
The context

Quasar basics

Quasar in works

Conclusion

Home Page

Title Page

JJ II

J I

Page 1 of 18

Go Back

Full Screen

Close

Quit

Quasar

A New Tool for Concurrent
Ada Programs Analysis

S. Evangelista, C. Kaiser, J.F. Pradat-Peyre, P. Rousseau

June 2003

{evangelista, kaiser, peyre, rousseau}@cnam.fr
http://quasar.cnam.fr

http://quasar.cnam.fr


The context

Quasar basics

Quasar in works

Conclusion

Home Page

Title Page

JJ II

J I

Page 2 of 18

Go Back

Full Screen

Close

Quit

1. The context

Given ANY program P

Given ANY property F

The problem to verify that P satisfies F is undecidable



The context

Quasar basics

Quasar in works

Conclusion

Home Page

Title Page

JJ II

J I

Page 3 of 18

Go Back

Full Screen

Close

Quit

However, thinks are not so bad

Given a specific program P

Given a specific context W

no exception occur during outputs

And given a specific property F

does the program ends ?

We can verify that P satisfies F under conditions W .



The context

Quasar basics

Quasar in works

Conclusion

Home Page

Title Page

JJ II

J I

Page 4 of 18

Go Back

Full Screen

Close

Quit

General framework

• Write programs with well defined languages and limit language expres-
sion in order to enforce predictable behaviour.

– for instance, with Ada, use the Ravenscar profil,

– with Java, try to use the RT-Java definition,

– with C/C++, use POSIX standards and environment profiles (PSE )

• Make some assumptions on the execution context (such as exceptions
occurrence, atomicity for specific statements, ...) in order to simplify
the analysis process.

• Focus on specific properties in order to obtain a high level of expertise.

• Construct a formal representation of the program with respect to the
analyzed property

• Use automatic tools that implement the most adequate techniques or
strategies for proving or disproving the property.



The context

Quasar basics

Quasar in works

Conclusion

Home Page

Title Page

JJ II

J I

Page 5 of 18

Go Back

Full Screen

Close

Quit

Automatic verification strategies

1. Use methods that are based on states enumeration :

+ fully automatic,

+ many properties can be checked with this strategy,

+ very efficient for small or medium models or when the number of
states can be reduced (with partial order methods, with bdd, ...),

- suffer from the combinatory explosion problem.

2. Use methods that are based on the analysis of the structure of the
model :

+ depend on the size of the model and not on the number of states
that can be reached by the model,

+ can perform parameterized analysis, and give “high level” compre-
hension of abnormal behaviours when necessary,

- partially automatic,

- some properties are difficult to be analyzed with this strategy (al-
most each property needs a specific method).



The context

Quasar basics

Quasar in works

Conclusion

Home Page

Title Page

JJ II

J I

Page 6 of 18

Go Back

Full Screen

Close

Quit

2. Quasar basics

Quasar is an automatic verification tool that focuses on software con-
current behaviour

• concurrent behaviour is very difficult to predict / understand by
“manual” reasoning and a very little modification in the code can
produce a major behaviour transformation

=⇒ an automatic tool is needed.

• it is very difficult to reproduce an error once detected

=⇒ traditional debugging process cannot be employed

=⇒ systematic “a-priori” analysis is required

Quasar is based on colored Petri nets

• colored Petri nets are a good compromise between modeling facil-
ities and analysis possibilities;

• a colored Petri net can be analyzed both with

∗ structural and parameterized techniques (e.g. invariants, re-
ductions, ...)

∗ and efficient states enumerations techniques;

• many experienced tools supporting colored Petri nets analysis are
available (see Petri Nets home page)

http://www.daimi.au.dk/PetriNets


The context

Quasar basics

Quasar in works

Conclusion

Home Page

Title Page

JJ II

J I

Page 7 of 18

Go Back

Full Screen

Close

Quit

Quasar inside

Quasar is composed of 3 modules

• A first module extracts the relevant concurrent part of the
analyzed program and produces a colored Petri net by com-
bining (merging or substitution) elementary patterns.

• A second module analyses the colored Petri nets produced at
first step; this module first reduces the net by applying structural
reductions and then uses states enumeration techniques.

• A third module reports result of analysis, in particular, a faulty
trace can be reported when the property is not satisfied.

Quasar supports a large subset of Ada (see quasar.cnam.fr) and lan-
guage restrictions are progressively removed.

Quasar is written in Ada and uses an implementation of the ASIS
standard for the first module.

Quasar uses model checkers Prod and Maria for properties verification

http://quasar.cnam.fr
http://libre.act-europe.fr/GNAT/
http://libre.act-europe.fr/GNAT/
http://www.daimi.au.dk/PetriNets/tools/db/prod.html
http://www.daimi.au.dk/PetriNets/tools/db/maria.html


The context

Quasar basics

Quasar in works

Conclusion

Home Page

Title Page

JJ II

J I

Page 8 of 18

Go Back

Full Screen

Close

Quit

Patterns merging



The context

Quasar basics

Quasar in works

Conclusion

Home Page

Title Page

JJ II

J I

Page 9 of 18

Go Back

Full Screen

Close

Quit

Patterns substitution



The context

Quasar basics

Quasar in works

Conclusion

Home Page

Title Page

JJ II

J I

Page 10 of 18

Go Back

Full Screen

Close

Quit

Patterns substitution (continued)



The context

Quasar basics

Quasar in works

Conclusion

Home Page

Title Page

JJ II

J I

Page 11 of 18

Go Back

Full Screen

Close

Quit

3. Quasar in works

Consider the following declarations :

type Money is new Natural;

task Pump is
entry Activate;
entry Start;
entry Finish;

end Pump;

task Operator is
entry Prepay (P : Money);
entry Charge (V : Money);

end Operator;

task Customer is
entry Change (P : in Money);

end Customer;



The context

Quasar basics

Quasar in works

Conclusion

Home Page

Title Page

JJ II

J I

Page 12 of 18

Go Back

Full Screen

Close

Quit

Quasar in works (continued)

task body Pump is
begin

loop
accept Activate;
accept Start;
accept Finish do

Operator.Charge (5);
end Finish;

end loop;
end Pump;

task body Operator is
Cash Box : Money := 500;
Paid : Money := 0;
Back : Money := 0;

begin
loop

accept Prepay (P : Money) do
Put Line (”Pump activation”);
Pump.Activate;
Paid := P;

end Prepay;
accept Charge (V : Money) do

Back := Paid − V;
Customer.Change (Back);
Cash Box := Cash Box + V;

end Charge;
end loop;

end Operator;

task body Customer is
Purse : Money := 20;

begin
loop

Purse := 20;
Put Line (”The Custmer calls the Operator”);
Operator.Prepay (10);
Purse := Purse − 10;
Put Line (”The Custmer starts to use the pump”);
Pump.Start;
Pump.Finish;
Put Line (”The Custmer stops to use the pump”);
accept Change (P : in Money) do

Purse := Purse + P;
end Change;

end loop;
end Customer;

With Quasar we can analyse and correct this program



The context

Quasar basics

Quasar in works

Conclusion

Home Page

Title Page

JJ II

J I

Page 13 of 18

Go Back

Full Screen

Close

Quit

Translating the program



The context

Quasar basics

Quasar in works

Conclusion

Home Page

Title Page

JJ II

J I

Page 14 of 18

Go Back

Full Screen

Close

Quit

Tracking deadlock



The context

Quasar basics

Quasar in works

Conclusion

Home Page

Title Page

JJ II

J I

Page 15 of 18

Go Back

Full Screen

Close

Quit

Analyzing the sequence leading to deadlock



The context

Quasar basics

Quasar in works

Conclusion

Home Page

Title Page

JJ II

J I

Page 16 of 18

Go Back

Full Screen

Close

Quit

Verifying that correction suppresses the

deadlock



The context

Quasar basics

Quasar in works

Conclusion

Home Page

Title Page

JJ II

J I

Page 17 of 18

Go Back

Full Screen

Close

Quit

4. Conclusion

• Quasar is an automatic tool that can verify many properties related
to concurrency

• Quasar is based on colored Petri nets that allow to combine structural
verification techniques and states enumeration verification techniques

• Quasar translates the analyzed program into a colored Petri nets us-
ing pre-defined patterns and two compositional operators (merging and
substitution); this methodology allows us to treat easily more and more
program constructions.

• Quasar is modular and can be adapted to other languages or specific
profile.

• Quasar uses well defined tools such as ASIS, GtkAda, Prod or Maria
and is portable



The context

Quasar basics

Quasar in works

Conclusion

Home Page

Title Page

JJ II

J I

Page 18 of 18

Go Back

Full Screen

Close

Quit

Future works

We make efforts in different directions :

• Augment the part of accepted language constructions

• Adapt or develop specific analyzis tools that take advantage of the struc-
ture of colored Petri nets produced by the translation module

• Develop more user-friendly interfaces for investigating concurrent prop-
erties corresponding to LTL formulae

• Enrich reports given when a required property is detected as non satis-
fied


	The context
	Quasar basics
	Quasar in works
	Conclusion

