SD-Rtree: A Scalable Distributed Rtree

Cédric du Mouza Witold Litwin Philippe Rigaux
LAMSADE, Univ. Paris-Dauphine ERIA, Univ. Paris-Dauphine AMSADE, Univ. Paris-Dauphine
Paris, France Paris, France Paris, France
cedric.dumouza@dauphine.fr witold.litwin@dauphine.fr philippe.rigaux@dauphine.fr
Abstract to splits unknown from the client. The addressing may then

send a query to a server that is different from the one the
We propose a scalable distributed data structure (SDDS) query should address. The servers recognize addness-
called SD-Rtree. SD-Rtree generalizes the well-knowning errors and forward the query among themselves, until
Rtree structure. It uses a distributed balanced binary spa- it reaches theorrectone. The client gets then a specific
tial tree that scales with insertions to potentially any num image adjustment message (IANThis improves the image
ber of storage servers through splits of the overloaded ones at least so that the addressing error does not repeat.

A user/application manipulates the structure from a client  \We present in this paper the distributed structure of SD-

node. The client addresses the tree through its image thatRtree and its algorithms for splitting, balancing and ose#|

the splits can make outdated. This may generate addressinging management. Next, we discuss the search and insert

errors, solved by the forwarding among the servers. Spe-processing at the servers and the client. The nodes com-

cific messages towards the clients incrementally correzt th municate only through point-to-point messages. We then

outdated images. analyze the access performance of our scheme as the num-
ber of messages sent to the servers. Finally we assess the
effectiveness of the structure through experimental tesul

1 Introduction In general, insert and point query operations into an SD-
Rtree overV servers cost one message to contact the correct

We aim at indexing large datasets of spatial objects, eachserver. If the first messageasit of range(i.e., the contacted
uniquely identified by ambject id(oid) and approximated  server is not the correct one), the cost is in general within
by the minimal bounding box (mbb) We generalize the 2log N, unless an infrequent split adds anotherN. The
Rtree spatial index to Scalable Distributed Data Structure  overlapping may add up t& messages but in practice it is
(SDDS)that we call SD-Rtree. Our structure conforms to relatively negligible. The processing of window queries is
the general principles of an SDDS [15]: (i) no central direc- also efficient, as the maximal message path length to diffuse
tory is used for data addressing, (ii) servers are dynatgical awindow query i< (log N). All these properties prove the
added to the system when needed and (iii) the clients ad-adequacy of the scheme to our goals.
dress the structure through a possibly outdated image.

An SD-Rtree avoids redundancy of objects references,ReI""ted work
like Rtree or R*tree. The general structure is that of a dis-  Until recently, most of the spatial indexing design ef-
tributed balanced binary spatial tree where each node carforts have been devoted to centralized systems [5] although
ries a mbb. We store an SD-Rtree at interconnesézder for non-spatial data, research devoted to an efficientidistr
nodes, in a storage space usually terrbedkef each with bution of large datasets is well-established [3, 14, 2]. The
some predefined capacity. The buckets may be entirely inarchitecture of the Many SDDS schemes are hash-based,
the distributed RAM, providing potentially for much faster e.g., variants of LH* [15], or use a Distributed Hash Ta-
access than to disks. If a bucket overflows, a split occurs,ble (DHT) [3]. Some SDDSs are range partitioned, starting
moving some data to a dynamically appended bucket. with RP* based [14], till BATON [9] most recently. There

An application addresses an SD-Rtree only through thewere also proposals for the k-d partitioning, e.g. k-RP [13]
client component. The address calculus requires neither ausing distributed kd-trees for points data, or hQT* [11] us-
centralized component nor multicast messages. A clienting quadtrees for the same purpose. [8] presents a dis-
addresses the servers which are iniftgge of the struc- tributed data structure based on orthogonal bisection tree
ture. Some existing servers may not be in the image, due(2-d KD tree). Each processor has an image of the tree.



The balancing needs to fully rebuild the tree using multi- pair (r;, d;), r; being a routing node ané} a data node. As
cast from all the servers. [12] describes an adaptive indexa data node, a server acts as an objects repository up to its
method which offers dynamic load balancing of servers and maximal capacity. The bounding box of these objects is the
distributed collaboration. The structure requires a coard directory rectangleof the server.

tor which maintains the load of each server.

The P-tree [2] is an interesting distributed B+-tree that ‘ L
has a concept similar to our image with a best-effort fiX The node and The spatial
up when updates happen. Each node maintains a possibly™ <" “**
partially inconsistent view of its neighborhood in the dis-
tributed B+-tree. A major difference lies in the correction ()
which is handled by dedicated processes on each peer in the
P-tree, and by IAMs triggered by inserts in the SD-Rtree. Figure 1. Basic features of the SD-Rtree

The work [10] proposes an ambitious framework termed

VBI. The framework is a distributed dynamic binary tree  Figure 1 shows a first example with three successive evo-
with nodes at peers. VBI shares this and other principles|ytions. Initially (part A) there is one data nodgstored on
with the SD-Rtree. With respect to the differences, first, server 0. After the first split (part B), a new sengrstores
SD-Rtree is a data structure worked out to its full extent. It the pair(r;, d,) wherer; is a routing node and; a data
is partly in VBI scope, but fully roots instead in the more node. The objects have been distributed among the two
generic SDDS framework [15]. Next, VBI seems aiming servers and the trem (do, d;) follows the classical Rtree
at the efficient manipulation of multi-dimensional points. grganization based on rectangle containment. The dingctor
SD-Rtree rather targets the spatial (non-zero surface) Ob‘rectangle ofr; is a, and the directory rectangles @f and
jects, as R-trees specifically. Consequently, an SD-Rtreey, are respectivelp andc, with a = mbb(b U c). The
enlarges a region synchronously with any insert needing it. rectangles, b andc are kept onr in order to guide insert
VBI framework advocates instead the storing of the corre- and search operations. If the senfrmust split in turn,
sponding pointinserts in routing nodes, as so-calledeliscr s directory rectangle is further divided and the objects
data. It seems an open question how far one can apply thigjistributed among; and a new serve$, which stores a
facet of VBI to spatial objects. new routing node, and a new data nodé. r, keeps its
The rest of the paper presents first (Section 2) the struc-girectory rectangle and the dr of its left and right children,
ture of the SD-Rtree. Section 3 describes the insertion-algo d ande, with ¢ = mbb(d U e). Each directory rectangle of

rithm and the point and window queries. Section 4 shows g node is therefore represented exactly twice: on the node,
the experimental performance analysis and Section 5 conand on its parent.

cludes the paper. More details on related work and other A routing node maintains the id of its parent node, and

2.

features discussed in this paper can be found in [4]. links to its left and right children. Alink is a quadruplet
(id,dr,hei ght,type), wherei d is the id of the server
2 The SD-Rtree that stores the referenced node,is the directory rectangle

of the referenced nodbgi ght is the height of the subtree
rooted at the referenced node angpe is eitherdat a or
routi ng. Whenever the type of a link idat a, it refers

to the data node stored on servet, else it refers to the
routing node. Note that a node can be identified by its type
(data or routing) together with the id of the server where it

The structure of the SD-Rtree is conceptually similar to
that of the classical AVL tree, although the data organiza-
tion principles are taken from the Rtree spatial containmen
relationship [7].

Kernel structure resides. When no ambiguity arises, we will blur the distinc-
The SD-Rtree is a binary tree, mapped to a set of serverstion between a node id and its server id. _
Each internal node, aouting node refers to exactly two The description of a routing node is as follows:

children whose heights differ_ by at most_one. This ensuresType: ROUTINGNODE
that the height of a SD-Rtree is logarithmic in the number of
servers. A routing node maintains also left and rigjing:c-
tory rectanglegdr) which are the minimal bounding boxes
of, respectively, the left and right subtrees. Finally elaelf
node, ordata nodestores a subset of the indexed objects,
The tree hagV leaves andV — 1 internal nodes which The routing node provides an exact local description of
are distributed among servers. Each servéy is uniquely the tree. In particular the directory rectangle is alwayes th
identified by an idi and (except serve) stores exactlya  geometric union ofl eft. dr andri ght. dr, and the

hei ght , dr : description of the routing node

| ef t,ri ght: links to the left and right children
par ent _i d: id of the parent routing node

CC.: the overlapping coverage



height is Max(| ef t . hei ght, ri ght.hei ght)+1. (A)
OC, the overlapping coverageto be described next, is an

array that contains the part of the directory rectangleeshar nul
with other servers. The type of a data node is as follows: empty
Type: DATANODE
dat a: the local dataset Server® Server0 server0
dr : the directory rectangle ‘— 1) ol 2 )
par ent _i d: id of the parent routing node | parent ‘ | parent
OC. the overlapping coverage left /N right left §/ “yright
pping coverag A @) |V @
Theimage server Server 1
Y
1 2
An important concern when designing a distributed tree 1 parent
is the load of the servers that store the routing nodes lo- | ... = — et \right
cated at or near the root. These servers are likely to receive |routnglink datalink routing node datanode parent; | 1 1 2 )
proportionately much more messages. In the worst case all Server 2

the messages must be first routed to the root. This is unac-
ceptable in a scalable data structure which must distribute
evenly the work over all the servers.

An application that accesses an SD-Rtree maintains anfigure 1. Initially (part A), the system consists of a single
imageof the distributed tree. This image provides a view server, with id 0. Every insertion is routed to this server,
which may be partial and/or outdated. During an insertion, until its capacity is exceeded. After the first split (part B)
the user/application estimates from its image the addifess othe routing node;, stored on server 1, keeps the following
the target serverwhich is the most likely to store the ob- information (we ignore the management of the overlapping
ject. If the image is obsolete, the insertion can be routed coverage for the time being):
to an incorrect server. The structure delivers then the-nse ) ] )
tion to the correct server using its actual routing nodeatth ~ ® thel ef t andri ght fields; both are data links that
servers. The correct server sends back an image adjustment ~ "éference respectively servers 0 and 1,
message (IAM) to the requester. Point and window queries 4 jts height (equal to 1) and its directory rectangle (equal
also rely on the image to find quickly a server whose direc- to mbb(le ft.dr, right.dr)),
tory rectangle satisfies the query predicate. A message is
then sent to this server which carries out a local search, and e the parent id of the data nodes 0 and 1 is 1, the id of
route the queries to other nodes if necessary. the server that host their common parent routing node.

Animage is a collection of links, stored locally, and pos-
sibly organized as a local index if necessary. Each time a
serversS is visited, the following links can be collected: the
data link describing the data node®fthe routing link de-
scribing the routing node of, and the left and right links

Figure 2. Split operations

Since both thd ef t andri ght links are of typedat a
links, the referenced servers are accessed as data nodes
(leaves) during a tree traversal.

Continuing with the same example, insertions are now

of the routina node. These four links are added to an mes_routed either to server 0 or to server 1, using a Rtree-like
9 ' ! . y CHOOSESUBTREE procedure [7, 1]. When the server 1 be-
sage forwarded bg. When an operation requires a chain of : . .
comes full again, the split generates a new routing nede

n messages, the links are cumulated so that the appl|cat|on0n the server 2 with the following information:
finally receives an IAM within links.

e its| eft andri ght data links point respectively to

Node splitting _ ) ) o server 1 and to server 2

When a servef is overloaded by new insertions in its . o
data repository, a split must be carried out. A new sefer e itspar ent _i d field refers to server 1, the former par-
is added to the system, and the data stored émdivided ent routing node of the splitted data node.

in two approximately equal subsets using a split algorithm  Thg right child ofr; becomes the routing node and the
similar to that of the classical Rtree [7, 6]. One subset is peight of, must be adjusted to 2. These two modifications

moved to the data repository 6f. A new routing node-s: are done during hottom-up traversathat follows any split
is stored onS” and becomes the immediate parent of the gneration. At this point the tree is still balanced.

data nodes respectively stored 8mndS’. )
The management and distribution of routing and data OVverlapping coverage
nodes are detailed on Figure 2 for the tree construction of We cannot afford the traditional top-down search in a



distributed tree because it would overload the nodes near The operation is called recursively until a data node is
the tree root. Our search operations attempt to find di- reached. The insertion message contains then the updated
rectly, without requiring a top-down traversal, a data n@de information regarding the OC af. The top-down traver-
whose directory rectanglé- satisfies the search predicate. sal (if any) necessary to find accesses some ancestors
However this strategy is not sufficient with spatial struets  for which the possible changes of the overlapping cover-
that permit overlapping, becaugaloes not contaiall the age must be propagated to the outer subtrees, thanks to the
objects covered byir. We must therefore be able to for- UPDATEOC procedure below.

ward the query to all the servers that potentially match the
search predicate. This requires the distributed maintman
of some redundant information regarding the parts of the
indexed area §hared by several nodes, callextlapping andrect, the directory rectangle afuter (id)
coveraggOC) in the present paper. Output: update the local OC and forward to subtrees

A simple but costly solution would be to maintain, on  pegin
each data nodé, the path fromd to the root of the tree, Il Check whetheNV.OC'id] has changed
including the left and right regions referenced by each node  if (rect N N.dr differs from N.OC/[id]) N.OC/id)] := rect
on this path. From this information we can deduce, whena  // Diffuse to subtree if the OC is non-empty
point or window query is sent td, the subtrees where the if (V is not a leaf)
query must be forwarded. We improve this basic scheme /I Compute and send to the left subtree
with two significant optimizations. First, if is an ancestor if (rect N N.left.dr # @), ,
of d or d itself, we keep only the part of dr which overlaps UPDATEOC (N.left.id, id, rect N\ N.le ft.dr)

Lo N S . /I Compute and send to the right subtree
the _S|bI|ng ofa. Thisis the suff|C|e_nt and necessary infor- if (rect N N.right.dr # 0) then
rr_latlon _for query forwarding. Ift_he |ntersec_t|on is empy, we UPDATEOC (N.right.id, id, rect N N.right.dr)
simply ignore it. Second we trigger a maintenance opera-  gngif
tion only when this overlapping changes. end

Given a nodeN, let anc(N) = {Ny1,Na,...,N,} be
the set of ancestors @f. Each nodeV; € anc(N) has two _
children. One is itself an ancestor&for N itself, while its The cost of the OC maintenance through calls &ol-
sibling is not an ancestor of and is called theuter node ~ TEOC depends both on the length of the insertion path to
denotedoutery (N;). For instance the set of ancestors of the chosen data nodeand on the number of enlargements
ds in Figure 1 is{r1,rs}. The outer nodeutery, (r2) is on this path. In the worst case, the insertion path starts fro
dy, the outer nodeuterq, (r1) is do. the root node, §u_f1d all the overlaps betwelesnd its outer
nodes are modified, which result at worseNn- 1 UPDA-

TEOC messages. However, in practice, the cost is limited
because the insertion algorithm avoids in most cases a full
traversal of the tree from the root to a data nddand re-
duces therefore the number of ancestord tfat can pos-
sibly be enlarged. Moreover the number of node’s enlarge-
ments lowers as soon as the union of the servers directory
rectangles cover the embedding space.

Regarding the second aspect, it suffices to note that no
enlargement is necessary as soon as there exists a server
whose directory rectangle fully contains the inserted cibje

It can be shown, assuming an almost uniform size of
be enlarged to accommodai&; and this leads to check objects, .that itis ver,y u.nlikely that a new inserte.d'object

cannot find a server’s directory rectangle where it is fully

whether the intersectiondr 1 O.dr has changed as well contained. Our experiments confirm that the overlappin
in which case the overlapping coverage must be modified as ' I exp . ppIng
follows: coverage remains stable when the embedding space is fully

covered, making the cost of OC maintenance negligible.

UPDATEOC (N, id, rect)
Input: a nodeN, theid of an ancestor node,

The overlapping coveragef N is an arrayOCy of
the form[1 : oc1,2 : oca,---,n : ocy], such thatoc; is
N.dr Noutery(N;).dr. Moreover an entry is represented
in the array only ifoc; # ). In other words the overlap-
ping coverage of a nod&  consists of all the non-empty
intersections with the outer nodes of the ancestors of

Each node stores its overlapping coverage which is main-
tained as follows. When an objeali; must be inserted in
a subtree rooted aV, one first determines with @os
ESUBTREE the subtred whereobj must be routedO, the
sibling of , is therefore the outer node with respect to the
leaf whereobj will be stored. The nodé must possibly

1. the OC entnjO.id : I.dr N O.dr] is added to the in- ~ Balancing

sertion message routed to the child In order to preserve the balance of the tree, a rotation is
sometimes required during the bottom-up traversal that ad-

2. a OC update message, containing the OC ditiy : justs the heights. The balancing of the SD-Rtree takes ad-
I.dr N O.dr], is sent to the child. vantage of the absence of order on rectangles which gives



more freedom for reorganizing an unbalanced tree, com- 3. One determines which one Df g or d should be the
pared to classical AVL trees. The technique is described sibling of ¢ in the new subtree. The chosen node be-
with respect to aotation patternwhich is a subtree of the comes the left child o&, the other pair constitutes the
forma(b(e(f, g), d), c) satisfying the following con- children ofe.

ditions for somen > 1:
The choice of the moved node should be such that the

e height(c) = height(d) = height(f) =n —1 overlapping of the directory rectangles@finda is mini-
mized. Tie-breaking can be done by considering the mini-
mization of the dead space as second criteria. This rotation
mechanism can somehow be compared to the forced rein-
sertion strategy of the R*tree [1], although it is here limit

to the scope of a rotation pattern.

Any pairwise combination of , g, d andc yields a
balanced tree. The three possibilities, respectivelyedall
nmove(g), nove(d) andnove(f) are shown on Fig-
ure 3. The choicerove( g) (Figure 3.b) is the best one
for our example. All the information that constitute a rota-
tion pattern is available from tHeef t andri ght links on
the bottom-up adjust path that starts from the splitted node

The balancing can be obtained in exactly 6 messages for
nove(f) andnove(g), and 3 messages fomve( d)
because the subtree rootedearemains in that case the
same. When a node receives an adjust message from its
modified child p in our example), it knows the right link
¢ and gets the links foe, d, f andg which can be main-
tained incrementally in the chain of adjustment messages.
If a detects that it is unbalanced, it takes account of the in-
formation represented in the links to determine the subtree
a a f, g ord which becomes the sibling af.

— ; i The overlapping coverage must also be updated for the
""""" § i subtrees rooted &t, d, g andc.

o height(g) = max(0,n — 2)

c. Choice move(d)=b(e(f,g), a(d,c)) d. Choice move(f)=b(e(g,d), a(f,c))
3 Algorithms
Figure 3. Balancing in the SD-Rtree
We present now the main algorithms of the SD-tree,

An example of rotation pattern is shown on Figure 3. namely insertion, deletion, and point and window queries.
Note thata, b ande are routing nodes. Now, assume that a Recall that all these operations rely oniarageof the struc-
split occurs in a balanced SD-Rtree at ned@ bottom-up ture (see above) which helps to remain as much as possible
traversal is necessary to adjust the heights of the ansestornear the leaves level in the tree, thereby avoiding root-over
of s. Unbalanced nodes, if any, will be detected during this |oading. Moreover, as a side effect of these operations, the
traversal. The following holds: image is adjusted through IAMs to better reflect the current
state of the structure.

The main SD-Rtree variant considered in what follows
maintains an image on the client component, although we
shall investigate in our experiments another variant that

- stores an image on each server component. Initially a client
The pr ition shows that the management of unbal- )
e proposition shows that the management of unba C knows only itscontact server The IAMs allow to ex-

anced nodes always reduces to a balar.1cm.g ofa rotat|o_n patt'end this knowledge and avoid to overflood this server with
terna(b(e(f, g), d), c). The operation is as follows:

insertions that must be forwarded later on.

Proposition 1 Let a be the first unbalanced node met on
the adjustment path that follows a split. Then the subtree
rooted ata matches a rotation pattern.

1. b becomes the root of the reorganized subtree,

Insertion
2. The routing noda becomes the right child df; e In order to insert an objeat with rectanglembb, C
remains the left child ob andc the right child ofa, searches its local image as follows:



1. all the data links in the image are considered first; if a this chain of messages. Their routing and data links consti-
link is found whose directory rectangle containgb, tute the IAM which is sent back t6'.
it is kept as a candidate; when several candidates are
found, the one with the smallest dr is chosen;

2. if no data link has been found, the list of routing links Client
are considered in turn; among the links whose dr con- | _—".Image
tainsmbb, if any, one chooses those with the mini- | sl s2 s3 s4 5 s
mal height (i.e., those which correspond to the smallest | ___ insertionmessage & T = 7

SL_lbtrees); if there a_re still several candidates, the one L"7"7"7'irfﬁrafgréWAfdjﬂéEhﬁ;hft'Méééé@7"7"7"””7:
with the smallest dr is kept;
The rationale for these choices is that one aims at finding Figure 4. The insertion algorithm
the data node which can starevithout any enlargement. If » . . o ]
it happens that several choices are possible, the one with th  Initially the image ofC" is empty. The first insertion
minimal coverage is chosen because it can be estimated t§U€ry issued by is sent to the contact server. More than
be the most accurate one. If the above investigations do nofikely this first query is out of range and the contact server
find a link that coversnbb, the data link whose dr is the Must initiate a path in the distributed tree through a subset
closest tanbb is chosen. Indeed one can expect to find the of the servers. The client will get back in its IAM the links
correct data node in the neighborhoodipénd therefore in of this subset which serve to construct its initial image.
the local part of the SD-Rtree. An image becomes obsolete as splits occur and new
If the selected link is of typelat a, C' addresses a mes- SErvers are added to the system. One expects that the out-
sage NSERFIN-LEAF to S; else the link refers to a routing of-range path remains local and involves only the part of the

node and”' sends a message$ERTIN-SUBTREETO S. tree that changed with respect to the client image.
In the worst case a cliertf sends to a serve§ an out-

e (INSERFIN-LEAF messagey receives the message; of-range message which triggers a chain of unsuccessful
if the directory rectangle of its data node covers INSERTIN-SUBTREE messages frony to the root of the
actually o.mbb, S can take the decision to insest SD-Rtree. This cost®g N messages. Then another set of
in its local repository; there is no need to make any log N messages is necessary to find the correct data node.
other modification in the distributed tree (if no split oc- Finally, if a split occurs, another bottom-up traversal tig
curs); else the messageaist of range and a message be required to adjust the heights along the path to the root.
INSERFIN-SUBTREEIS routed to the parerft’ of dg; So the worst-case results (3 log N) messages. How-

ever, if the image is reasonably accurate, the insertion is

e (INSERFIN-SUBTREE message) when a servétre- 14104 to the part of the tree which should host the inserted
ceives such amessage, it _flrst consults its routing ”Odeobject, and this results in a short out-of-range path with
rs: to check whether its directory rectangle covers e\ messages. This strategy reduces the workload of the

if no the message is forwarded to the parent until a sat- 5 since it is accessed only for objects that fall outsiide t
isfying subtree is found (in the worst case one reachesyy ndaries of the most-upper directory rectangles.
the root); if yes the insertion is carried out frorg

using the classical Rtree top-down insertion algorithm. Deletion
During the top-down traversal, the directory rectangles  Deletion is somehow similar to that in an R-Tree [7]. A
of the routing nodes may have to be enlarged. serverS from which an object has been deleted may ad-
. ] ) just covering rectangles on the path to the root. It may also
If the insertion could not be performed in one hop, the gjiminate the node if it has too few objects. The SD-Rtree

server that finally inserts sends an acknowledgment@@  rejocates then the remaining objects to its siblitign the
along with an 1AM containing all the links collected from  inary tree. Nodes’” becomes the child of its grandparent.
the visited servers.’ can then refresh its image. An adjustment of the height is propagated upward as neces-

The insertion process is shown on Figure 4. The client sary perhaps requiring a rotation.
chooses to send the insertion messagés;toAssume that ) _
S, cannot make the decision to insert because.mbb Point queries
is not contained inly.dr. Then S, initiates a bottom-up The point query algorithm uses a basic routine, PQ-
traversal of the SD-Rtree until a routing node whose dr cov- TRAVERSAL, which is the classical point-query algorithm
erso is found (nodec on the figure). A classical insertion for Rtree: at each node, one checks whether the point ar-
algorithm is performed on the subtree rooted aTheout- gumentP belongs to the left (resp. right) child’s directory
of-range path(ORP) consists of all the servers involved in rectangle. If yes the routine is called recursively for i |



(resp. right) child node. Search the local data repositotyde.data

First the client searches its image for a data noddose else _
directory rectangle containB, according to its image. A /I Perform a window traversal fromode
point query message is then sent to the se/elor to WQTRAVERSAL (node, W)

end
/I Always scan the)C' array, and forward
for each (i, oc;) in node.OC' do

if (W nNoc; #0) then

its contact server if the image is empty). Two cases oc-
cur: (i) the data node rectangle on the target server cantain
P; then the point query can be applied locally to the data

repository, and a PQRAVERSAL must also be routed to WQTRAVERSAL (0uternoge (i), W)
the outer nodes in the overlapping coverage arrdyOC endif )
whose rectangle contait3as well; (ii) an out-of-range oc- end for

curs (the data node on servgy does not contai®). The end

SD-Rtree is then scanned bottom-up fréipuntil a rout-

ing noder that containsP is found. A PQTRAVERSAL is

applied fromr, and from the outer nodes in the overlapping ~ The analysis is similar to that of point queries. The num-

coverage array.OC whose directory rectangle contaifts ~ ber of data nodes which interseldt depends on the size
This algorithm ensures that all the parts of the SD-Rtree of W. Once a node that containg’ is found, the WQ-

which may contain the pointargument are visited. The over- TRAVERSAL must be broadcasted towards these data nodes.

lapping coverage information stored at each node avoids toThe maximal length of each of these broadcasted message

visit the root for each query. paths isO(log N). Since the requests are forwarded in par-
With an up-to-date client image, the target server is cor- allel, and result each in an IAM when a data node is finally

rect, and the number of PGRRVERSAL which must be per-  reached, this bound on the length of a chain guarantees that

formed depends on the amount of overlapping with the leaf the IAM size remains small.

ancestors. In general the cost can be estimated to 1 message

sent to the correct server when the image is accurate, andt  Experimental evaluation

within O(log N') messages with an outdated image.

Window queries We performed several experiments to evaluate the per-
Window queries are similar to point queries. Given a formance of our proposed architecture over large datasets o
window ¥, the client searches its image for a link to a node 2-dimensional rectangles, using a distributed structime s
that containgV. The CHOOSEFROMIMAGE procedure can  ulator written in C. Our datasets are produced by the GSTD
be used. A query message is sent to the server that hosts thgenerator [16]. The experimental study involves the follow
node. There, as usual, an out-of-range may occur becaustd variants of the SD-Riree: _ _
of image inaccuracy, in which case a bottom-up traversal is BASIC. This variant does not use an image on the client
initiated in the SD-Rtree. When a routing nodéhat actu- ~ NOr on the servers. Each request, whether it is an insertion,
ally coversi¥ is found, the subtree rootedratas well as the @ PoInt query or a window query, is sent to the server that
overlapping coverage of; allow to navigate to the appro- Maintains the root node. From there we proceed to a top-
priate data nodes. The algorithm is given below. It applies down traversal of the tree to reach the adequate server. This
also, with minimal changes, to point queries. The routine Variantis implemented for comparison purposes, since the

WQTRAVERSAL is the classical Rtree window query algo- high load of the root levels makes it unsuitable as a SDDS.
rithm adapted to a distributed context. IMCLIENT. This is the main variant described in the previ-

ous sections. Each client component builds an image of the
SD-Rtree structure, and corrects incrementally this image

WINDOWQUERY (W : rectangle) through adjustment messages. We recall that servers have
Input: a windowW their actual routing nodes they use for query forwarding.
Output: the set of objects whosebb intersectd?’ IMSERVER. The third variant maintains an image on each
begin_ server component and not on the client component. This
/I'Find the target server corresponds to an architecture where many light-memory

targetLink := CHOOSEFROMIMAGE(Client.image, W)

/I Check that this is the correct server. Else move up the tree

node := the node referred to byurget Link;

while (W & node.dr and node is not the root) // out of range
node := parent(node)

clients €.g, PDA) address queries to a cluster of intercon-

nected servers. We simulate this by choosing randomly, for
each request (insertion or query) a contact server playing
the role of a services provider. The contact server uses its

endwhile own image.
/I Now node containsiV, or node is the root We study the behavior of the different variants for inser-
if (node is a data node) tions ranging from 50,000 to 500,000 objects (rectangles).



We also execute against the structure 0-3,000 point and win-vergence of the image is naturally much faster than with
dow queries. The cost is measured as the number of mestMSERVER because a client that issues insertions will
sages exchanged between server. The size of the messaggst an IAM for the part of these: insertions which turns
remains, as expected, so small (at most a few hundreds obut to be out-of-range. Using th&t BERVERVvariant and the
bytes) that this can be considered as negligible. The datasame number of insertions, a server will get oflyinser-
node on each server is stored as a main memory R-tree, antdons requests/{ being the number of servers), and much
the capacity of the servers is set to 3,000 objects. less adjustment messages. Its image is therefore more likel
to be outdated. Our results show that tReCILIENT variant
. . ~ leads to a direct match in 99.9% of the cases.
) I.:or.the three variants we.study the behawor aﬁer anini- Taple 1 summarizes the characteristics of the SDR-tree
t|a||;at|on of the SD-Rtre_e wnh 50,000 objects. This a\ﬁo'_d_ variants, initialized as above, for a large number of inser-
partially the measures distortion due to the cost of the ini- tions. With a uniform distribution, the tree grows reguarl
tialization step which affects primarily the first serveffie and its height follows exactly the ruheisht-1 < N <
comparisons between the different techniques are based OBheight The average load factor is aroun@, i.e. around

the total number of messages received by the servers, angi,. \\ell-known typicaln 2 value. The BsIC variant re-

on the load balancing between servers. . quires a few more messages than the height of the tree, be-
. Figure 5_ shows the_ total nu_mber o_f messages fqr INS€rcause of height adjustment and overlapping coverage main-
tions of objects following a uniform distribution. It illus tenance. On the average, the number of messages per inser-
trates the role of the images, Wh”e\B'C. requires on av- - 4ign js equal to the final height of the tree. With $ERVER

erage 8 messages when the number of insertions is 5OO'OQQhe number of messages is lower because (i) a few forward-
IMSERVER needs_6 messages on average, thL_Js a25% ga'ning messages are sufficient if the contacted node has split, i
_The cost of each insertion for thexBiC variant is approx-  hich case the correct server can be found locally, and (ii)
'T“ate'y th_e Iength_ of a path from the root to th_e_ leaf. The if no information regarding the correct server can be found
final, maximal, height of the tree is here 8. Additional mes- - image, an out-of-range path is necessary.
sages are necessary for height adjustment and for OC main-

tenance, but their number remains low.

Cost of insertions

nb objects nbserv. | height | load(%) Basic IMSERV IMCL

50,000 58 6 57.5 6 3 5
Ses06 , - 100,000 64 6 78.1 6 3 3
L — 150,000 108 7 61.7 6 3 3
el ImClient ---——-- | 200,000 125 7 66.7 7 4 3
250,000 127 7 78.7 7 4 3
g 300,000 166 8 70.3 7 4 3
3 seros | 350,000 207 8 64.4 8 5 3
2 400,000 233 8 64.4 8 5 3
el | 450,000 240 8 69.4 8 5 3
T 500,000 243 8 75.4 8 5 3

tenee Table 1. Number of messages per insertion

0 ,-f:fff/ T \7\ L

000 200000 300000 400000 50000C
number of insertions

The length of an out-of-range path should be the height
Figure 5. Number of messages for insertion of the tree on the average. But the heuristics that con-
sists in choosing the “closest” server in the image, (the
With IMSERVER, each client routes its insertions to its one with the smallest necessary directory rectangle esiarg
contact server. When the contact server has an up-to-datenent) turns out to be quite effective by reducing in most
image of the structure, the correct target server can becases the navigation in the SD-Rtree to a local subtree. Ta-
reached in 2 messages. Otherwise, an out-of-range occurble 1 shows for instance that with a tree of height 7 with 127
and some forwarding messages are necessary along with agervers, only 4 additional messages are necessary to reach
IAM. We experimentally find that the average number of the correct server (2 bottom-up, and 2 top-down messages).
additional messages after an out-of-range is for instance 5 Finally, the average number of messages foCLIENT
with 252 servers and 500,000 insertions. The gain of 25%does no longer depend on the height of the tree. After a
is significant compared to theaBIC variant, but even more  short acquisition step (see the analysis on the image conver
importantly this greatly reduces the unbalanced load on thegence below), the client has collected enough information
servers (see below). in its image to contact either directly the correct server, o
Maintaining an image on the client ensures a drastic im- at least a close one. The difference in the number of mes-
provement. The average number of messages to contact theages with theN SERVER version lies in the quality of the
correct server decreases to 1 message on average. The coimmage, since a client quickly knows almost all the servers.



T T T
14 | basic = | 12 T X

ImServer immmssn basic
ImClient mm— ImServer —---—--

12 L . 4 0 ImClient -------- i

number of messages
o
T
I

percentage of the number of messages received

ol e camcannnnllmn HII Inllla

0 1 2 3 4 5 6 7 8 9

height of the node V] 500 1000 1500 2000 2500 300
number of aueries

Figure 6. Messages distribution for insertions Figure 7. Cost of query answering

around 1 message for every 1000 insertions.

Experiments with skewed data (not reported here due to
space limitations) show a similar behavior of the structure
X The only noticeable difference is that more messages are
level internal nodes have much more work than the oth- o essary for maintaining the height (640 instead of 440 for
ers. Basically a server storing a routing node at leve- 500 g0q insertions) and additional messages are required t

ceives twice more messages than a server storing a ro“tin%alance the tree (310). Nonetheless on average, only 1 mes-

node at leveh — 1. This is confirmed by the expenmen;s, sage per 500 insertions is necessary for maintaining tee tre
€.g, the server that manages the root handles 12.67% Of the worst caséog(nbservers) and for balancing since
the messages, while the servers that manage its children rShe reorganization remains local

ceived 6.38%. Figure 6 shows that maintaining an image
(either with IMSERVER or IMCLIENT) not only allows to ~ Cost of queries

save messages, but also distributes much more evenly the The following experiments create first a tree by inserting
workload. 200,000 objects uniformly distributed. One obtains a tree
The distribution depends actually on the quality of the composed of 107 servers with a maximal height of 7. Then
image. With MSERVER, each servef is contacted with  we evaluate 0-3,000 queries.
equal probability. If the image of is accurate enough, Figure 7 shows the gain of the image-aware variants
S will forward the message to the correct sengenwhich compared to the Bsic one. Since the tree remains stable
stores the object. Since all the servers have on average th@no insertions), we need on average a constant number of
same number of objects, it is expected that each server remessages to retrieve the answer insBc. If there were no
ceives approximatively the same number of messages. Afoverlap, this number could be predicted to be 7, the height
this point, for a uniform distribution of objects, the load of the tree. The overlapping costs here 2 additional mes-
is equally distributed over the server. The probability of sages on average. As expected the variants which rely on
having to contact a routing nodé decreases exponentially gn image outperform Bsic. The number of messages per
with the distance between the initially contacted data nOdequery decreases with the number of queries, as the server
andN. The initial insertion of 50,000 objects results in a or the client, depending on the variant, acquires a more
tree whose depth is 5, hence the lower number of messagefaithful image and thus contacts more and more frequently
for the nodes with height 1, 2 or 3, since they are newer.  the correct server(s) directly. The convergence is faster f
Finally the last column illustrates the balancing of the IMCLIENT than for MSERVER. IMCLIENT appears very
workload when the client keeps an image. Since a clientefficient even for a small number of queries. After 3,000
acquires quickly a complete image, it can contact in most queries, the search with both variants become almost three
case the correct server. The same remark holds for nodesimes faster than with Bsic.
whose level is 1, 2 or 3 as above. Window queries experiments give similar results. The
There is a low overhead due to the balancing of the dis- higher cost reported, for all variants, is due to the overlap
tributed tree. We perform several experiments to evaluatebetween the window and the dr of the servers.
this overhead. With our 3000-objects capacity and 500,000 Figure 8 shows the ratio of correct matches when an im-
insertions of uniformly distributed data for instance, we age is used for point query. WithmMISERVER, after 1500
need only 440 messages for updating the heights of the sub{resp. 2500) queries, any server has an image that per-
trees and O for rotations, to maintain the tree balanicegd,  mits a correct match in 80% (resp. 95%) of the cases. For

Figure 6 analyzes the distribution of messages with re-
spect to the position of a node in the tree. Using the B
siIc variant, the servers that store the root or other high-



of our structure. The binary choice advocated in the present
paper favors an even distribution of both data and opera-
tions over the servers. A larger fanout would reduce the
tree height, at the expense of a more sophisticated mapping
scheme. The practicality of the related trade-offs rem@ins

be determined.

T T
ImServer
ImClient —-—--

100 |-
80 -

60 [

sl
|

percentage of good matches

20 B B

, References
0 ] 5(‘)0 1(;00 15;00 2(?:00 25;00 3000
number of queries [1] N.Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The
) . . R*tree : An Efficient and Robust Access Method for Points
Figure 8. Good matches for point queries and Rectangles. I8IGMOD, pages 322—331, 1990.

[2] A. Crainiceanu, P. Linga, J. Gehrke, and J. Shanmugasun-
) ) daram. Querying Peer-to-Peer Networks Using P-Trees. In
IMCLIENT, only 600 queries are necessary, and with 200 Proc. Intl. Workshop on the Web and Databases (WebDB)
queries the structure ensures a correct match for 80% ofthe  pages 25-30, 2004.
queries. This graph confirms the results of Figure 7, with [3] R. Devine. Design and Implementation of DDH: A Dis-
very good results forlCLIENT even when the number of tributed Dynamic Hashing Algorithm. Ifoundations of
queries is low. Data Organization and Algorithms (FOD(Q)993.
[4] C. du Mouza, W. Litwin, and P. Rigaux. SD-Rtre, a Scal-
able Distributed Rtree. Technical report, Lamsade, 2006.

ol coasie = | http://www.lamsade.dauphine.fr/rigaux/sdrtree.pdf
g Bl ImClient, m= | [5] V. Gaede and O. Guenther. Multidimensional Access Meth-
g ol m | ods.ACM Computing Survey80(2), 1998.
E [6] Y. Garcia, M. Lopez, and S. Leutenegger. On Optimal Node
3 °r ] Splitting for R-trees. In/LDB, 1998.
E s : [7] A. Guttman. R-trees : A Dynamic Index Structure for Spa-
T a4l 1 tial Searching. I'8IGMOD pages 45-57, 1984.
. L1 | [8] S. E. Hambrusch and A. A. Khokhar. Maintaining Spatial
§ IL Data Sets in Distributed-Memory Machines. Fnoc. Intl.
St 2 s 4 s e 7 s Parallel Processing Symposium (IPRP$997.
height of the node [9] H.Jagadish, B. C. Ooi, and Q. H. Vu. BATON: A Balanced
Tree Structure for Peer-to-Peer Networks.MinDB, pages
Figure 9. Messages distribution for queries 661-672, 2005.
[10] H. Jagadish, B. C. Ooi, Q. H. Vu, R. Zhang, and A. Zhou.
Finally Figure 9 confirms that using an image serves to VBI-Tree: A Peer-to-Peer Framework for Supporting Multi-
obtain a satisfying load balancing, for the very same resson Dimensional Indexing Schemes. fnoc. Intl. Conf. on Data
already given in the analysis of the insertion algorithm. Engineering (ICDE)2006.

[11] J. S. Karlsson. hQT*: A Scalable Distributed Data Stuve
for High-Performance Spatial Accesses. Hmundations of

5 Conclusion Data Organization and Algorithms (FOD(0}998.
[12] V.Kriakov, A. Delis, and G. Kollios. Management of Hilgh

. I Dynamic Multidimensional Data in a Cluster of Worksta-
The SD-Rtree provides the Rtree capabilities for large tions. INEDBT, pages 748—764, 2004.

spatial data sets stored over interconnected servers.i$hed 137 w. Litwin and M.-A. Neimat. k-RP*S: A Scalable
tributed addressing and specific management of the nodes  pistributed Data Structure for High-Performance Multi-
with the overlapping coverage avoid any centralized calcu- Attribute Access. IrProc. Intl. Conf. on Parallel and Dis-
lus. The analysis, including the experiments, confirmed the tributed Inf. Systems (PDI)ages 120-131, 1996.
efficiency of our design choices. The scheme should fit the [14] W. Litwin, M.-A. Neimat, and D. A. Schneider. RP*: A

needs of new app“cations of Spatia' data’ using end|ess|y Famlly of Order Preserving Scalable Distributed Data Struc
Iarger datasets. tures. InNVLDB, pages 342-353, 1994.

) . ., [15] W. Litwin, M.-A. Neimat, and D. A. Schneider. LH* -
Future work on SDR-tree should include other spatial A Scalable, Distributed Data StructureACM Trans. on

operations: KNN queries, distance queries and spatias.join Database Syste21(4):480-525, 1996.

One should study also more in depth the concurrent dis- [16] V. Theodoridis, J. R. O. Silva, and M. A. Nascimento. On
tributed query processing. As for other well-known data the Generation of Spatiotemporal Datasets. Ptoc. Intl.
structures, additions to the scheme may perhaps increase th Conf. on Large Spatial Databases (SSID999.

efficiency in this context. A final issue relates to the fanout

10



