“critical” data I1tem.

Requires a “new’” item to be created before It can
e “consumed™

Requires the current item; to be “consumed™
pefore a new item can be created.

Will allow multiple preducers/consumers to
Interact by using the task as a “middleman’

Tasking/Realtime - 21

Receiving the data

task body DO _LITTLE Is
HOLDER : SOME_TYPE;
begin
loop

accept PUT_DATA (PARAM2 : out SOME_TYPE) do
PARAM?2 := HOLDER,;
end PUT_DATA,;

end loop;
end DO _LITTLE;

Tasking/Realtime - 22

Storing the Data

task body DO _LITTLE is
HOLDER : SOME_TYPE;
begin
loop
accept GET_DATA (PARAM1: in SOME_TYPE) do

HOLDER := PARAML;
end GET_DATA;

accept PUT_DATA (PARAM2 : out SOME_TYPE) do
PARAM?2 := HOLDER,;
end PUT_DATA,;

end loop;
end DO _LITTLE;

Tasking/Realtime - 23

Eorwarding the Data

task body DO _LITTLE is
HOLDER : SOME_TYPE;
begin
loop
accept GET_DATA (PARAM1: in SOME_TYPE) do

HOLDER := PARAML;
end GET_DATA;

end loop;
end DO _LITTLE;

Tasking/Realtime - 24

Implicit Queues for Entry
Points

& Queues

— By definition of accept statement, only 1
caller may be In rendezvous per task.

— This means that calls for task entries are
neither reentrant or recursive

¢ There Is a queue assoclated with each
entry point. All callers to this entry
stand In an ordered line.

Tasking/Realtime - 25

Use “Wait Untiifl get Done™
with Great Care!

¢ Could be replaced with a simple procedure/function call
except In special Cases!

¢ Use entry points to pass data “one way’”

task type DO _PROCESSING is
entry DO_WORK (DATA : in out SOME_TYPE);
end DO_PROCESSING;

WORKER : DO_PROCESSING;

task body DO_PROCESSING is
begin
loop
accept DO_WORK (DATA : in out SOME_TYPE) do
<1.50S> -- some long, involved processing here
ernd DO _WORK;
erid loop;
ernid DO_PROCESSING,;

Tasking/Realtime - 26

When You Need to Send and
Recelve Data From a Task

/task DO PROCESSING is \
entry GET DATAEDATA in SOME_TYPE):
entry PUT_DATA (DATA : out SOME TYPE);

end DO PROCESSING:

task body DO _PROCESSING is
HOLDER : SOME_TYPE;
begin
loop

accept GET_DATA(DATA: in SOME_TYPE) do
HOLDER := DATA:
end GET_DATA;

<LSOS> -- some long, involved processing here

accept PUT DATA(DATA out SOME _TYPE) do
DATA = HOLDER,;
end PUT_DATA;

end loop;
Qnd DO_PROCESSING; /
asking/Realtime - 27

EXiting or Quitting a Task
Task “ quits’™ unader task control

ﬁsk type DO_PROCESSING is begin
entry GET_DATA (DATA : i olele

SOME_TYPE); -
entry P_UT_D,)A\TA (DATA - accept GET_DATA(DATA: in

out SOME_TYPE); SOME_TYPE) do

end DO_PROCESSING: HOLDER := DATA,;

end GET_DATA,;

WORKER : DO_PROCESSING; -- some long processing here

task body DO_PROCESSING is accept PUT_DATA(DATA: out
HOLDER : SOME_TYPE; ~ SOME_TYPE) do

DATA := HOLDER;
end PUT DATA;

exit when <some condition>;

end loop;

\\end DO PROCESSING; %/
Tasking/ time - 28

Multiple Callers - the Select

ﬁl’ ask TASK2 is \
entry ENTRY1; |

entry ENTRY?2Z;
end TASK2:

Task body TASK2 is
begin
loop
select

accept ENTRY1 [do
<S0OS>

end ENTRY1];

[<SOS>]

accept ENTRY?2 [do
<S0S>
end ENTRY?2];
[<SOS>]
end select;

end loop;
end TASK?2;

Tasking/Realtime - 29

The Select Concerns

¢ The order of selection Is not defined by
the language!!! ‘
— It may be arbitrary, fair, consistent,
Inconsistent or predefined!!!

— Any program that makes assumptions
about the order of the selection of the
open alternatives should be considered
“erroneous !

Tasking/Realtime - 30

The Select (cont.)

¢ Each accept statement in a “select™ Is called an
ALTERNATIVE

— Each alternative is allowed to have an optional

“guard™ of the form
when <Boolean condition> =>

accept ...

— |f the guard Is true, then the alternative Is “open’
and the corresponding “accept™ Is considered

— |fi the guard Is false, the alternative is called
“closed™, and not a possible alternative

f all alternatives are closed, a
PROGRAM_ERROR iIs raised!!

— | any “Wait case”, an alternative Is evaluatead
only ence per select!!

Tasking/Realtime - 31

Quitting Unader Caller Control

ﬁlsk type DO_PROCESSING |s\
entry GET_DATA (DATA :
in SOME_TYPE);
entry PUT_DATA (DATA :
out SOME_ TYPE);
entry SHUTDOWN;
end DO_PROCESSING:

WORKER : DO_PROCESSING;

task body DO_PROCESSING is
HOLDER : SOME_TYPE;

begin
loop
select
accept GET_DATA(DATA: In
SOME_TYPE) do
HOLDER := DATA,
end GET_DATA;
or
accept PUT _DATA(DATA: out
SOME TYPE) do
DATA := HOLDER,;
end PUT_DATA;
or
accept SHUTDOWN,;
--sync call only
exit;
end select;
end loop;

end DO_PROCESSING;
--Question: What if callers still in /
queue?

Tasking/Realtime - 32

EiniteWait - the Delay

This is the WAIT FOR A FINITE AMOUNT OF TIME
option
The syntax IS
Cor
delay <fixed-point DURATION>;
[<SOS> |

- J

The duratioen Is expressed iniseconds (X.X)

Since the delay may be dynamic (amn expression), a
negative value may e usedi (treated as 0)

Multiple delays are allowed (the shortest one “wins™)
the delay statement may. also have a guard

After a time egual to the delay, ne other epen
alternatives will e allewed

After a time >= the delay, the optional <SOS> afiter the
delay Is executed, and the select terminates

Tasking/Realtime - 33

Dave’s Fast Food

/task FAST FOOD is
entry WALK_IN;
entry DRIVE_UP;
end FAST_FOOQOD;

task body FAST _FOQOD is
begin
loop
select
when WALK IN_HOURS => accept WALK_IN do

end WALK_IN;
or
when DRIVE_UP_HOURS => accept DRIVE_UP do

end DRIVE_UP:
or
delay 60.0; --if no customers after 1 minute, clean up
CLEAN_UP_TABLES;
end select;
end loop;

qu FAST FOOD: i/
TaskingZRealtime - 34

Passive Quitting - ferminate
4 \

select
aceept ...

or

aceept ...
0]

terminate:

end select:
\

/

This says “lif I have no callers i line, and my
master Is waiting te quit, and all of my children
are ready to guit, then I'may now: terminate™

= This option 1s mutually exclusive with the
delay Thus, you can only use the terminate
optien withia walt forever ina select

Tasking/Realtime - 35

Close the burger joint

loop
select
when WALK _IN_HOURS =>
accept WALK _IN do

end WALK_IN:

when DRIVE_UP_HOURS =>
accept DRIVE_UP do

end DRIVE_UP;
or
terminate;
end select;
end loop;
end FAST_FOOD;

Tasking/Realtime - 36

Don’t Walit at All - the Else

¢ This option 1s mutually exclusive with both the delay and
the terminate alternative

e select I

accept ...

or
accept ...

or
accept ...

else
<SOS>:

_ end select; Y,

¢ Ifithere Is NOBODY in queue, then perform the sequence
of statements

¢ ['his option mMust lbe used carefully. Depending upon the
type ofi wait the caller will take, It can cause huge
everhead and prevent “real™ work from getting done!

¢ |- a calleris using the “don’t Walt™ option alse, What are
the odds of achieving a rendezvous??

Tasking/Realtime - 37

Never Code a Busy \Wait
ﬁ)op \

select

accept SOME_ENTRY CALL do...

end SOME_ENTRY CAILL;
else

null;
end select:

Qnd leop; /

¢ A “busy walt™ consumes resources, and can easily
lock-Up Up a non-time-slicing system;

¢ Specifically, single processor systems are Very.
sensitive to this.

Tasking/Realtime - 38

Calling Trask Entries

¢ AsWwe have seen, there are three ways to “receive” an entry
call |

1. \Wait forever
2. \Wait for a determinate time
3. Don’twait at all

¢ [here are thrree corresponding ways to “call” an entry point

NONE: 1naside a‘task; you den t knew whewas “placing™ the call. Hewever, e call
an entny; you MUSHT speciiiy hoth the task nanie and the entry peint.

PN o

Tasking/Realtime - 39

\Wait Forever Entry Call

¢ Much like a procedure call. You simply specity
the TASK_NAME.ENTRY_NAME;

o ~

Some_Task.Seme_Entry(Some_Parameters);

K.... y

Once this type ofi “call* Is placed, you have
ABSOLUTELY NO CONTROL ever how leng
you walit. Also, you canrt even determine how.

many people are in line ahead of you!!

Tasking/Realtime - 40

Timed Entry Call

This allows youl to walt for a maximum time in queue,
then “jump out of the gueue™.
/select)

TASK_NAME.ENTRY_ _NAME (eptional_data);
<@ptionall SOS>

delay 60.0;
<@ptional SOS>;

end select;
\

%

The select statement 1s used for BOTH the “selective walits™

In receiving anientry call in the task, and fier placing|calls te
a task entry. This orthegonality Is very coenfusing to
PEgINNING Ada code readers.

Tasking/Realtime - 41

Only One Task at a e

select

TASK_ONE.ENTRY_ _NAME;
or

TASK TWO.ENTERY NAME; - |LLEGAL
end select:

& You can only call one task at a time.

Tasking/Realtime - 42

Don’t Wait at All' Entry Call
R

-

select
TASK NAME.ENTRY NAME;
<optional SOS>

else

<SOS>

end select:
N %

NEVER wuse this type of call if there ist ANY chance that the
task youl are calling| 1s alse using the “else” option.

(translation - den’t wse this optien except in Very special circumstances.)

Tasking/Realtime - 43

¢

¢

¢

|_et’s look at some code!

Time for the “Aggie Burger” examples

In these examples, we look at various
options for rendezvous and calling

here Is a main program that contains a
task called Aggie Burger, and also a
procedure called consume

Tasking/Realtime - 44

procedure MAIN is
type FOOD TYPE Is
MY _TRAY : FOOD_TYPE;
task AGGIE_ BURGER is
entry SERVE (TRAY : out FOOD TYPE);
end AGGIE_BURGER;
task body AGGIE_BURGER Is separate;
procedure CONSUME (MY_TRAY :iIn

FOOD TYPE)
IS separate;

begin

end MAIN:

Tasking/Realtime - 45

The task AGGIE_ BURGER provides a
service (resource). Itis a producer

separate (MAIN)
task body AGGIE_ BURGER Is

THE_FOOD : FOOD TYPE;
function COOK return FOOD_TYPE is

end CIZIOOK;

begin

. - We are going to fill in the task body later

end;

Tasking/Realtime - 46

For now, let us assume that the body of
MAIN always looks like the following:

begin
loop

AGGIE_ BURGER.SERVE(MY_TRAY);
CONSUME (MY_TRAY);

delay (SOME_VALUE);
end loop
end MAIN;

Tasking/Realtime - 47

Callee scenario #1

separate (MAIN)
task body AGGIE BURGER is

THE_FOOD : FOOD TYPE;

function COOK return FOOD _TYPE is
end COOK;

begin
loop
THE FOOD = COOK; --cook the food
accept SERVE(TRAY : out FOOD_TYPE) do
TRAY := THE_FOOD;
end SERVE;
end |loop;
end AGGIE_BURGER;
--Question - how fresh isthe food? How do we quit?

Tasking/Realtime - 48

Callee scenario #2

begin
loop
THE FOOD = COOK;
select
accept SERVE(TRAY : out FOOD_TYPE) do
TRAY = THE_FOOD;
end SERVE;
or
terminate;
end select;
end loop;
end AGGIE BURGER;
--Question - how fresh is the food? How do we quit?

Tasking/Realtime - 49

Callee scenario #3

begin
loop
THE_FOOD := COOK;
select
accept SERVE(TRAY : out FOOD TYPE) do
TRAY := THE_FOOD;
end SERVE:;
else
null:
end select:;
end loop;
end AGGIE BURGER;

--Question - how fresh is the food? How do we quit?

Tasking/Realtime - 50

Callee scenario #4

begin
loop
THE_FOOD .= COOK;
select
accept SERVE(TRAY : out FOOD_ TYPE) do
TRAY ;= THE FOOID;
end SERVE;

delay 15.0 * MINUTES;
null;
end select:;
end leop;
end AGGIE_BURGER;
--Question - how fresh is the food? How do we quit?

Tasking/Realtime - 51

Callee scenario #5

begin
loop
THE_FOOD := COOK;
select
accept SERVE(TRAY : out FOOD_ TYPE) do
TRAY ;= THE _FOOD;
end SERVE;

delay 15.0* MINUTES;

whennot SERVING HOURS =>
delay 0.0;
exit; --\Why not terminate??
endiselect;
endiloop;
end AGGIE BURGER;

--Question - how fresh is the food? How do we quit?

Tasking/Realtime - 52

Caller scenario #1

procedure MAIN Is

Begin

select

AGGIE BURGER.SERVE(...);
CONSUMEC...);

ut_burger.SERVE(...);
CONSUMEC...);
end select:

—-This Is what you want to do (always get in the shortest line)
—-Unfortunately, 1t’s illegal!l

Tasking/Realtime - 53

Caller scenario #2

procedure MAIN Is

Begin

§elect
AGGIE BURGER.SERVE(..);
CONSUME(...);

delay 10.0* MINUTES;

select
ut_burger.SERVE(..);
--clearly, an inferior and hence, second choice
CONSUMEC(...);

or
delay 10.0* MINUTES;
EAT AT HOME;

end select;

end select;

Tasking/Realtime - 54

Asynchronous Transter of
Control (then abort)

+ Allows a sequence of statements to be
Interrupted and then abandened upon
Some event.

¢ Event Is either completion of an entry call,
Or expiration of a delay.

¢ Used for a mode change, time bounded
computations, user-initiated interruption,
etc..

Tasking/Realtime - 55

User-iitiated Interrupt

loop
select
Terminal.\Wait_for_Interrupt;
Put_Line (*Process Interrupted..”);

then abort

This process
Wil oe |
zlojelplefelplle
Y/ terminel

end select; Interrupt
end leop;

Put_Line (“=>)
Get_Line (Command, Last);
Process_Command (Command (1..Last));

Tasking/Realtime - 56

T1me Bounded Situation

select -- Time Critical Data Processing
delay 5.0;
Set_Display_Object_Color (Yellow);
Put_Line (“Target lock aborted data too old.”);
then abort -- Data not received in 5.0 seconds
Position_Obiject;
Set_Display_Object_Color (Green);
end select;

. Realtime - 57

Mode Change

select -- Mode Change

Confirmed_Air _Threat.Were Gonna_Die;

Sound_ Tone;

Crash_Avoidance;
then abort

Land_Aircraft;

end select;

Tasking/Realtime - 58

ReEquUele Statement

requeue Entry_Name [with abort];

¢ [herequeue allowsia callite an entry/ to lbe
placediback In the gueue for later
Processing.

+ Witheut thewith abert optien, the
requeted entry/ IS pretected against
cancellation.

1asking/Realtiine - 59

REequene
Statement

protected Event is
entry Wait;
entry Signal;
private
entry Reset;
Occurred : Boolean := False;
end Event;
protected body Event is
entry Wait when Occurred is
begin
null; -- note null body
end Wait;
entry Signal when True is
-- barrier is always true
begin
iIf Wait’'Count > O then
Occurred := True;
requeue Reset,
end if;
end Signal;
entry Reset when Wait'Count =0 is
begin
Occurred := False;
end Reset;
end Event;

Tasking/Realtime - 60

Delay ana Until Statements

delay Next Time - Calendar.Now;

-- Suspended! for at least
the duratien specified

delay unitil Next_time;

-- SpecIfies an anselute
time rather than a time
interval

e unitll dees not provide a guaranteed delay interval, but 1t
deEes prevent maccuracies due te swapping euit between the
“delay interval calculation” and! the delay, statement

Tasking/Realtime - 61

Delay Statement

task body Poll Device is
Poll Time : Real Time.Time = time_to_start_polling;
Period : constant Real Time.Interval := 10 * Milliseconds;
begin
loop

delay until Poll_Time;
2ollTDevice task
== sequence of statements pOllS the device

evenry 10
millisecenads
Stalting at the
Inialivalue of;
_ _ _ Eoll ime: he

Poll_Time := Poll_Time + Period; period willFnot
end loop; driifit.

end Poll_Device;

== 1o

-= Poll the device

Tasking/Realtime - 62

Protected Types

Protected types provide a low-level,
lightwelght synchronization
mechanism whose key features are:

< Protected types are used to
control access to data shared
among multiple processes.

< Operations ofi the protected type
Synchronize access to the data.

< Protected types have three Kinds
of operations: protected
functions, protected procedures,
and entries.

Tasking/Realtime - 63

Protected Units &
Protectead Objects

< Protected procedures provide
to the data of a
protected object

< Protected functions provide
to the data.

< Protected entries also provide exclusive
read-write access to the data.

< Protected entries have a specified barrier
(a Boolean expression). This barrier must
be true prior to the entry call allowing
access to the data.

Tasking/Realtime - 64

Protected ThVpes

ﬁackage Mailbox_PKkg is
type Parcels_Count is range 0 .. Mbox_Size;

type Parcels_Index is range 1 .. Mbox_Size;
type Parcels_Array is array (Parcel Index) of Parcels
protected type Mailbox is
-- put a data element into the buffer
entry Send (Item : Parcels);
-- retrieve a data element from the buffer
entry Receive (Item : out Parcels);
procedure Clear;
function Number_In_Box return Integer;
private
Count . Parcels_count :=0;
Out_Index . Parcels_Index := 1;
In_Index: Parcels_Index := 1;
Data . Parcels_Array ;

end Mailbox;
w Mailbox_PKkg;

Tﬂcbi%e - 65

Protected Thypes Example

ﬂackage body Mailbox_Pkg is \

protected body Mailbox is

entry Send (Item : Parcels) when Count < Mbox_Size is
-- block until room
begin
Data (In_Index) := Item;
In_Index := In_Index mod Mbox_size + 1,
Count := Count + 1;
end Send;

entry Receive (Item : out Parcels) when Count >0 is
-- block until non-empty

begin
Item ;= Data(Out_Index);
Out_Index := Out_Index mod Mbox_Size + 1;

Count := Count -1;
end Receive; /

Tasking/Realtime - 66

Protected Thypes
Example (cont)

procedure Clear is --only one user in Clear at a time \
begin |
Count :=0;
Out_Index :=1;
In_Index :=1;
end Clear;

function Number_In_Box return Integer Is
-- many users can check # in Box

begin
return Count;
end Number _In_Box;

end Mailbox;

\@d Mailbox_Pkg; /

Tasking/Realtime - 67

Killing a Task

Tasking/Realtime - 68

ABorting a task

¢ The “ABORT” statement can not only kill a
task, but can have catastrophic effects upon
the entire system.

¢ Any program unit that has “vishility” to a
task object can “abort” the task thru the
abort statement.

abort TASK_NAME;

Tasking/Realtime - 69

ABorting a task

¢ This causes the task to become “abnormal”

¢ If thetask I1s“blocked” or “ready”, It just
becomes compl ete

¢ If not, it must become completed prior to
any action affecting another task

Tasking/Realtime - 70

Aborting a lfask

¢ A task may “complete” in the middle of 10,
updating arecord, an assignment, etc.

¢ Any entry In the tasks' queues (or a
“client” that was in rendezvous) now
have a TASKING ERROR raised

¢ A task may kill itsalf to quickly terminate
execution cleanly!!

Tasking/Realtime - 71

Aborting a lfask

+ “An abort statement should be used only In
extremely severe situations requiring
unconditional termination”

+ Any abort statement (other than atask

aborting itself) should only be used as alast
resort If the task IS non-responsive or a
“rogue” task!! Steps must be taken to
ensure data and file integrity and recovery!!

Tasking/Realtime - 72

Ada 95 Standare

EEALUrES -
that support x
= real-time *
pProg@amming

Task Attributes

Task Type’Callable; - - is Task in a callable state.
- - Boolean returned.

Task Type’Terminated; - - is Task Terminated.
- - Boolean returned.

E'Count; --number of calls waiting in queue on an Entry.
- - return Universal_Integer;

T’ ldentity; - - Yields a value of Task_ID (Annex C)

- - Only allowed Inside an entry._body or
- - ACCEpP statement.

Tasking/Realtime - 75

EFeatures Required
(fer low-level;, real-time,
embedded, and distributed systems)

Systems Programming Annex Annex C

Real-Time Annex Annex D

The Real-Time Annex requires the
Systems Programming Annex for support

Tasking/Realtime - 76

Standard Interfaces

pragma: limpert = __ I __used to import a foreign
language into Ada

pragma Export ~ [--used to export an Ada
entity to a foreign language

-- use the convention of
pragma Convention = eI EQITIEST

Tasking/Realtime - 77

Standard Interfaces

The follewing packages are REQUIRED by the standard:

spackage Interface.C -- interface to C

epackage Interface.COBOL -- Interface fior COBOL

spackage Initerface.EORTRAN - interface fior EORTRAN

Tasking/Realtime - 78

Systems Programming AnNex

Tasking/Realtime - 79

Capanilities
(Systems Programming)

esAccess te Machine Operations (machine dependent)

Must hiave assembler (I available)

Memory addressing andl offsets must be specified

Overhead with inline vs. subprogram calls documented
Pragmas for interfacing assembler and Ada must e supplied

sACCESS to Interrupt SUpport
pragma Interrupt_Handler (defines parameterless procedures
that can be later attached to an interrupt)
pragma Attach_ Handler (cam be used tor specify’ attachment ofi
parameterless procedure to a specific Interrupt at
Iniializatien time).. This pragma can be replaced by a
dymamic precedure call to Attach_Handler that

accomplishes the same thing.

Tasking/Realtime - 80

Interrupt Package

package Ada.lnterrupts is
type Interrupt_Id is implementation_defined;
type Parameterless Handler is access protected procedure;
function Is_Reserved (Interrupt : Interrupt_Id) return Boolean;
function Is_Attached (Interrupt : Interrupt_Id) return Boolean;
function Current_Handler (Interrupt :Interrupt_Id)
return Parameterless Handler;
procedure Attach_Handler (New Handler : Parameterless_Handler;
Interrupt : Interrupt_Id);

procedure Exchange Handler
(Old_Handler : out Parameterless_Handler;
New Handler : Parameterless Handler; Interrupt : Interrupt_ld);
procedure Detach_Handler (Interrupt : Interrupt_Id);
function Reference (Interrupt: Interrupt_Id) return Address;

private

... -- hot specified by the language
end Ada.Interrupts;

Tasking/Realtime - 81

Interrtpt Package - Cont

package Ada.lnterrupts.Names is

Implementation_defined : constant Interrupt_Id :

Implementation_defined;

Implementation_defined : constant Interrupt_Id :

Implementation_defined,;
private

... -- hot specified by the language
end Ada.Interrupts.Names;

i\@

Tasking/Realtime - 82

Shared Variable Control

ePragma Atomic (applies to objects, components, or types)
ePragma Atomic_Components (applies to arrays)
ePragma Volatile (applies to objects, components, or types)

ePragma Volatile_ Components (applies to arrays)

The Atomic pragmas force indivisible read/write operations.

The Volatile pragmas force direct read/writes to memory

Ut

=9 X

\I\ 7 2T e))
4 ———— ‘\\qé_(4

Tasking/Realtime - 83

Task Identification

package Ada.Task_ldentification is
type Task Id is private;
Null Task Id : constant Task Id;
function "=" (Left, Right: Task_ Id) return Boolean;
function Image (T: Task_Id) return String;
function Current_Task return Task Id;
procedure Abort Task (T :in out Task Id);

function Is Terminated(T : Task ID) return Boolean;
function Is Callable (T : Task ID) return Boolean;
private
... -- hot specified by the language
end Ada.Task_ldentification;

Image returns an implementation-defined string that rdentifies
a task.

Current_Task returns a value that rdentifies the task

Tasking/Realtime - 84

Task Attributes

with Ada.Task_ldentification;
generic
type Attribute is private;
Initial_Value : Attribute;
package Ada.Task_Attributes is
type Attribute_Handle is access all Attribute;

function Value
(T: Task_Identification.Task Id := Task_ldentification.Current_Task)
return Attribute;
function Reference
(T : Task Identification.Task Id := Task_lIdentification.Current_Task)
return Attribute_Handle;
procedure Set Value (Val: Attribute;
T : Task _ldentification.Task Id := Task Identification.Current_Task);

procedure Reinitialize
(T : Task Identification.Task Id := Task_lIdentification.Current_Task);

end Ada.Task_ Attributes;

Tasking/Reaitime - 85

Real-Time Annex

ecifies additional characteristics of Ada implementations
tended for real-time systems software.

To conform to this annex, an implementation must also
conform to the Systems Programming Annex.

NN
‘\/1

Most of thisannex consists of documentation requirements.
An implementation must document the values of the annex-
defined metricsfor at least one hardwar e/system
configuration.

Tasking/Realtime - 86

Trask and Protected Type Priorities

pragma Priority (expression);
pragma Interrupt_Priority (optional expression);

The range of System.Interrupt Priority shall include at least
one value.

The range of System.Priority must have at least 30 values.

Interrupt_Priority is defined as being greater than Priority.

The following declarations exist in package System

subtype Any Priority is Integer range implementation-defined,;

subtype Priority is Any_Priority range Any_Priority’first..implementation-defined;
subtype Interupt_Priority is Any_Priority range Priority’last+1..Any Priority’last;
Default_Priority : constant Priority := (Priority'first + Priority’last) / 2;

Default_Interupt_Priority : constant Interupt Priority := Interupt Priority’last;

Tasking/Realtime - 87

Priority Scheduling

pragma Task Dispatching Policy (policy identrfier);

where EIEO. Within_Prioerities Is the only reguired policy.
Other implemenitation-dependenit policies may be defined

Animplementation must document

e the maximum prierity InVersion a User task cam experience

s Whether execution of a task can e preempited by the

Implemenitation processing ol delay, expirations for lower
prierity tasks: (and, 1l so, for hew leng)

Tasking/Realtime -

Priority Scheduling

The Ceilling_Locking policy (which specifies
Interactions between priority task scheduling
and protected object ceillings) must be In effect

for FIFO_Within_Priorities. &4 |

pragma Locking Policy(policy_ldentifier)
M

where Celling_Locking Is a predefined e ‘
policy. Other policies may be

Implementation-defined. ‘“

\J\’b

~.1g/Realtime - 89

Priority Ceilling Locking
An example WITHOUT Ceiling Locking

L CERERES

P off prierty 5
*Q of prierity: 3
*R off priorty 1

Also, there is a protected object (O).

Tlask RIS executing a precedure in ©. P later reguires; access toithe
Same precedure in O, hut R must finish first. @ can| preempt R:

Prstarts waiting At this peint, @ has blocked R and P

l

@ (prenty: S)preempist RECpIHeHNAS)

R ekecuting @) pPreHnAL

(R must complete exclusive write
access o) O before P can preempt R)
Tasking/Realtime - 90

on - Have the protected object O
natically execute at a “ceiling”.

very protected object has a ceiling
riority (set by either Priority or
Nnterrupt_Priority pragma).

hen a task executes a protected
peration, it inherits the ceiling priority
f the corresponding protected object.

f the active priority of the task
IS higher than the ceiling of the
protected operation, a
Program_Error Is raised.

Priority Celling Locking

Tasking/Realtime - 91

Expiration of Trime Delay:
and
Selective Accepts

If two or more selective accepts are present with
different priorities, then the highest priority is

executed.

If two or more expired delays or selective accepts
are present with the same priority, the first in
textual order iIs executed / selected.

' T
ﬂ, . |
' Tasking/Realtime - 92

Entry Queuing PolIcIes

This specifies how the calls to a single entry pc
are queued up.

pragma Queuing Policy (policy identifier);

where FIFO _Queuing and Priority Queuing are
predefined. Other implementation-defined
policies may exist.

FIFO _Queuing is the default.

Tasra.. altime - 93

Dynamic Priorities

Allows the priority of a task to be modified or queried
at run time

with System;
with Ada.Task ldentification; -- See G.6.1
package Ada.Dynamic_Priorities is

procedure Set Priority(Priority : System.Any_ Priority;
T : Ada.Task ldentification.Task _Id :=
Ada.Task_ldentification.Current_Task);

function Get Priority (T : Ada.Task_ldentification.Task Id :=
Ada.Task_ldentification.Current_Task)
return System.Any_ Priority;

private

... -- hot specified by the language
end Ada.Dynamic_Priorities;

Tasking/Realtime - 94

Preemptive Abort

Implementations must document

e EXxecution time (in processor clock cycles) that it
takes for an abort_statement to cause completion

On multiprocessors, the upper bound (in seconds)
on the time that the completion of an aborted
task can be delayed beyond the point that is
required for a single processor

An upper bound on the execution time of an
asynchronous_select

£

@ﬁ‘
ASS

Tasking/Realtime - 95

~ Tlasking|Restrictions

1€ following are restrictions that are language-defined
for use with the pragma Restrictions

No_Task_ Hierarchy
No_Nested Finalization
No_Abort_Statement
No_Terminate_Alternatives
No_Task Allocators
*No_Implicit_Heap Allocation
No_Dynamic_Priorities

No_Asynchronous_Control
Max_Select_Alternatives

sMax_Task_ Entries

Max_Protected Entries

Max _Storage At Blocking
‘Max_Asynchronous_Select Nesting
Max_Tasks

Tasking, realtime - 96

- Moenotonic Time

This clause specifies a high-resolution, monotonic clock package

package Ada.Real Time is

type Time is private;

Time_First: constant Time;

Time_Last: constant Time;

Time_Unit: constant := implementation_defined real number;

type Time_Span is private;

Time_Span_First: constant Time_Span;
Time_Span_Last: constant Time_Span;
Time_Span_Zero: constant Time_Span;
Time_Span_Unit: constant Time_Span;

S
. . < o e %
Tick: constant Time_Span; . ‘v/@ A

function Clock return Time; 2O

Tasking/Realtime - 97

Monotonic Time Cont.

type Seconds_Count Is range implementation-defined;

proecedure Split (T : 1 Time; SC: out Seconds_Count;
IS : out Trrme_Span);

function Time Of(SC: Seconds _Count; I1S: Time_Span)
returm T'ime;

private

... — Mot specified by the language
end Ada.Real_Time;

Tasking/Realtime - 98

Monotonic Time Limits

The range of Time shall be sufficient to represet
real ranges up to 50 years later.

Tick shall be no greater than 1 millisecond.

Time_Unit shall be less than or equal to 20 micro
seconds.

Time_Span_First shall be no Greater than -3600
seconds and Time_Span_Last no less than 3600
seconds.

The actual values of Time First, Time_ Last,
Time _Span_First, Time _Span_Last ,
Time_Span_Unit and Tick shall be documented.

Tasking/Realtime - 99

[Delay Acclracy

An implemenitation shall document the following

eAn upper bound on the execution time (in processor clock cycles)
of a delay _relative _statement whose requested values is less than or
equal to zero.

eAn upper bound of the execution time of a delay_until_statement
whose requested value of the delay expression is less than or equal
to the value of the Real Time.Clock and Calendar.Clock.

eAn upper bound on the lateness of a delay _relative statement for
a positive values of the delay (and delay until statement), in a
situation where the task has sufficient priority to preempt the
processor as soon as it becomes ready.

d
(@

:

Taskings rcartime - 100

sSynchronous Task Control

Describes a language-defined private semaphore
(suspension object)

package Ada.Synchronous Task Control is
type Suspension_Object is limited private;
procedure Set _True(S : in out Suspension_Object);
procedure Set False(S : in out Suspension_Object);
function Current_State(S : Suspension_Object) return Boolean;
procedure Suspend _Until True(S: in out Suspension_Object);

private

... -- hot specified by the language
end Ada.Synchronous_Task Control;

ARl ehject of type Suspension._Object has twe states: True and
[False

Set_True and Set_Ealse are atomic with respect to each other

Suspend_Untrl_True blecks the calling task unitil the state Is True,
Pregram_Error IS raised 1fi anether task I1s already warting

Currenit_State returns the current state of the object.

Tasking/Realtime - 101

Asynchrenotsiiask Control

s clause Intreduces a language-defimed! package
e do asynchreneus suspend/resume on tasks.

with Ada.Task_ldentification;

package Ada.Asynchronous Task Control is
procedure Hold(T : Ada.Task_ldentification.Task Id);
procedure Continue(T : Ada.Task_ldentification.Task Id);
function Is_Held(T : Ada.Task Identification.Task_Id)
return Boolean;

private
... -- hot specified by the language

end Ada.Asynchronous_Task_ Control,

Tasking/Realtime - 102

Asynchronous Task Control

e After the Hold operation, the task becomes
“held”. There iIs a conceptual “idle task”
whose priority is below
System.Any_ Priority’First. The held task is
set to a “held priority” below the “idle
task™.

For a held task, i1t’s base priority no longer
constitutes an inheritance source. Instead,
the “held priority” is the new inheritance
source.

e A Continue operation resets the state to
not-held, and the priority iIs now
reevaluated.

Tasking/Realtime - 103

S0 -- Why use Ada tasking?

¢ Because Ada tasking Is part of the
language, and it’s a defined standard

— Can be easily certified (since it’s ONLY
part of the language!!

— |0 safety-critical envirenments, all
compoenents of a system must be specified
and tested. This Is difficult in other
languages

Tasking/Realtime - 104

More than just the
Source Code must be Certified

Code
Run-time
- — m

System

(Program)

Tasking/Realtime - 105

-

g
V

E,

)
.

Lack off EX|perience

Lack of experience in Ada
programming causes poor
code performance.

Lack of experience In ";
“C/C++" causes code
errors.

%

_.un1g/Realtime - 106

Questions?

Tasking/Realtime - 107

o] e

king/Realtime - 108

