
cours UNIX utilisateur

Le système
d'exploitation

Unix

Daniel Enselme, cours Unix utilisateur 1

cours UNIX utilisateur

Historique

1969 Ken Thomson, Bell Labs, première version mono-
 utilisateur, interactif, écrit en assembleur sur PDP-7
 puis PDP-9.

1971 Version multi-utilisateur sur PDP-11

1971-1973 Développement du langage C par Dennis Ritchie, à la
 fois langage de programmation système avec des
 structures de contrôle de type ALGOL plus proches du
 langage machine pour l'efficacité.

1973 Première version d'UNIX en C pour assurer sa
 portabilité.

1975 UNIX version 6 issue des laboratoires Bell.

1978 UNIX version 7, première version réellement
 commercialisée.
 - effort de portabilité : compilateur C portable,
 découpage du noyau pour isoler les parties dépendantes
 de la machine.
 - nouveaux utilitaires (SCCS, …)

Développements AT&T

1982 UNIX system III
 - outils de comptabilité, outils d'atelier logiciel (PWB)

1983 UNIX system V
 - éditeur d'écran (vi)
 - mécanisme pour la communication interne (files de
 messages, sémaphores, mémoire partagée.
 - nouveau mode de commercialisation

Actuellement La version SystemVR4 de UNIX est commercialisée
 par USL(Unix System Laboratory)

Daniel Enselme, cours Unix utilisateur 2

cours UNIX utilisateur

Historique

Développements université de Berkeley

1981 UNIX BSD 4.1
 - version VAX, avec gestion de mémoire virtuelle

1983 UNIX BSD 4.2
 - gestion des périphériques VAX
 - outils de communication (réseaux)

actuellement Version 4.4BSD

Normalisation

1991 Création de la norme POSIX normalisant les différentes
 version d'Unix BSD et System V 4.x

1993 Intégration à POSIX de la notion de "processus léger
 (thread)" avec la technologie des "micro noyaux"

Bien qu'il existe de nombreux types d'Unix, tous sont basés soit sur BSD,
soit sur System V ou même les deux à la fois.

AIX IBM
HP/UX HP
Solaris SUN Microsystems
SunOS SUN Microsystems
Ultrix DEC
Linux gratuit sur l'internet

Le système Unix utilisé dans ce cours est celui de Sun Microsystems
appelée Solaris 2.5 sur trex et zadig et OSF1 sur pauli, dirac et fermi.

Daniel Enselme, cours Unix utilisateur 3

cours UNIX utilisateur

Unix vs autres OS

Unix se distingue des autres OS de trois manières :

1 Le système est écrit dans un langage de haut
niveau

2 Le système est distribué sous format source

3 Le système fournit des primitives puissantes
normalement délivrées avec des OS qui tournent sur
des matériels beaucoup plus puissants

Daniel Enselme, cours Unix utilisateur 4

cours UNIX utilisateur

Principales caractéristiques

Système d'exploitation

• Interactif
• Multi-utilisateur, multi-tâches => assure une bonne répartition des
 ressources (mémoire, processeurs, espace disque, imprimantes,
 utilitaires)
• Système de fichiers hiérarchisé
• Système hiérarchisé de processus (génétique des processus) avec une

notion d'héritage.
• Compatibilité totale des E/S sur périphériques, fichiers, entre
 processus. Tout ressource physique ou logique du système (device) :
 terminal, disque physique ou logique, mémoire physique, est vue
 par l'intermédiaire d'un fichier.
• Exécution de processus avec contrôle synchrone (attente de fin) ou
 asynchrone (poursuite en parallèle)
• Haut degré de portabilité. Système "ouvert" supporté par de
 nombreuses machines
• Langages de commandes (shells), véritable langage de
 programmation avec structures de contrôle évoluées
• Le noyau (kernel) gére uniquement les processus, les ressources,

 les fichiers
• L'interface avec le noyau est assuré par un ensemble de

 gestionnaires de périphériques (device drivers)
• L'interface entre le noyau et, les programmes utilisateurs est assuré

 par un ensemble d'appels systèmes;

Système de développement

• Outils d'édition de textes (vi, ed)
• Outils de débogage (adb, dbx)
• Compilateurs
• Nombreux utilitaires très puissants

Daniel Enselme, cours Unix utilisateur 5

cours UNIX utilisateur

Généralités

Machine hôte et terminal

• La machine hôte supporte plus d'un utilisateur en même temps
• Son OS partage les ressources de l'hôte équitablement entre tous les

utilisateurs
• On travaille sous Unix à travers un terminal : écran-clavier, terminal X.
• Le terminal est connecté à l'hôte.

Relation hôte-terminal

• Lorsqu'on appuie sur une touche du clavier, un signal est envoyé à l'hôte

qui l'interprête.
• L'hôte répond par un signal d'affichage du caractère tapé indiquant au
 terminal de réaliser effectivement l'affichage.
• L'hôte fait un écho du caractère sur l'écran.

Types de connexion

• Directe => plusieurs terminaux, 1 hôte
• Par un serveur de terminaux => plusieurs terminaux, plusieurs hôtes.

Ce mode de connexion nécessite une commande supplémentaire à
destination du serveur (connect hôte) pour choisir l'hôte.

• Le serveur réalise ensuite la connexion.
• Avantage : un même terminal peut utiliser plusieurs machines.

Daniel Enselme, cours Unix utilisateur 6

cours UNIX utilisateur

Généralités

Console et terminal

• L'ensemble écran-clavier-souris d'un ordinateur est équivalent à un

terminal.
• Ce terminal est appelé console.
• On le nomme ainsi car il n'a pas à être connecté. La console est intégrée

à l'ordinateur.

Station de travail

• C'est un ordinateur Unix utilisé par une seule personne à la fois, bien

qu'il puisse supporter plusieurs utilisateurs.
• Une station de travail ne possède qu'un terminal, la console.
• Par rapport à une station de travail, l'utilisation d'un terminal offre trois

avantages :
 - moins cher
 - plus de facilités (connexion à un hôte plus puissant, plus de

 mémoire, plus de services).
 - maintenance faite par un technicien.
• L'utilisateur d'une station de travail doit prendre en charge l'installation

et la maintenance du système Unix. Il doit réaliser les sauvagardes lui-
même.

Connexion et réseau

• Les ordinateurs sont connectés entre eux pour partager les ressources

(imprimantes, fichiers, courrier, utilisation à distance, …)
• L'écran-clavier peut jouer le rôle d'un terminal pour un autre ordinateur.

Réseaux

• Local Area Network (LAN) : ordinateurs connectés à travers un cable
• Wide Area Network (WAN) : LAN connectés entre eux à travers des

lignes à haute vitesse (BACKBONE), permettant ainsi l'échange de
courrier sur un vaste domaine par exemple.

Daniel Enselme, cours Unix utilisateur 7

cours UNIX utilisateur

Généralités

Relation client-serveur

• L'utilité d'un réseau est avant tout le partage des ressources (par

exemple, le partage d'espace mémoire sur réseau implique que l'on peut
stocker ses propres fichiers sur un ordinateur distant).

• Tout programme qui offre une ressource est appelé serveur.
• Tout programme qui utilise une ressource est appelé client.
• Exemple : un programme qui fournit un accès aux fichiers sur le réseau

est un serveur de fichiers. Un programme qui coordonne les différentes
imprimantes est un serveur d'impressions. On trouve aussi des serveurs
de courrier, de news, …

Connexion réseau à grande échelle

• Beaucoup de réseaux (WAN) sont connectés à de grands réseaux

régionnaux ou nationaux. Les ordinateurs qui assurent le lien avec le
monde extérieur sont appelés passerelles (GATEWAYS). Les passerelles
s'occupent du routage vers le réseau approprié.

• Exemple : Internet. On peut utiliser un ordinateur très lointain. La
commande talk permet de connecter 2 ordinateurs et de converser (echo
sur les deux machines).

• Les ordinateurs peuvent être hétérogènes.

Terminaux graphiques

• Ils permettent d'afficher aussi bien des caractères que des images, des

formes géométriques, …
• Ils sont utilisés à travers une interface graphique
• Si l'interface graphique est basée sur X Window, on les appele des

terminaux X.
• Le lien entre un terminal graphique et l'hôte est un lien à grande vitesse

car la communication d'images nécéssite le transfert de grandes
quantités de données. La vitesse des lignes téléphoniques se révèle
insuffisante à cet usage.

Daniel Enselme, cours Unix utilisateur 8

cours UNIX utilisateur

X Window

• historique
 - W fut l'interface graphique développé pour le système

 d'exploitation V à l'université de Stanford
 - le MIT se servi de W comme base au système de fenêtrage X

 (projet ATHENA)
 - le système X est depuis 1987 maintenu par le X consortium
 - la version actuelle est X11R5.
• idée
 fournir des services standards aux programmes qui affichent des

 données graphiques
• exemple
 un programme s'exécute sur une machine et affiche ses résultats

 sur un terminal attaché à une autre machine. X est responsable de
 la gestion de cet affichage.

Système X, serveur X et client X

• Le système X Window a été conçu pour faciliter la création et

l'utilisation de programmes graphiques (qui offrent une interface
utilisateur graphique)

• X offre une serveur d'affichage (E/S), le serveur X qui gère les
problèmes d'interfacage avec une interface utilisateur graphique.

• Un client X est un programme qui tourne sous X, utilisant les ressources
du serveur X pour gérer les E/S

• Le système X comporte une cinquantaine de programmes utilitaires
tournant sous X (xclock, xcalc, xterm, xedit, …)

Le gestionnaire de fenêtres (window manager)

• L'interface graphique réel n'est pas produit par X mais par un

gestionnaire de fenêtres. On n'intéragit pas directement avec X.
• Les plus connus sont :
 - mwm (motif produit par OSF) proche de presentation

 manager sous OS/2
 - olwm (Open Look développé par AT&T et SUN)
• Le serveur X est celui de la machine sur laquelle on travaille, ou bien de

la machine sur laquelle le terminal X "boote".
 Le gestionnaire de fenêtre (window manager) est un client X.

Daniel Enselme, cours Unix utilisateur 9

cours UNIX utilisateur

Utilisation de X pour exécuter des
programmes à distance

• L'affichage (input/output) est séparé du traitement
• L'affichage (input/output) est géré par le serveur X
• Le serveur X peut gérer n'importe quel client X quelle que soit la

machine sur laquelle le client est exécuté

Le client xterm

• Emulation d'un terminal VT100 (par défaut)

Démarrer un programme sur un système distant

• >xterm& (Se mettre dans une fenêtre xterm)
• >xhost trex (pour indiquer à notre serveur X, exécuté sur le

 terminal X, que la machine distante est autorisée à
 accéder notre machine)

• >telnet trex (ou rlogin trex, pour se logger sur la machine distante)
• >setenv DISPLAY artichaut:0.0 (positionne la variable

 d'environnement pour indiquer à trex d'utiliser le
 serveur X d'artichaut)

• >mon_prog&

Daniel Enselme, cours Unix utilisateur 10

cours UNIX utilisateur

Identification de l'utilisateur : Login

Identification

L'utilisateur doit être :
 • connu du système => compte utilisateur
 • reconnu du système => opération d'iedentification (login)
 • désidentifié à la fin de ses travaux => logout

Compte utilisateur

Il se compose :
 • d'un identifiant (User name + UID)
 • d'un groupe de rattachement (GID)
 • d'un répertoire d'accueil (Home directory)
 • d'un environnement de travail (fichier .login)

Sous Unix

login : nom utilisateur
password : mot de passe

2 lignes s'affichent :

• Date du dernier login, nom du périphérique utilisé => on peut savoir
si quelqu'un a utilisé notre login
• Affichage du fichier /etc/motd (message of the day) géré par
 l'administrateur
• Affichage de l'invite ($ pour le shell, % pour le C-shell)

remarques :

• Pour se déconnecter : logout
• Pour sortir du shell (^D ≡ fin de fichier) et donc se déloger
• A chaque connection, les fichiers .login et .cshrc sont éxécutés.

Daniel Enselme, cours Unix utilisateur 11

cours UNIX utilisateur

Le fichier /etc/passwd

• Les carctéristiques d'un utilisateur sont contenues dans le fichier

/etc/passwd

• Structure du fichier /etc/passwd

 Nom Nom usuel de l'utilisateur
 Mot de passe (Codé)
 Identificateur Numéro individuel (UID)
 Groupe d'appartenance Numéro du groupe (GID)
 Zone d'information (Nom et Prénom)
 Répertoire d'accueil En référence absolue
 Interpréteur de commandes Bourne shell, C shell, Korn shell, …

Nom

Passwd

UID

GID

Commentaire

Home

Shell

root

:

*

:

0

:

1

:

SuperUser

:

/

:

/bin/sh

jojo

:

*

:

103

:

13

:

Lucien Jojo

:

/u/jojo

:

/bin/csh

mad

:

*

:

66

:

21

:

Max Mad

:

/u/mad

:

/u/csh

Daniel Enselme, cours Unix utilisateur 12

cours UNIX utilisateur

Connexion à distance

La connexion nécessite une étape supplémentaire.

 telnet> c tulipe
 login : nom utilisateur
 passwd : mot de passe
 %

On se connecte ainsi à toutes les machines qui supportent le protocole du
serveur de terminaux.

ordinateur
serveur de lignes
asynchrones

terminal

Tx

(ne connait que le
protocole TCP/IP)

remarque : telnet ne dépend pas du système d'exploitation. C'est un
service du protocole TCP/IP. Si on veut connecter 2 stations de
systèmes d'exploitation différents, on utilise telnet.

 rlogin est une commande UNIX. On utilise donc rlogin si les
deux stations sont UNIX.

Daniel Enselme, cours Unix utilisateur 13

cours UNIX utilisateur

Login déjà établi

Connexion à partir d'une session

• A partir d'une session, il est possible de se connecter sur une autre

machine par les commandes rlogin et telnet sur un réseau supportant le
protocole TCP/IP.

 rlogin Entre machines UNIX.
 telnet Pour des machines possédant des systèmes
 d'exploitation différents.

Prendre l'identité d'un autre utilisateur

• Il est possible de prendre l'identité d'un autre utilisateur par les

commandes su et login.

 su On choisit son nouvel environnement de travail, puis,
 après abandon du shell crée, on retourne dans son
 environnement initial.

 login Il est impossible de revenir dans son environnement
 initial.C'est comme si on faisait d'abord un logout chez
 soi.

• su avec l'option - permet de prendre l'identité d'un autre utilisateur ainsi

que son environnement de travail exactement comme si cet autre
utilisateur avait réalisé la connexion.

%su - max
%

• su sans option permet de prendre l'identité d'un autre utilisateur en

conservant son propre environnement de travail.

%su max
%

Daniel Enselme, cours Unix utilisateur 14

cours UNIX utilisateur

Exercices

• Modifier votre mot de passe
% passwd
old password : ancien mot de passe
new password : nouveau mot de passe
re-enter new password : nouveau mot de passe

• A partir de votre session, ouvrir une session sur trex et zadig.
 (ouvrir un xterm : %xterm&)

• Fermer les sessions (^D, exit).

• Prendre l'identité d'un autre utilisateur en récupérant son environnement

de travail, puis revenir à son shell initial.

• Prendre l'identité d'un autre utilisateur en restant dans son propre

environnement, puis revenir à son shell initial.

• Mêmes manipulations sans nécessité de retour dans son environnement

propre.

%env -- on visualise l 'environnement de
 -- travail
%setenv x 10 -- on ajoute une variable initialisée
à -- 10
%su toto -- on prend l'identité de toto
%env -- on remarque la présence de x=10
%exit -- retour à sa propre identité
%su - toto -- on prend l'identité de toto
%env -- la variable x est absente=>on est
 -- dans l'environnement de toto

remarque : .cshrc permet essentiellement de positionner les alias et l'

 invite (prompt)
 .login contient 4 variables de base : USER, PATH, HOME,

 DISPLAY

Le terminal
Daniel Enselme, cours Unix utilisateur 15

cours UNIX utilisateur

• En Unix, tty signifie terminal, abbréviation de télétype qui furent les

premiers terminaux, périphériques éléctromécaniques qui réalisaient
leurs sorties sur papier.

• Les différents types de terminaux sont décrits dans le fichier

/etc/termcap.Cette base de données permet aux programmes d'être
compatibles avec une grande variété de terminaux.

• La variable d'environnement TERM permet à Unix de connaitre le type

de terminal utilisé.

%echo $TERM -- pour connaitre la valeur de TERM

• L'interface entre le système UNIX et tout périphérique est effectué
 par des programmes appelés pilotes (drivers).

• Le terminal, tty, est donc géré par un pilote de tty.

• L'interface est paramêtrable (commande stty)

• Les paramêtres de stty sont (ils sont visualisés par %stty -a) :

 erase destruction du dernier caractère
 kill destruction de la ligne
 intr interruption
 eof fin de fichier

Daniel Enselme, cours Unix utilisateur 16

cours UNIX utilisateur

Le manuel en ligne

• Collection de fichiers sur disque : un pour chaque commande ou sujet.

• La commande man suivie du nom de la commande affichera la

documentation voulue.

 %man su
 %man man
 %man su man cp

• La documentation est affichée à l'écran par la commande more qui

permet une visualisation page à page (espace pour changer de page, q
pour sortir).

• Le manuel est organisé en huit sections :

 1 COMMANDES
 2 APPELS SYSTEME
 3 FONCTIONS BIBLIOTHEQUE
 4 FICHIERS SPECIAUX
 5 FORMATS DE FICHIER
 6 JEUX
 7 INFORMATIONS DIVERSES
 8 COMMANDES DE MAINTENANCE

• Format d'une page du manuel

 Name : nom et but de la commande
 Synopsis : syntaxe
 Description : description complète
 Files : liste des fichiers utilisés par cette commande
 See Also : où trouver l'information associée
 Diagnostics : erreurs possibles et warnings
 Bugs : erreurs

Daniel Enselme, cours Unix utilisateur 17

cours UNIX utilisateur

Utilisation pratique du manuel en ligne

• Chaque section et sous-section contient une page d'introduction (bève

description)

 %man intro (ou man 1 intro)
 %man 1c intro
 %man 6 intro

• La recherche d'une commande ou d'un sujet est effectuée à partir de la

première section jusqu'à la première description trouvée.

 %man kill description trouvée en
 section 1 si elle existe

sinon 1ère description
trouvée

 %man 2 kill description trouvée en
 section 2 (si elle existe)
 %man 3f kill description contenue dans la
 section 3 sous-section f
 %man 1 kill 2 kill 3f kill

• Références internes aux sections du manuel

 SEE ALSO
 ls(1), chmod(2), …

 Les n° 1 et 2 indiquent les n° de sections où trouver l'information

• Recherche rapide dans une page. L'affichage s'éffectuant sous more, il

suffit de taper h (help) pour afficher un résumé de toutes les commandes
disponibles.

 %man csh
 …
 …
 /SEE ALSO les pages défilent jusqu'à
 SEE ALSO

Daniel Enselme, cours Unix utilisateur 18

cours UNIX utilisateur

Utilisation pratique du manuel en ligne

• Autres commandes utiles

 whatis => fournit une brève description
 de la commande

apropos => localise des commandes à
partir des mots clés

• Exercices

 1- Lancer la commande %man man pour étudier la structure

 générale du manuel et les options de la commande man

2- Afficher le détail de l'option -x de la commande gcc

 3- Rechercher la description de la fonction sleep

 4- Etudier les commandes echo et who

 5- Explorer la description de la commande login, son
 environnement, les fichiers associés

• Remarque

 Lorsqu'on utilise X Window, il existe un client X nommé xman qui

fournit une version graphique de la commande man.

Daniel Enselme, cours Unix utilisateur 19

cours UNIX utilisateur

Syntaxe générale des commandes Unix

• Ligne de commande
Plusieurs commandes peuvent apparaître sur une même ligne, à condition
de les séparer par un ;

 %date;cd;ls -l toto

• Syntaxe générale d'une commande

nom_commande options paramètres
ou plus précisément,
nom_commande [-option [arg][,args]*]* [args]*
nom de commande, liste facultative d'options avec ou sans arguments, liste
d'arguments
1

• Les options
Elles servent à préciser la nature du travail demandé
 %ls -l -F toto
 %ls -F -l toto
 %ls -lF toto
 %ls -Fl toto

• Les arguments
Ils peuvent être de différentes natures : par défaut, noms de fichiers, de
commandes, mots clés,…
 %ls -a -l
 %ls -ldg /temp /bin
 %cc -o cat -O cat.c
 %man -k manual

• Remarques
 - On peut concaténer les options sans arguments.
 - Pour certaines commandes, l'ordre des arguments et des options
 n'a aucune importance.
 - Le tiret est supprimé lorsque les options sont obligatoires.

1 Les commandes prises en exemple sont celles du système OSF1

Daniel Enselme, cours Unix utilisateur 20

cours UNIX utilisateur

Comprendre la syntaxe d'une commande
du manuel

 ls [-aAbcCdfFgilLmnopqrRstuxl] [filename …]

On comprend que :

• La commande a 24 options

• Les options sont toutes facultatives car elles sont entre crochets

• Il y a un argument qui est facultatif (entre crochets)

• L'argument est suivi de …; cela signifie que plusieurs arguments

peuvent être employés

• La commande peut n'avoir aucun argument (à cause des crochets)

• Le nom des arguments est choisi par l'utilisateur

• Le nom des options est fixé (minuscules et majuscules portent une

signification différente).

Daniel Enselme, cours Unix utilisateur 21

cours UNIX utilisateur

Commandes de communication

• users
Affiche les utilisateurs loggés sur la machine

• who
Donne plus d'informations sur les utilisateurs logés sur la machine :
 - UID
 - Nom du terminal
 - Date et heure du login
 - Machine à partir de laquelle le login a été réalisé.

• w
Permet de savoir ce que fait quelqu'un sur une machine donnée.

• finger
Affiche des informations relatives à un utilisateur sur une machine
(éventuellement distante du moment qu'elle est connectée à la votre).

• ping
Permet de savoir si une machine est connectée.

• uname
Permet deconnaitre le nom du système d'exploitation. Avec l'option -a, on
peut connaitre aussi le nom de la machine sur laquelle on est loggé.

Exercices

• Etudier les options -h et -s de la commande w, ainsi qu'une combinaison

des deux.
• Explorer les commandes ping, finger, users …

Daniel Enselme, cours Unix utilisateur 22

cours UNIX utilisateur

Les fichiers Unix

• En général, un fichier est une collection de données stockée sur un

disque ou sur une bande magnétique

• Un fichier Unix revêt une définition plus large : il s'agit en plus de

toute source de données qui peut être lue ou toute cible sur laquelle des
données peuvent être écrites (clavier, écran, imprimante, …)

• Un fichier Unix est une chaine de caractères non structurée. Il
n'existe aucune notion d'organisation de fichiers (indexé, séquentiel
indexé, direct,…).

• A tout fichier physique est associé un bloc d'informations (i-node)
contenant :

 - type du fichier (ordinaire, spécial, catalogue)
 - adresse des blocs utilisés sur le disque
 - nom du propriétaire et du groupe d'appartenance
 - droits d'accès
 - nombre de liens physiques sur le fichier
 - dates de création, de dernier accès, de dernière modification.
 - taille

• L'i-node ne contient pas de nom pour le fichier. La désignation se fait

au moyen de catalogues (répertoires, "directories") qui sont des fichiers
de couples (nom, numéro de i-node).

 Le nom identifie le fichier relativement au catalogue.
 Le numero d'i-node est l'index par lequel le système identifie le
 fichier.

• Remarques
 Rien n'empêche de référencer un même fichier sous des noms
différents dans des catalogues différents.
 Un catalogue est lui aussi un fichier; il est donc désigné par un nom
dans un autre fichier. Ce système suppose l'existence d'un fichier sans nom
dont le système connait la localisation. Ce fichier particulier est la racine
absolue du système de fichiers.
 Le système de fichiers a donc une structure arborescente. Les noeuds
sont des catalogues, les feuilles des fichiers non catalogues ou catalogue
vide.

Daniel Enselme, cours Unix utilisateur 23

cours UNIX utilisateur

Structure d'un Système de Gestion de
Fichiers

Bloc d'initialisation
Super bloc
table des i-node
blocs de données

• Bloc d'initialisation

Il peut être utilisé au chargement du système (BOOTSTRAP)

• Super bloc

Il contient les informations générales du S.G.F. :
 - Nombre de noeuds alloués
 - Nombre de noeuds libres
 - Liste d'un certain nombre de noeuds libres
 - Nombre de blocs de données libres
 - Liste de quelques blocs libres

• Table des i-nodes

Un i-node contient des adresses, dont quelques adresses directes de blocs
de données, 1 adresse indirecte simple, et éventuellement une double et une
triple.

• Blocs de données

Ce sont des blocs logiques non fragmentables de taille 512,1024, 2048,
4096 octets.

Daniel Enselme, cours Unix utilisateur 24

cours UNIX utilisateur

Commandes associées au Système de
Gestion de Fichiers

• df
Permet de visualiser les statistiques sur la quantité d'espace disque libre

 df [options] [nom]

 %df

les informations affichées sont :
 partition
 capacité en Kbytes
 Kbytes utilisés
 Kbytes disponibles
 % de la partition occupé
 "file system" monté

• du

 du [options] [répertoires]

Indique le nombre de blocs de 512K contenus dans les fichiers d'un
catalogue et récursivement de tous les catalogues fils

 %du /users

Daniel Enselme, cours Unix utilisateur 25

cours UNIX utilisateur

Types de fichiers

• Fichiers de données

Ce sont des tableaux à une dimension de caractères. Ils contiennent des
programmes sources ou binaires, des données (fichiers ASCII).
Etant le résultat de programmes (éditeurs pour les fichiers sources,
compilateurs pour les fichiers objets,…), leur structure est imposée pour
chaque type d'utilisation par un codage particulier.

Exemple : les fichiers texte source sont des ensembles de lignes (c. à d. des
suites de caractères terminées par le caractère <line feed>.

• Fichiers spéciaux (périphériques)
Un périphérique est vu comme un fichier par l'utilisateur (en particulier
pour sa désignation). Toutefois, étant associé à des dispositifs d'E/S, les
opérations d'E/S sont traitées différemment par le système.

Exemples : les terminaux sont des fichiers spéciaux en mode caractère; les
E/S sont donc réalisées en mode caractère.
les disques sont des fichiers spéciaux en mode bloc; les E/S sont donc
réalisées par bloc (en général 512 ou 1024 caractères).

• Catalogues (répertoires, "directories")

C'est un fichier qui contient des noms de fichiers, liste de couples (index
d'identification système, nom d'identification relatif au catalogue).
L'information contenue dans un catalogue n'est manipulée que par le
système (par l'intermédiaire de directives utilisateur).

• Fichiers "FIFO" (tubes nommés)

Ce sont des files d'attente de communication entre processus (boite à
lettres). Elles sont créees par une directive particulière (mknod).

Daniel Enselme, cours Unix utilisateur 26

cours UNIX utilisateur

Fichiers texte, fichiers binaires

• les fichiers textes sont des fichiers de données qui contiennent
uniquement des caractères ASCII (jeu de 128 codes représentant les
caractères majuscules, minuscules, les caractères numériques, de
ponctuation, spéciaux et les caractères de contrôle.

• Les fichiers textes peuvent être édités à l'aide d'un éditeur de textes sur

écran, par exemple.Les codes ASCII sont alors traduits en caractères
normaux, lisibles.

• Les fichiers binaires sont des fichiers de données non textuelles. Leur

contenu ne prend sens que s'il est interprété par un programme. Par
exemple, un fichier binaire obtenu par compilation et édition de liens est
exécutable par la machine.

Différences techniques

• Les données sont représentées par des chaines de bits divisées en bytes

(séquence de 8 bits)

• un fichier texte est une suite de séquences de 8 bits, chaque byte

représentant un élément du code ASCII (exemple :01000000 pour le
caractère 'A').

• en fait, l'information nécéssaire pour représenter un caractère tient sur 7

bits. Le plus à droite a toujours 0 pour valeur.

• le codage des fichiers binaires dépend des programmes qui les ont créés,

les 8 bits sont donc significatifs.

• le transfert d'un fichier binaire est donc une opération différente du
transfert d'un fichier texte. Il est nécéssaire que les 8 bits soient

correctement transférés.

Daniel Enselme, cours Unix utilisateur 27

cours UNIX utilisateur

Hiérarchie des catalogues d'un système
UNIX

• Exemple de hiérarchie

 / racine unique du systeme

florin

prog1 prog2

 enselme
.mailrc ada

essai.ada

bin dev etc lib lost+found sys tmp usr

bin lib man users

ensinf

• Catalogues principaux

lost+found fichiers orphelins
sys fichiers de configuration
usr fichiers utilisateurs
doc fichiers de documentation
man manuel de référence
tmp fichiers temporaires
pub fichiers de données publiques
etc utilitaires d'administration
dev fichiers spéciaux (périphériques)
bin commandes système
lib bibliothèques

Daniel Enselme, cours Unix utilisateur 28

cours UNIX utilisateur

Désignation des fichiers

Nom de base

 • Chaine de caractères limitée à 14 caractères.
 • On se limite aux caractères alphanumériques et aux caractères
 "_" et ".".
 • Les caractères "/" et espace ne sont pas acceptés.
 • UNIX fait une différence entre les caractères minuscules et
majuscules.

Génération des noms de base

 * remplace une chaine de caractères de 0 ou plus.
 ? remplace un unique caractere.
 [] délimite un ensemble ou un intervalle de caractères optionnels.

Exercice : soient les noms de base :
proj.c
proj.o
projet.c
mon_texte.dvi
tpB.moi.ll
tpbV1
tpb.lui.ll
tp1.ada
tp2.ada

quels sont ceux que les expressions suivantes génèrent?

p*
p*.c
proj.*
*.dvi
tp[B b]*
tp?.*
oj.[o c]
tp[0-9]*

Daniel Enselme, cours Unix utilisateur 29

cours UNIX utilisateur

catalogue courant nom relatif nom absolu
racine bin /bin
/bin ls /bin/ls
/users/ensinf/enselme proj.c /users/ensinf/florin/proj.c

Daniel Enselme, cours Unix utilisateur 30

cours UNIX utilisateur

Chemin d'accès

Chemin d'accès absolu

Le système de fichiers a une structure arborescente dont la racine a pour
référence /. Le chemin de la racine au fichier identifie donc sans ambiguité
ce fichier.
Il s'écrit symboliquement en la liste successive des catalogues traversés à
partir de la racine séparés par des "/".

 / catalogue racine
 /usr/bin catalogue des commandes système
 /users/florin/prog fichier utilisateur

Chemin d'accès relatif

A tout instant, chaque utilisateur est positionné sur un catalogue de travail
qu'il peut changer librement.
Toute désignation de fichier peut dès lors être faite relativement à ce
catalogue courant.
Un nom relatif est un chemin d'accès défini à partir du catalogue courant.
Il ne commence donc pas par "/".
Un nom absolu est donc obtenu par concaténation du nom absolu du
répertoire courant et du nom relatif du fichier.

Conventions de désignation

Chaque utilisateur possède un catalogue privilégié ("home directory"). Ce
catalogue devient automatiquement le catalogue de travail à l'ouverture
d'une session (login).
Le point "." désigne le catalogue courant.
Deux points ".." désignent le père du catalogue courant.
Exemple : si le catalogue courant est /local/bin alors ../.. désigne la racine.

Daniel Enselme, cours Unix utilisateur 31

cours UNIX utilisateur

Disques logiques

• Tout support physique, organisable en partitions (disque logique)

(région d'un disque, disk-pack, cd-rom, …) peut contenir un ou
plusieurs sous-arbres de l'arborescence totale.

• L'espace physique global sur disque est divisé en disques logiques

(partitions), référençées dans le catalogue /dev et possédant leur propre
racine.

• Les systèmes de fichiers possèdent leur propre racine et sont crées sur

des partitions distinctes

• L'un des disques logiques, le disque système joue un rôle privilégié. Il

est toujours accessible. Il contient le noyau, les fichiers systèmes.

• Les autres systèmes de fichiers sont montés (attachés) selon les besoins

par une commande système particulière (mount) en un point particulier
de la hiérarchie (un nom de chemin d'un catalogue)

Exemple

bin usr users

disque
système

volume 1

Daniel Enselme, cours Unix utilisateur 32

cours UNIX utilisateur

Commandes relatives aux catalogues

Référence au catalogue courant : pwd

 • Fournit la référence absolue du noeud catalogue courant

%pwd
/users/ensinf/robert
%

Changement de catalogue de travail : cd

• Permet de se déplacer dans l'arborescence des catalogues.
• Utilisée sans paramêtre, le catalogue privé ("home directory")

devient catalogue de travail.
• Utilisé avec un paramêtre (chemin absolu ou relatif de catalogue),

le catalogue désigné devient catalogue de travail.

%cd
%pwd
/users/ensinf/enselme
%cd ../florin
%pwd
/users/ensinf/florin
%cd ..
%pwd
/users/ensinf
%

Contenu d'un catalogue : ls

• Permet de lister le contenu et les caractéristiques d'un ou plusieurs
catalogues.

%ls
f1
f2
souscat
%

Daniel Enselme, cours Unix utilisateur 33

cours UNIX utilisateur

Commandes relatives aux catalogues

Commande ls (suite)

options :
-l principales caractéristiques en format long
-a liste aussi les fichiers cachés (commençant par ".")

 comme .login, .mailrc
-R liste les catalogues de manière récursive
-d liste les caractéristiques du catalogue plutôt que celle

 des fichiers qu'il contient

Création et destruction de catalogues : mkdir, rmdir

Un catalogue est crée par rapport à un catalogue père existant.
Un catalogue ne peut être détruit que s'il est vide.

 %mkdir src /users/ensinf/dupont src/editor
 %rmdir src/editor src

Daniel Enselme, cours Unix utilisateur 34

cours UNIX utilisateur

Exercices

• Créer l 'arborescence

un

deux
trois

quatre sept2.2 2.1

cinq six

5.1 5.2 6.1

huit

8.1

Daniel Enselme, cours Unix utilisateur 35

cours UNIX utilisateur

Commandes relatives aux fichiers
ordinaires

Destruction d'un fichier: rm [-eifrR] noms_de_fichiers

Efface un lien sur un fichier. Si ce lien est unique, les données sont
également détruites.

 options
 -i interactif
 -r et -R si l'argument est un catalogue, effaçage récursif
 de tous les fichiers et catalogues qu'il
contient.

remarques :
%rm * efface tous les fichiers
%rm -r * efface tous les fichiers et

catalogues

Affichage du contenu : cat noms_de_fichiers

Permet l'affichage de fichiers sur la sortie standard

%cat f1 f2
ceci est le contenu du fichier f1
ceci est le contenu du fichier f2

Daniel Enselme, cours Unix utilisateur 36

cours UNIX utilisateur

Commandes relatives aux fichiers
ordinaires

Copie de fichiers :
cp [-fhiprR] fichiers_source fichier_dest

Effectue une copie physique d'un fichier dans un autre. Un nouvel i-node et
une nouvelle entrée dans un catalogue sont crées.

%cp f1 f2 f1 est recopié dans f2=>ancien
 f2 écrasé (à condition que f2
 possède une autorisation
 d'écriture)

%cp -i f1 f2 signale interactivement la
 possibilité d'écrasement de
f2

%cp f1 f2 f3 dir copie de f1, f2, f3 dans le
 catalogue dir (dir doit
 préalablement exister)

%cp -p dir1/* dir copie tous les fichiers de

dir1 dans dir en préservant leurs
modes d'accès et autres
informations attachées à chacun
des fichiers copiés

%cp -r f1 d1 f2 d2 dir copie récursive des
 fichiers et catalogues
 dans le catalogue dir

Daniel Enselme, cours Unix utilisateur 37

cours UNIX utilisateur

Commandes relatives aux fichiers
ordinaires

Renommer des fichiers : mv [-if] noms_de_fichiers

Permet de renommer les fichiers ou de les déplacer dans l'arborescence.

%ls
 f1
 f3
 %mv f1 f2
 %ls
 f2

 %mv f2 f3 dir
 %ls
 dir
 %ls dir
 f2
 f3

Daniel Enselme, cours Unix utilisateur 38

cours UNIX utilisateur

Exercices

• Editer les fichiers 2.1, 2.2, 5.1, 5.2, 6.1, 8.1

• Se placer sous le catalogue un

• Déplacer la directory sept sous la directory six
 %mv -i ~/un/trois/sept/huit
 ~/un/trois/quatre/six/huit
ou %set x=~/un/trois
 %mv -i $x/sept/huit $x/quatre/six/huit

remarque : option -i pour vérifier qu'on n'écrase pas un fichier existant.

on ne peut pas faire de déplacement inter-volumes. mv ne
provoque pas la création d'un nouvel i-node.

• Déplacer 8.1 et 6.1 dans trois
 %set x=~/un/trois/quatre/six
 etc…

• Créer 5.1 dans trois

• Déplacer 5.1 de trois vers cinq (comme 5.1 existe dans cinq, il est

écrasé => option -i)

• Copier le catalogue trois dans six (impossible)

• Copier le catalogue deux dans cinq
 %cp -r ~/un/deux ~/un/trois/quatre/cinq

Daniel Enselme, cours Unix utilisateur 39

cours UNIX utilisateur

Liens

• La relation entre un nom de fichier ordinaire ou spécial et un
 fichier physique (son i-node) s'appelle un lien.

• Plusieurs noms peuvent correspondre à un même fichier physique.

• Créer un lien, c'est créer un nom dans un catalogue. Son descriptif
 (i-node) est celui du fichier déjà existant.

• On crée ainsi des synonymes d'un même objet sans création d' i-
 node.

 %ln f /usr/stagiaire/jmf/f-bis
 %ls -il f /usr/stagiaire/jmf/f-bis
 3081-rw-r--r-- 2 moi appli 95 Oct 10 17h43 f
 3081-rw-r--r-- 2 moi appli 95 Oct 10 17h47
 /usr/stagiaire/jmf/f-bis

Restrictions

• Il ne peut pas y avoir plusieurs liens sur un catalogue.

• On ne peut pas établir de liens à travers des frontières de disques
 logiques.

Exemple

users
/

florin dupont

projet projet

commun

Daniel Enselme, cours Unix utilisateur 40

cours UNIX utilisateur

Liens symboliques

Pour créer un lien vers un répertoire ou vers un fichier dans un système de

fichiers différent (donc sur une partition différente), on ne peut pas créer
de lien physique puisque les fichiers n'ont pas le même i-node.

On réalise donc un lien symbolique. Plutôt que de contenir la valeur de
l'i-node, le lien contient le nom du chemin du fichier origine.
Lorqu'on utilise un lien symbolique, Unix utilise le nom du chemin pour
trouver et accéder le fichier origine.

• Création d'un nouvel i-node
 %ln -s D C
 -- On crée l 'objet C à partir duquel on pourra voir D et ses
 -- descendants.

• C ne peut pas posséder de sous arbres.

• Si D est détruit, C ne voit plus rien.

• Si on détruit C, D reste en place.

Intérêt

Si on n'a pas assez de place dans une partition pour ajouter un sous arbre,
alors on crée le sous arbre dans une autre partition (appelons le D) puis on
crée un lien symbolique (C) vers le noeud auquel on désirait ajouter D.
On traverse ainsi les volumes.

home

DC

Daniel Enselme, cours Unix utilisateur 41

cours UNIX utilisateur

Exercices

• Créer un lien entre un fichier existant et un nouveau fichier.
%ln titi toto

• Vérifier qu'il possède le même numéro d'i-node.
%ls -il titi toto

• Créer le fichier D dans la "home directory" et créer un lien
symbolique entre B/C et D. Vérifier les caractéristiques du lien symbolique.
%touch D
%mkdir B
%cd B
% ln -s ../D C -- on cree le nom C sous le
 -- répertoire courant
%pwd
/B -- nom du répertoire courant
%ls
C -- C appartient à B
%cat C -- le contenu de D s'affiche

%mkdir D;cd D;mkdir E;cd E;touch F
%ln -s D C
%cd C
%pwd
D

remarque : la destruction d'un lien ne provoque que la destruction d'une

référence au niveau de l'i-node.

• Créer un lien symbolique entre deux partitions
%df -- pour visualiser les différentes partitions

-- choisir une partition cible et un sous
-- arbre dans cette partition.

%ln -s /tmp/essai lien-symb
 -- création du lien symbolique sous un
 -- répertoire choisi

Daniel Enselme, cours Unix utilisateur 42

cours UNIX utilisateur

Protections

• A tout utilisateur est associé :
 - un identificateur (n° de compte)
 - un groupe particulier
 - droit d'accès

• Pour un fichier donné, on distingue :
 - le propriétaire
 - les utilisateurs du même groupe
 - tous les autres utilisateurs

• Pour un fichier et pour chaque classe précédente sont associés des
 droits d'accès :
 r lecture
 w écriture
 x éxécution

remarque : le super-utilisateur (root) possède tous les droits.

• Lorsque le fichier est un catalogue :
 r signifie droit de lire les noms référencés dans le catalogue
 w signifie droit d'écrire dans le catalogue (droit de détruire
 un fichier du catalogue et aussi de créer des fichiers dans
 ce catalogue
 x signifie droit de "traversée"
 => définir le catalogue comme le catalogue courant
 => droit d'accéder à un fichier dont le nom absolu comporte
 le nom du catalogue

commande : chmod [-fR] mode nom_de_fichier
 -R descente récursive dans la directory pour fixer le mode
 spécifié à chaque fichier.

 mode symbolique [qui] opérateur droit [opérateur droit]
 u + r
 g - w
 o = x
 (par défaut) a
 l'opérateur = permet de forcer un droit

Daniel Enselme, cours Unix utilisateur 43

cours UNIX utilisateur

Protections
Exemple
 %chmod o -w f1
 %chmod +x f2
 %chmod g -x+w f3

Exercices
• Visionner les droits d'accès des fichiers du catalogue cinq
 u g o
 -------------- ------------- -------------
 I I I I I I
 - r w - - - - - - -
 lecture et écriture de 5.1 par l'utilisateur

• Que signifie : rwxr-xr-- lecture générale
 écriture par le propriétaire
 éxécution propriétaire + groupe

• Autoriser la lecture pour tous et l'éxécution et l'écriture pour le
 propriétaire et son groupe sur tous les fichiers de la directory trois
 et ses sous directories.
 %cd ~/un/trois
 %chmod -R a +r .
 %chmod -R ug +x+w .

• Essayer de lire un fichier dont l'accès est protégé en lecture.

• Copier un fichier d'un utilisateur à un autre.

remarque : condition nécessaire et suffisante
- les noeuds du chemin absolu sont en x au niveau du groupe ou du monde
selon l'utilisateur copié.
- le fichier copié doit avoir les droits en lecture pour l'utilisateur qui copie

• Copier un fichier d'un utilisateur durand vers un utilisateur dupont
 à partir de ce dernier chez lui-même.
%cp ~durand/f ~ les protections ne sont pas
copiées
%cp -p ~durand/f ~ les protections sont copiées

Daniel Enselme, cours Unix utilisateur 44

cours UNIX utilisateur

Type de fichier et droits

• Le type et les droits d'un fichier sont contenus dans une structure

(st_mode)

Type de fichier

- régulier d répertoire
b spécial bloc c spécial caractère
l lien symbolique p tube nommé

Bits particuliers

set-uid

Lorsqu'il est positionné pour un fichier exécutable, le
processus correspondant au programme possède les
droits du propriétaire du programme et non ceux de
l'utilisateur qui le lance

set-gid Même rôle que le set-uid mais relativement au groupe

sticky bit

Indique au système que le programme doit être
maintenu (collage) dans le swap même si aucun
processus lui correspondant n'est actif.

Droits d'accès

lecture par le propriétaire
écriture par le propriétaire
exécution par le propriétaire
lecture par les membres du groupe
écriture par les membres du groupe
exécution par les membres du groupe
lecture par les autres utilisateurs
écriture par les autres utilisateurs
exécution par les autres utilisateurs

Daniel Enselme, cours Unix utilisateur 45

cours UNIX utilisateur

Le langage de commandes

• C'est l'interface externe d'un système d'exploitation

Intérêt

 - l'exécution des fonctions de l'interpréteur du langage
 - le chargement, le paramêtrage et l'exécution des utilitaires et des

programmes usagers

Trois approches

 - approche langage de commande
 - approche graphique
 - approche de programmation

Approche langage de commandes

 - On travaille directement sous l'interpréteur de commandes, qui
 doit être un véritable langage évolué.
 - On peut lancer des scripts (programmes de commandes)
 - On accède directement à un grand nombre de fonctions internes du
 système.

Approche graphique

 Le langage de commandes est défini sous forme graphique (boutons,
 icones, menus, …)
 Il complète un interface graphique (X Window) pour offrir des
 fonctions conviviales d'interface constructeur.

Approche de programmation

 Les tâches lourdes d'exploitation sont directement définies par
 programmes (C).

Daniel Enselme, cours Unix utilisateur 46

cours UNIX utilisateur

Les interpréteurs de commandes

• Les interpréteurs de commandes ou shells sont nombreux. Le premier

utilisé fut le Bourne shell (sh) du nom de son réalisateur.

La famille Bourne shell

• Le Korn shell (ksh) est compatible ascendant avec sh et offre de

nouvelles caractéristiques (aliasing, historique,…)

• Le bash (Bourne again shell, 1989) est un produit freeware (Free

Software Foundation, projet GNU)

• Le zsh (1990) pour les programmeurs Unix avancés

La famille C-shell

• Le C-shell (csh) est le plus populaire des interpréteurs de commandes.

Il est très proche du langage C.

• Caractéristiques :
 - historiques de commandes
 - alias
 - gestion des processus pour suivre les travaux

• tcsh est une amélioration de csh.

• Caractéristiques :
 - compatibilité ascendante avec csh
 - amélioration de l'historique avec la gestion des curseurs
 - variables d'environnement plus nombreuses

Daniel Enselme, cours Unix utilisateur 47

cours UNIX utilisateur

Activation de shell

Activation par défaut

• Au démarrage d'une session, on se trouve sous un interpréteur de

commandes (avec fermi, c'est le tcsh).

• Le fichier /etc/passwd contient l'interpréteur par défaut

• L'interpréteur courant est défini par le contenu de la variable

d'environnement SHELL.

 %echo $SHELL

Activation en session

• Au cours d'une session, donc sous un interpréteur de commandes, on

peut créer un nouveau processus et activer un autre interpréteur de
commandes

• Le processus fils du processus précédent exécute le nouvel interpréteur.

• On termine le processus fils et on retourne sous l'ancien interpréteur par

: crtl/d, exit, logout, …

Initialisation d'une session

• A chaque début de session, avec un interpréteur de commande

quelconque, on exécute une liste de commandes contenue dans un
fichier.

 .login pour csh
 .profile pour sh

Initialisation de processus

• Pour tout nouvel interpréteur de commande, on exécute une liste de

commandes pour repositionner le contexte du processus correctement
 .cshrc pour csh

Daniel Enselme, cours Unix utilisateur 48

cours UNIX utilisateur

Processus et fichiers

• Chaque programme doit être capable d'accepter des entrées à partir de

n'importe quelle source et d'effectuer ses sorties vers n'importe quelle
cible.

• Idée : l'input et l'output n'ont pas à être précisé par le programmeur

• A l'exécution du programme, c'est le shell qui connectera les source et

cible appropriées aux E/S.

• D'où l'idée d'une source générale pour les entrées : standard input

(stdin)
 et d'une cible générale pour écrire les résultats : standard output

(stdout)
 à cela s'ajoute la sortie standard pour les messages d'erreur : stderr.

• Tout processus Unix fonctionne avec trois fichiers au minimum

stdin stdout

td

• Par défaut, ces trois fichiers sont assignés au terminal de l'utilisateur.

• Leur descripteur (unité logique) sont 0, 1, 2

• Pour sauvegarder les résultats d'un programme, il faut signifier au shell

de diriger le standard output vers un fichier particulier.

Daniel Enselme, cours Unix utilisateur 49

cours UNIX utilisateur

Redirection du standard output

Opérateur de redirection : >

• Pour sauvegarder le fichier /etc/passwd trié selon l'UID dans le fichier

mot_de_passe :

%sort -t: /etc/passwd>mot_de_passe
remarque :
 - si le fichier n'existe pas, il est crée
 - si le fichier existe, il écrase son contenu

%ls -l >mot_de_passe

Opérateur de concaténation : >>

• Pour concaténer des données à un fichier existant :

%sort -t: /etc/passwd>>mot_de_passe
remarque :
 - si le fichier n'existe pas, il est crée

Protection

• L'utilisation de > au lieu de >> peut provoquer des accidents

• Pour se protéger de tels accidents, on positionne une variable du C-shell

noclobber :
%set noclobber

• Le shell ne remplacera pas un fichier existant si l'on utilise >, ni ne

créera un fichier avec >>. Le shell se conformera exclusivement à
l'intention du programmeur.

• Malgré le positionnement de la variable noclobber, il est possible de

forcer la protection : >!, >>!

• Pour supprimer la protection :
%unset noclobber

Redirection du standard input
Daniel Enselme, cours Unix utilisateur 50

cours UNIX utilisateur

Opérateur de redirection : <

• La lecture des données est réalisée à partir d'un fichier quelconque

%who > toto
%cat toto
%sort <toto
%wc <toto>tata
%cat tata

Daniel Enselme, cours Unix utilisateur 51

cours UNIX utilisateur

Schéma d'exécution des commandes

Commandes

• Dans la plupart des cas, une commande est un utilitaire compilé et relié

dans un fichier binaire qui doit être chargé.

• L'interpréteur utilise pour cela les mécanismes Unix :
 fork
 exec
 wait
 exit

• Une commande est donc le nom d'un fichier binaire exécutable

appartenant à l'un des répertoires connus (variable PATH).

Commandes internes

• Dans le cas des commandes internes, l'interpréteur exécute par lui même

les commandes.

• Il peut le faire immédiatement parce qu'il s'agit d'une commande de type

structure de contrôle du langage ou d'un utilitaire associé.

%set -- donne l'environnement en variables
 -- locales utilisateur

Liste de quelques commandes internes

setenv affectation variable globale
foreach boucle pour
goto branchement inconditionnel
history liste des commandes récentes
alias création d'alias de commande
repeat répétition de commandes
switch aiguillage
while boucle tant que

Daniel Enselme, cours Unix utilisateur 52

cours UNIX utilisateur

Création et terminaison des processus
Unix

• Les opérations sur les processus sont basées sur 4 primitives qui ont un

analogue dans le C-shell : fork, exec, exit, wait.

Fork

• Permet à un processus (le père) de créer un autre processus (le fils) par
 copie de lui-même.

• Elle est utilisée, en particulier, à l'exécution d'une commande (cf

transparent suivant)

Exec

• Remplace le code (image binaire) d'un processus en exécution par un

autre code (image binaire) et reprend l'exécution au début du nouveau
code.

• Exemple : %exec csh

Exit

• Commande la terminaison d'un processus

• Un code de retour est associé à la terminaison du processus (exit

status)

• La fin normale produit la valeur 0.

• Exemple : %exit (fin de session)

Wait

• Suspend l'exécution d'un processus et attend la terminaison de l'un de

ses fils.

• Exemple : wait (dans un procedure)

Daniel Enselme, cours Unix utilisateur 53

cours UNIX utilisateur

Exécution standard d'une commande

C-shell père
1- Image

2- Réception d'un commande :

/bin/csh

ls
3- Commande non immédiate,
le père crée un processus fils
pour exécuter la commande

fork

4- Image exécutée
/bin/csh

5- Le fils recoit la commande
exécuter :
exec /bin/ls

exec
6- Image exécutée
: /bin/ls

exit 7- Fin de
commande

4- Le père continue

son exécution

5- Attente
de la fin
du fils

wait

 Poursuite de l'exécution du père
=> intérprétation d'une commande
autre

Remarque :
• Le processus qui exécute la commande n'est pas le shell
• L'environnement du processus fils est nécessairement fixé par le père

(fichier de commande .cshrc)

Daniel Enselme, cours Unix utilisateur 54

cours UNIX utilisateur

Exécution en parallèle d'une commande

• On peut exécuter une commande Unix sans que le père ne se bloque en

attente de la fin de la commande.

Syntaxe

 <nom_de_la_commande> &

exemple :

 %xclock&

• Après le lancement de la commande, deux processus s'exécutent en

parallèle

Processus d'avant plan (foreground)

• L'usager dialogue avec le processus d'avant plan au moyen de son

terminal. Le processus qui tourne est le csh à partir duquel la commande
d'arrière plan a été lançée.

Processus d'arrière plan (Background)

• Il exécute la nouvelle commande

• Il peut s'exécuter aussi longtemps que le processus père est actif (un

même processus père peut avoir plusieurs fils)

• Il ne peut dialoguer avec l'usager sur le terminal standard réservé au fg

Daniel Enselme, cours Unix utilisateur 55

cours UNIX utilisateur

Schéma d'exécution en mode d'arrière
plan

C-shell père
1- Image exécutée :

2- Réception d'un commande :

/bin/csh

3- Commande non immédiate, le
père crée un processus fils pour

exécuter la commande
fork

4- Image exécutée :

/bin/csh

5- Le fils recoit la commande
exécuter :
exec /.../xclock

exec
6- Image exécutée

/.../xclock

exit 7- Fin de comma
ou poursuite
indéfinie

4- Le père continue
son exŽcution sans
attendre la fin
du fils

5-Poursuite
du père :
interprétation
d'une autre
commande

xclock&

• Sous interface graphique, la gestion des processus d'avant plan et

d'arrière plan est assurée par le multi fenêtrage.

Daniel Enselme, cours Unix utilisateur 56

cours UNIX utilisateur

Contrôle d'exécution des processus en
mode avant plan, arrière plan

jobs

• Donne la liste de tous les processus dans l'environnement utilisateur

avec un numéro d'identification entier.

crtl/z

• Suspend le processus d'avant plan

stop %numéro

• Suspend n'importe quel processus défini par son numéro

fg %numéro

• Ramène en avant plan le processus arrière plan identifié par son numéro

bg %numéro

• Place en arrière plan le processus arrière plan identifié par son numéro

Exercice

• Créer deux processus avant plan et arrière plan, éditer la liste des jobs,

suspendre le processus d'avant plan, rappeler le processus d'arrière plan
puis terminer les deux processus.

Daniel Enselme, cours Unix utilisateur 57

cours UNIX utilisateur

Commandes générales de manipulation
de processus

ps

• Donne la liste des processus existants selon leur identification interne

dans le système

• Options

 -l informations détaillées
 -a informations les plus généralement demandées
 -x informations concernant les processus en exécution attachés à

 un même terminal

• Informations fournies

 PID identification
 PPID identification du père
 TT terminal de rattachement
 S état (status)
 O en exécution
 S endormi (en attente d'un évènement pour terminer)
 R en attente dans la queue d'exécution
 I en création (idle)
 Z zombi (le processus termine, les parents ne l'attendent

 pas)
 T suspendu
 C informations pour l'ordonnancement
 PRI priorité (nb élevé=basse priorité)
 NI valeur utilisée pour le calcul de la priorité
 ADDR adresse mémoire du processus
 SZ taille de l'image swappable du processus
 WCHAN adresse d'un événement pour lequel le processus est

 endormi
 STIME heure de départ du processus
 F Flag hexa associé au processus donnant des informations sur

 l'occupation mémoire, …

Daniel Enselme, cours Unix utilisateur 58

cours UNIX utilisateur

Les différents états d'un processus

• Le système d'exploitation ayant pour fonction de partager ses

ressources, un processus ne peut pas être constamment actif.

• Un processus passe donc, au cours de son exécution, par différents états.

 I
en crŽation

 R
en attente

 O
 actif

 Z
 zombi

 S
 endormi

 T
 suspendu

1

2

3
4

5

5

6 7

 1 Le processus a acquis les ressources nécessaires à son exécution

 2 Le processus vient d'être élu par l'ordonnanceur

 3 Le processus se met en attente d'un évènement

 4 L'évènement s'est produit

 5 Délivrance d'un signal (SIGSTOP, SIGTSTP)

 6 Réveil du processus par un signal (SIGCONT)

 7 Le processus se termine

Daniel Enselme, cours Unix utilisateur 59

cours UNIX utilisateur

Commandes générales de manipulation
de processus

kill

• Permet de détruire un processus en lui envoyant un signal de n° n

• Exemple
 %kill -9 1089 -- tue le processus 1089
 -- en toutescirconstances

nice

• Permet de définir une priorité au processus

• Exemple
 %nice +20 appli -- la priorité de appli
 -- est augmentée de
la -- valeur 20

• La priorité 10 est recommandée pour les programmes utilisateur dont le

temps de traitement est important.

• La priorité d'un processus s'étage de la valeur -20 (le plus prioritaire) à

la valeur +20 (le moins prioritaire).

• La priorité d'un processus est transmise à ses fils par la fonction fork

sleep, at "hour"

• sleep permet la suspension d'un processus pendant quelques secondes,

at "hour" l'exécution à une heure absolue.

• Exemples
 %sleep 5
 %at "11am"

Daniel Enselme, cours Unix utilisateur 60

cours UNIX utilisateur

Enchainement parallèle des commandes :
les tubes

• Nous avons vu comment enchainer séquentiellement les commandes

 %ls /usr;cd

• Nous avons vu comment rediriger les entrées ou les sorties

 %(ls;pwd)>toto

Les tubes

• Les commandes tapées sur une même ligne et séparées par une barre

verticale ("pipe") sont exécutées en parallèle

• La sortie standard de la commande précédente est l'entrée standard de la

commande suivante

• Exemple

 %who|sort -- affiche la liste alphabétique
 -- des utilisateurs coonectés

commande 1

stdin 1 stdin 2
stdout 1

stderr 1 stderr 2

stdout 2

Exercice

• Comptez en une seule ligne le nombre de vos fichiers (utiliser la

commande wc)

Daniel Enselme, cours Unix utilisateur 61

cours UNIX utilisateur

Exécution avec tube

C-shell père
Image exécutée :

Réception d'un commande :

/bin/csh

Commande non immédiate, le
p�re crée un processus fils
exécuter la commande

fork
Image exécutée : /bin/csh

exec Image exécutée :

exit Fin de command

Le père continue
attente de la fin
du fils

ls|wc -l

fils 1 interprète le tube

fork Image exécutée : /bin/csh

fils 2

stdin coté lecture tub

/bin/wc
fils 1

Image exécutée :
fork

exec

exit

exit

exit

wait

wait

wait

attente de la
fin des fils

père fils 1

fils 3

/bin/csh

stdout coté écriture tube

/bin/ls Image exécutée :

Fin de commande

Fin de commande

Fin de commande

Daniel Enselme, cours Unix utilisateur 62

cours UNIX utilisateur

Dérivation en T

• Chaque ligne de commande , comprenant un ou plusieurs tubes, ne

possède qu'une seule entrée standard et une seulesortie standard

• Si l'on veut observer ce qui se passe dans le tube, il faut employer un

utilitaire.

tee nom_de_fichier

• Cet utilitaire permet de recopier l'entrée standard sur la sortie standard

en écrivant aussi les informations sur un ou plusieurs fichiers

• Exemple

%ls|wc -c|tee toto tata

Exercice

• Ecrire une ligne de commande avec deux tubes qui liste dans un fichier

le nombre de lignes d'un répertoire quelconque

Daniel Enselme, cours Unix utilisateur 63

cours UNIX utilisateur

Programme de commandes

• Les commandes peuvent être préparées dans un fichier formant un

programme dont l'exécution est obtenue en évoquant simplement le nom
du fichier.

• Ces programmes de commandes se nomment aussi :
 - procédure de commandes
 - macro commande
 - "script shell"

• Pour que le fichier soit réellement exécutable, il faut que la protection

"execute" soit positionnée.

• L'interpréteur d'un fichier de commandes est le shell (pour nous csh)

• Pour forcer l'interprétation par C-shell en toute circonstances, il faut

commencer le fichier par une ligne de commentaires

 #Ceci est une procedure csh

Daniel Enselme, cours Unix utilisateur 64

cours UNIX utilisateur

Exécution d'une procédure de
commande

C-shell père
Image exécutée :

Réception d'un commande :

/bin/csh

Commande non immédiate, le
père crée un processus fils
exécuter la commande

fork
Image exécutée : /bin/csh

exec Image exécutée :

exit Fin de commande

Le père continue
attente de la fin
du fils

macro

fils 1 lit sur le fichier

fork Image exécutée : /bin/csh

fils 2

1ère ligne : pwd

/bin/pwd fils 1

Image exécutée :
fork

exec

exit

exit

exit

wait
wait

père
fils 3

/bin/csh

2ème ligne : ls

/bin/ls Image exécutée :

Fin de commande

Fin de commande

Fin de commande

wait

fils 1

Daniel Enselme, cours Unix utilisateur 65

cours UNIX utilisateur

Les variables

Variables locales et globales

• Les variables locales sont celles qui sont connues dans l'environnement

dans lequel elles ont été définies.

• Les variables globales sont exportées dans l'environnement des fils.

Les identificateurs de variables

• Les noms de variables sont formées de caractères alphanumériques et

du caractère _

Types de variables

• 4 types :
 le type booléen (ex : noclobber est de type booléen)
 le type chaines de caractères.
 le type numérique entier
 le type tableau

Quelques variables définies au niveau système

ignoreof On ignore crtl/d
noclobber L'écriture en redirection sur un
 fichier existant est impossible
nonomatch la commande est effectuée même si les

mécanismes de substitution donnent
une chaine vide. Il n'y a pas de
message nomatch sur le terminal.

argv Liste des paramêtres
#argv Le nombre de paramêtres
path Liste des répertoires où chercher
prompt L'invite
status Le code de retour de la dernière
 commande
$ Le n° du processus shell en cours

Daniel Enselme, cours Unix utilisateur 66

cours UNIX utilisateur

L'affectation

Affectation d'une variable booléenne locale

• Affectation à vrai d'une variable booléenne

locale ident

 %set ident

Affectation d'une variable chaine locale

• Une chaine entre quotes est une chaine brute, chaque caractère est

inteprété simplement comme un caractère

 %set ident='Le loup $et le chien'
 %echo $ident
 %Le loup $et le chien

• Une chaine entre guillemets est une chaine où les caractères spéciaux

sont inteprétés. Le caractère $ permet de récupérer le contenu d'une
variable.

 %set a='Le loup'
 %set b="$a et le chien"
 %echo $b
 %Le loup $et le chien
 %echo "${a} et le chien"
 %Le loup $et le chien

Affectation d'un numérique local
 %set x=15
 %@y=30
 %@z=$x+$y+1

Affectation d'une variable exportable
 %setenv ident valeur

Suppression d'un variable d'environnement
 %unset

Edition de l'environnement local
 %set ou bien %@

Daniel Enselme, cours Unix utilisateur 67

cours UNIX utilisateur

Ordre d'interprétation des commandes

4 étapes

1 Lecture d'une ligne complète
• La décomposition est effectuée au moyen des opérateurs de base :

espace tab ; carriage return

2 Vérification syntaxique initiale
• Mise en place des redirections de fichiers
• Si la commande n'existe pas, la redirection est malgré tout interpété
• Exemple
 %une_commande>toto
 command not found
 mais le fichier toto a été crée

3 Ordre d'application des substitutions
• Substitution de variables
• Substitution de commandes
• Expansion des noms de fichiers

4 Exécution de la commande

Substitution de commandes

• Au sein d'une chaine de caractères, il est possible de rendre une sous

chaine interprétable comme une commande.
• Pour obtenir la substitution, il faut placer la sous chaine entre "back

quotes"
• Exemple
 %set liste_fich="`ls`"
 %echo $liste_fich

Expansion des noms de fichiers

• Dans un nom de fichier :
 * vaut pour n'importe quel chaine
 ? vaut pour n'importe quel caractère
 [-] vaut pour un intervalle (ex [0-5])

Daniel Enselme, cours Unix utilisateur 68

cours UNIX utilisateur

Exercices

• Création d'un prompt personnalisé (utiliser la variable d'environnement

prompt).

• On pourra utiliser :
 - la variable hostname pour afficher le nom de la machine
 - la commande who i am pour afficher le nom de l'usager
 - la commande date pour afficher la date du jour
 - \! le n° de la commande

• On pourra aussi indiquer le répertoire courant dans l'invite

Daniel Enselme, cours Unix utilisateur 69

cours UNIX utilisateur

Les structures de contrôle

Branchement inconditionnel

• Définition d'une étiquette
 etiq :

• Branchement
 goto etiq

Branchement conditionnel

if (expression logique) commande_simple

if (expression logique) then
 liste_de_commande_1
else
 liste_de_commande_2
endif

if (expression logique 1) then
 liste_de_commande_1
else if (expression logique 2) then
 liste_de_commande_2
else if (expression logique 3) then
 liste_de_commande_3
endif

Itération bornée

foreach variable(liste de valeurs)
 liste_de_commande
end

Itération non bornée
while (expression booléenne)
 liste_de_commande
end

Daniel Enselme, cours Unix utilisateur 70

cours UNIX utilisateur

Les structures de contrôle

Aiguillages

switch (valeur)
 case valeur1 :
 liste_de_commande 1
 breaksw
 case valeur1 :
 liste_de_commande 1
 breaksw
 ...
 default :
 liste_de_commande 1
endsw

Opérations sur les fichiers

-r fichier vrai si l'on peut lire
-w fichier vrai si l'on peut écrire
-x fichier vrai si l'on peut exécuter
-e fichier vrai si le fichier existe
-d fichier vrai si c'est un répertoire
-f fichier vrai si c'est un fichier ordinaire
-z fichier vrai si le fichier est de taille nulle
-o fichier vrai si l'on est propriétaire du fichier

Opérateurs sur les variables

> < >= <= != ==

Exercice

• Ecrire une macro qui utilise un fichier et qui teste avant son utilisation

s'il existe sinon envoie un message d'erreur

Daniel Enselme, cours Unix utilisateur 71

cours UNIX utilisateur

Les structures de contrôle

Les paramêtres d'appel

• Une commande est presque toujours associée à des options ou des

paramêtres d'appel

• La procédure de commande doit pouvoir récupérer ces paramêtres pour

orienter l'exécution

• Le tableau des paramêtres est dans la variable argv

• La variable #argv en donne le nombre

Exercice

• Ecrire une macro (à nombre variable de paramêtres) qui imprime son

premier paramêtre et le nombre de ses paramêtres.

Récursivité

• Une procédure de commande peut s'appeler elle-même en évoquant son

nom dans son code

Exercices

• Ecrire une macro qui édite la date en français (la commande date

l'édite en anglais)

• Ecrire une commande à deux paramêtres dont le premier est un

répertoire et le second est une commande à exécuter récursivement dans
tous les répertoires sous le répertoire premier paramêtre.

Généralités
Daniel Enselme, cours Unix utilisateur 72

cours UNIX utilisateur

• Un processus est un programme en exécution (entité dynamique)

 => nécessité de ressources : cpu, mémoire, structures de données,

 routines, etc, …)

 => L'exécution s'effectue dans un contexte (environnement
 déterminé)

• Les processus s'exécutent en parallèle et échangent des données et

 des signaux

• Un processus est constitué :

du programme (code exécutable)

des données que le programme manipule

du contexte d'exécution (bloc de contrôle du processus)

• Le module du noyau appelé ordonnanceur (scheduler) est chargé

d'allouer la ressource processeur aux différents processus prêts à
exécuter une instruction.

_

Mode d'exécution
Daniel Enselme, cours Unix utilisateur 73

cours UNIX utilisateur

Mode utilisateur

• Moindre privilège

• Durée de vie limitée

• Utilise ses propres ressources sans accéder celles du noyau

Mode système

• Pour exécuter du code système. Ils sont ininterruptibles.

• Les processus système ne sont sous le contrôle d'aucun terminal et ont

comme propriétaire le super utilisateur, processus démons

• Le passage en mode système s'effectue à partir d'évènements

Evènements internes

• Les appels systèmes

• Les trappes (pour les traitements exceptionnels tel que les violations de

segment, les erreurs bus, …)

Evènements externes

• Ce sont les interruptions (asynchrone) qui peuvent se produire à tout

moment de l'exécution du processus.

Exercice

• Voir quel est le premier processus exécuté à la connexion.

Daniel Enselme, cours Unix utilisateur 74

cours UNIX utilisateur

Caractéristiques

Création d'un processus

• La création de tout processus (excepté le processus d'identification) est

le résultat de l'exécution, par le système, à la demande d'un autre
processus, de la fonction de création (fork). Le processus ainsi crée
hérite ainsi d'un certain nombre de caractéristiques de son père.

Bloc de contrôle

• Il contient l'ensemble des carctéristiques d'un processus

• Il est divisé en deux parties :

 - la première contient les informations nécessaires au système même

 lorsque le processus n'est pas actif (identité, calcul de priorité, …)

 - la seconde contient les informations nécessaires uniquement

 lorsque le processus est actif

Réentrance

• Les codes programmes produits par l'éditeur de liens sont par défaut

réentrants.

• Cela signifie que :

 - Un seul exemplaire du programme en M.C. pour plusieurs

 processus correspondant à l'exécution du même programme.

 - La zone programme du processus est protégée en écriture.

 - Les zones de données sont séparées (même si elles peuvent être

 partagées)

 - Chaque processus possède un espace d'adressage

Daniel Enselme, cours Unix utilisateur 75

cours UNIX utilisateur

Organisation mémoire

Pile

Zone libre

Tas

Code

• La pile contient les objets manipulées dans le programme

• Le tas (heap) contient les objets crées dynamiquement

• Ces deux zones mémoire augmentent leur taille en allant l'une vers l'autre. En
cas de dépassement, une image mémoire (core) du processus est enregistrée sur dique.
Le message core dumped est affiché.

Daniel Enselme, cours Unix utilisateur 76

